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Abstract. Five far distant machines located at some French, Austrian
and Italian research institutions are connected to a WAN-cluster via
PVM 3.4.3. The secure shell protocol is used for connection and commu-
nication purposes between the different hosts. Operating-Systems, archi-
tectures and cpu-performances of all the 5 machines vary from LINUX-
2.2.14/INTEL PPro-200MHz, over LINUX-2.2.13/INTEL PII-350MHz,
OSF I V5.0/ALPHA EV6-500MHz, IRIX64 6.5/MIPS R10000-195MHz,
up to IRIX64 6.5/MIPS R12000-300MHz. An initial benchmark run
with the Hartree Fock program GREMLIN reveals a speed difference of
roughly a factor 7x between the slowest and the fastest running machine.
Taking into account these various speed data within a special dedicated
load balancing tool in an initial execution stage of GREMLIN, may lead
to a rather well balanced parallel performance and good scaling char-
acteristics for this program if run in such a kind of heterogenous Wide
Area Network cluster.

1 Introduction

Computer Science and Industry has made great progress in recent years and as
a result of this, the average desktop personal computer as of today has become
superior in many aspects to his supercomputer analogues. The other most rapid
emerging field has been the internet and internet based technology, and there-
fore todays probably most potential computing resources might be lying in these
huge number of ordinary internet computers, that are accessible in principal to
everyone else on the net, but mainly remain idle and serve for minor compu-
tational tasks. Scientific research in many areas however suffers from limited
access to computational resources and therefore great attention should be payed
to development efforts especially focusing on parallel and distributed computing
strategies and all the problems connected to them.
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One such example for a really demanding scientific discipline is ab initio
quantum chemistry, or electronic structure theory, which currently is about to
enter the field of mainly application oriented sciences and bio-sciences as well,
and thus experiences a never foreseen popularity, which all in all may be due to
awarding the Nobel Price in Chemistry to J.A. Pople and W. Kohn in 1998.

In a previous article [1] we introduced one such quantum chemical program,
which shall from hereafter be called GREMLIN, that solves the time inde-
pendent Schrödinger equation [2] according to the Hartree Fock Method [3] [4].
One of the main features of this program had been the capability to execute the
most expensive part in it in parallel mode on distributed cluster architectures as
well as on shared memory multiprocessor machines [5]. In addition, what makes
this application particularly attractive for a distributed computing solution, is
its modest fraction in communication time, which on the other hand implies a
principal possible extension to a Wide Area Network (WAN) cluster, where the
individual ”working” nodes are usually formed form a number of UNIX-type ma-
chines1 of usually hetereogenous architecture and the connection between them
is simply realized from the ordinary low-bandwidth/high-latency internet.

Following previous results [1], a properly balanced distribution of the global
computational work requires some basic interference with the theoretical concept
of recursive ERI (Electron Repulsion Integrals) computation [6]. However, taking
into account a system inherent, partial inseparability of the net amount of com-
putational work, allows an estimation and decomposition into fairly equal sized
fractions of node work, and from this adequate node specific pair lists may be
built. The present article intends to describe, how one may extend this concept
to an additional consideration of different node performance, since the previous
study was based on multiprocessor machines made of equally fast performing
CPUs.

1.1 Computational Challenge

Here we briefly want to recall, what makes ab-initio electronic structure calcu-
lation a real computational challenge. The main problem lies in the evaluation
of ERIs, the Electron Repulsion Integrals, which are 6-dimensional, 4-center in-
tegrals over the basis functions ϕ.

ERI =
∫

r1

∫

r2

ϕi(r1)ϕj(r1)
1

|r2 − r1|ϕk(r2)ϕl(r2)dr1dr2 (1)

and the basis functions ϕi are expanded in a series over Primitive Gaussians
χj

ϕi(r) =
∑

j

di,j χj(r) , (2)

1 although PVM 3.4.3 would support WIN32 like OSs as well
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which typically are Cartesian Gaussian Functions located at some place
(Ax, Ay, Az) in space2 [7] [8].

χj(r) = Nj(x − Ax)l(y − Ay)m(z − Az)n e−αj(r−A)2 (3)

Although somewhat reduced from numerical screening, the principal number
of ERIs to be considered grows with the 4th power of the number of basis func-
tions, which themselve is proportional to the number of atoms in the molecule.
However, since the quality of the employed basis set must be kept high in order to
enable quantitative reasoning, the according number of ERIs very soon exceeds
conventional RAM and diskspace limits and thus becomes the only limiting fac-
tor at all. For example, a simple, small molecule like the amino acid alanine (13
atoms), that has been used as a test molecule throughout this present study, at
a basis set description of aug-cc-pVDZ quality [9] [10] (213 basis functions of S,
P and D type) leads to a theoretical number of approximately 260 x 106 ERIs,
which requires about 2.1 GigaByte of either permanent or temporary memory
and goes far beyond usual available computational resources.

Fortunately there is partially independence in the mathematical action of
these many ERIs and one may solve the problem in a so called ”Direct”
way, which means, that a certain logical block of related ERIs is first cal-
culated recursively3, then the action of these block on all the correspond-
ing Fock-matrix elements – from which there luckily are only a number of
(number of basisfunctions)2 – is considered, and then the procedure is re-
peated and a new block of ERIs overwrites the old one and thus only a small
amount of working memory is permanently involved. Further complifying is the
fact, that one has to respect a hierarchic structure in spawning the space to
the final primitive cartesian gaussian functions χj , where, following the notation
introduced in [1], a certain center i refers to an according block of contracted
shells → (j)...(k), from which each of them maps onto corresponding intervals of
basis functions l...m and the later are expanded from primitive cartesian gaus-
sian functions χj as seen from (2). Therefore, after defining a particular centre
quartette i1 i2 i3 i4 , all the implicit dependencies down to the primitive
cartesian gaussians χj must be regarded and as a consequence rather granular
blocks of integrals must be solved all at once, which becomes the major problem
when partitioning the global amount of integrals into equally sized portions.

1.2 Speed Weighted Load Balancing

Concerning parallelization, we follow a common downstream approach and de-
fine node specific pair lists, that assign a certain subgroup of centre quartettes
2 An S-type basis function will consist of primitive gaussians with l = m = n = 0, a

P-type however of primitives with l + m + n = 1, which may be solved at 3 different
ways, either l = 1 and m = n = 0, or m = 1 and l = n = 0, or n = 1 and l = m = 0.
D-type specification will likewise be l+m+n = 2 and similarly F-type l+m+n = 3.

3 All complicated ERI-types (l+m+n > 0) may be deduced from the easier computed
(Si, Sj |Sk, Sl) type.
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to each of the individual nodes, which then shall work independently on their
corresponding partial amount of global computational work. Ideally these pair
lists are built in a way, such that each of the nodes needs the same time for
executing its according fraction of net work. Suppose the total number of theo-
retical centre quartettes is represented from the area of a rectangle, like shown
in Table 1, and one wants to distribute these many centre quartettes now onto
a number of parallel executing nodes, then the simplest method would certainly
be an arithmetic mean scheme (left picture in Table 1), where the theoretic
number of centre quartettes is devided by the number of nodes and all of them
get exactly this arithmetic mean fraction to work on. Due to the fact that sev-
eral centres may now substantially differ in the number of deducable contracted
shells → basis functions → primitive gaussians, this simple procedure has been
shown to not be applicable for the case of distributing global computational
work for recursive ERI calculation done in parallel [1]. In fact, instead, one had
to take into account all these hierarchic dependencies down to the level of prim-
itive gaussians χj in order to be able to estimate the real fraction one particular
centre quartette actually had of the global amount of work measured in terms of
theoretic establishable quartettes of primitive gaussians now. However, following
this pathway led to considerable improvements in parallel performance and the
according pair lists of center quartettes may then be symbolized like shown in
the medium picture of Table 1. Note, that up to now, the indicated, individual
4 nodes are still considered to all operate at the same CPU speed and despite
the fact, that the actual number of centre quartettes each node has to process
has become apparently different now, the execution time for each of the nodes
is now much more comparable – if not equal – to each other, which stands in
great contrast to the arithmetic mean picture.

Going one step further and assuming different node performance next, would
change the situation again. For example, let us hypothetically think of a parallel
machine, where node II is twice as fast as node I, and node III and IV are
running three times and four times as fast as I respectively. Then, we could
equally well think of a parallel machine made up of 10 nodes of the speed of
type I, divide the global amount of work (measured again at the innermost level
of potential primitive gaussian quartettes) into 10 equal sized fractions, and let
the fastest node (IV) work on 4 portions of that estimated unit metric, while
node III and II get 3

10 and 2
10 of the global work and node I will just deal with

the remaining 1
10 of the global amount. The schematic representation of such a

kind of partitioning is given in the right picture of Table 1. On the other hand,
one could obtain a theoretical speed up factor of 2.5 (= 10

4 ) for such a case4, if
at first instance communication time is said to be extremly small and bare serial
execution intervals are neglected completely.

4 compared to the situation where 4 equally fast performing CPUs operate on already
load balanced pair lists
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Table 1. Comparision between different partitioning schemes of the outermost loop
over centre quartettes, represented from the partial areas of the 4 rectangles, that stand
for node specific fractions of the global amount of theoretical combinations of centre
quartettes. For the Speed Weighted Load Balancing, node II is assumed to be twice as
fast as I, and nodes III and IV, are said to be three times and four times as fast as I.

Symbolization of
Arithmetic Mean
Partitioning of
Centre Quartettes
With Respect to
Equally Fast
Performing
Nodes

lI

lII

lIII

lIV

⇒

Symbolization of
Load Balanced
Partitioning of
Centre Quartettes
With Respect to
Equally Fast
Performing
Nodes

lII

lIII

lIV

lI

⇒

Symbolization of
Speed Weighted
Load Balanced
Partitioning of
Centre Quartettes
With Respect to
Differently Fast
Performing Nodes

lI
lII

lIII

lIV
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1.3 Computational Implementation of Speed Weighted Load
Balancing

As already explained within Sect. 1.2, we want to distribute the theoretical num-
ber of centre quartettes onto a number of nodes of different CPU performance.
For this purpose we implement the following steps:

1. Determine the number of participating hosts (NMB) and their according rel-
ative speed factors (SPEED[I]). The speed factor is the relative performance
of a particular node related to the slowest CPU. So it will either become 1.0
(weakest node), or greater than 1.0 for faster CPUs.

2. Estimate the net amount of computational work (GLOBAL WORK) at the
level of quartettes of primitive gaussians to be considered.

3. Form a unit portion (PORTN) of the dimension of

PORTN =
GLOBAL WORK∑NMB

I=1 SPEED[I]
(4)

4. Loop again over all quartettes of centres and the related contracted shells
and basis functions and primitive gaussians either, as if you were calculating
GLOBAL WORK, and successively fill the upcoming pair lists for centre
quartettes until in the work estimation variable (usually a simple counter,
incremented for each new quartette of primitive gaussians) becomes of the
size of PORTN*SPEED[I]; then leave the current pair list writing for node I
and switch forward to the next node and start with setting up pair lists for
this one.

2 Computational Set-Up

In this section we just want to focus on the practical aspects of setting up a
Wide Area Network cluster and running GREMLIN thereon in the described
speed-weighted, load-balanced way.

2.1 WAN Cluster Description

Five university sites at GUP LINZ (A) (2 nodes), RIST++ SALZBURG (A)
(1 node), ICPS STRASBOURG (F) (1 node) and G. Ciamician BOLOGNA
(I) (1 node) were connected via the Parallel Virtual Machine (PVM rel.3.4.3)
package [11]. One of the remarkable nice features of this release is, that the
communication between different, interconnected hosts may be realized with the
secure shell protocol, that implements RSA authentication with 1024 bit long
public/private keys. According to what has been said above, at first one needed
to get an overview of the different node perfomance of all the individual hosts
involved in the cluster. Therefore an initial benchmark run with the PVM version
of GREMLIN (1 node at each location seperately) on a very small training
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Table 2. Conditioning and description of the individual host performance in the WAN
cluster. The data is due to a Hartree/Fock DSCF calculation on glycine/631g with the
program GREMLIN. (Result: -271.1538 Hartree in 22 iterations)

Physical Architecture/ Operating real usr sys Rel.
Location Clock Speed/ System [s] [s] [s] Speed

RAM/2L-Cache

node I
G.C. BOLOGNA INTEL Dual PPro 200 MHz LINUX 2431 159 0 1.000
Italy 256 MB/512 KB 2.2.14

node II
ICPS STRASBOURG MIPS R10000 200 MHz IRIX 64 1186 9 2 1.934
France 20 GB/4 MB 6.5

node III
GUP LINZ INTEL PII 350 MHz LINUX 1167 60 1 2.054
Austria 128 MB/512 KB 2.2.13

node IV
GUP LINZ MIPS R12000 300 MHz IRIX 64 767 6 1 2.990
Austria 20 GB/8 MB 6.5

node V
RIST SALZBURG ALPHA EV6 21264 500 MHz OSF I 341 6 1 6.823
Austria 512 MB/4 MB V 5.0

system (glycine/631g, 10 centre, 55 basis functions) was performed, which led
to the data shown in Table 2.

The timings were obtained with the simple UNIX-style time a.out com-
mand. According to the fact, that the PVM version of GREMLIN consists of
a master-code and a node-code part, and since the node-code part got a dif-
ferent executable name, the mentioned time-command could easily distinguish
between the parallel and the serial (diagonalization and pre-ERI work) fractions
of the program execution. Thus to focus on the sections that really were running
in parallel, one simply had to substract the usr+sys timings from the real one
and could straightforwardly obtain the relative speed factors shown in Table 3.
Note, that node I and III were lacking from special tuned LAPACK libraries,
so their usr timings became significantly higher.

2.2 Estimation of Network Latency and Communication Time

To get a feeling for the time, that is lost through inter host communication —
when nodes are receiving/sending data — we simply measured the bandwidth we
got from the different host positions towards those node serving as the master
machine in the WAN cluster later on (node III). For the real application of
alanine/aug-cc-pVDZ (13 atoms, 213 basis functions) we had to expect a data
transfer of the size of 1452 kB per iteration, which results in a net amount of 27.6
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Table 3. Speed-Factor and Network-Latency table for the WAN cluster. Speed-Factors
represent the relative performance of all the individual hosts in the WAN cluster with
respect to the slowest performing CPU. Network bandwidth was obtained from mea-
suring transfer rates between nodes and the future master-machine (node III).

Physical Architecture/ Operating Relative Network Exp.Total
Location Clock Speed/ System Speed Bandwidth Comm.

RAM/2L-Cache Factor [kB/s] Time [s]

node I
G.C. BOLOGNA INTEL Dual PPro 200 MHz LINUX 1.000000 166 166
Italy 256 MB/512 KB 2.2.14

node II
ICPS STRASBOURG MIPS R10000 200 MHz IRIX 64 1.933617 608 45
France 20 GB/4 MB 6.5

node III
GUP LINZ INTEL PII 350 MHz LINUX 2.054250 — —
Austria 128 MB/512 KB 2.2.13

node IV
GUP LINZ MIPS R12000 300 MHz IRIX 64 2.989474 918 30
Austria 20 GB/8 MB 6.5

node V
RIST SALZBURG ALPHA EV6 21264 500 MHz OSF I 6.822822 592 47
Austria 512 MB/4 MB V 5.0

MB for all the 19 iterations needed throughout the whole calculation. Network
transfer rates and estimated total times spent on communication are also shown
in Table 3.

3 Discussion
A final calculation of the above mentioned alanine/aug-cc-pVDZ (13 atoms, 213
basis functions) system on a successive increasing WAN cluster was performed
and led to the execution timings and according Speed Up factors shown in Table
4. A similar, graphical representation of the Speed Up factors is shown in Fig.
1. Instead of strictly applying Amdahl’ s Law, Speed Up ≤ 1

s+ 1−s
Ncpu

, we tended

to simply relate (real-usr) timings to each other, which was estimated to have
almost no influence on relative values, and neglectable influence on absolute val-
ues.
Comparision of the final column of Table 3 to the 2nd column of Table 4 reveals
a neglectable influence of communication time as well.
The 3rd column of Table 4 might be best suited to explain the actual heterogen-
ity of the WAN cluster. In principle there should be one uniform amount of time
spent on the diagonalization- and pre-ERI work, which basically is all what is re-
flected in the Usr Time. However, temporary network bottlenecks, OS-competion
for CPU-time, temporary I/O management excess, CPU-time competition from
interactive user operation — which all was allowed during program execution —
led to that much more realistic, more variational picture.
The plot in Fig. 1 defines the number of machines in a cumulative way from left
to the right on the abscissa, thus the always added new hosts are indicated at
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Table 4. Execution timings and Speed Up factors for the DSCF Hartree Fock cal-
culation of alanine/aug-cc-pVDZ with GREMLIN in a WAN cluster made of 1 to 5
nodes.

WAN Cluster Real Usr Sys Theor. Real
Configuration Time Time Time Speed Up Speed Up

[s] [s] [s]
∑

SPEED[I]

master III
nodes I 240 061 9 268 3 1.000 1.000

master III
nodes I,II 90 280 9 261 8 2.934 2.847

master III
nodes I,II,III 60 496 9 368 2 4.988 4.516

master III
nodes I,II,III 45 014 9 923 3 7.977 6.577

IV

master III
nodes I,II,III 27 038 9 482 6 14.800 13.116

IV,V
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Fig. 1. Representation of the obtained and ideal Speed Up factors for the DSCF
Hartree Fock calculation of alanine/aug-cc-pVDZ with GREMLIN in a ssh-connected
WAN-cluster, made of up to 5 machines.
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those final ideal speed level — relative to the slowest node — the cluster should
ideally achieve at that very configuration.

3.1 Conclusion

Considering individual node performance in a heterogenous WAN cluster
properly, may result in excellent parallel scalability for special dedicated
applications, that are characterized from small communication time and large
independent node intervals.
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