
Visualisation of Distributed Applications for
Performance Debugging

F.-G. Ottogalli1, C. Labbé1, V. Olive1, B. de Oliveira Stein2,
J. Chassin de Kergommeaux3, and J.-M. Vincent3

1 France Télécom R&D - DTL/ASR, 38243 Meylan cedex, France
{francoisgael.ottogalli,cyril.labbe,vincent.olive}@rd.francetelecom.fr

2 Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
benhur@inf.UFSM.br

3 Laboratoire Informatique et Distribution, Montbonnot Saint Martin, France
{Jacques.Chassin-de-Kergommeaux,Jean-Marc.Vincent}@imag.fr

Abstract. This paper presents a method to perform visualisations of
the behaviour of distributed applications, for performance analysis and
debugging. This method is applied to a Java distributed application.
Application level traces are recorded without any modification of the
monitored applications nor of the JVMs. Trace recording includes
records from the JVM, through the JVMPI, and records from the OS,
through the data structure associated to each process. Recorded traces
are visualised post mortem, using the interactive Pajé visualisation
tool, which can be conveniently specialised to visualise the dynamic
behaviour of distributed Java applications. Applying this method to the
execution of a book server, we were able to observe a situation where
both the computation or the communications could be at the origin of
a lack of performances. The observation helped finding the origin of the
problem coming in this case from the computation.

Keywords: performance analysis and debugging, distributed applica-
tion, Java, JVMPI, meta-ORB.

1 Introduction
The aim of the work described in this article is to help programmers to analyse
the executions of their distributed programs, for performance analysis and per-
formance debugging. The approach described in the following includes two major
phases: recording of execution traces of the applications and post mortem trace-
based visualisations. The analysis of distributed applications is thus to be done
by programmers, with the help of a visualisation tool displaying the execution
behaviour of their applications.

In the presented example, a distributed application is executed by several
JavaTM1 Virtual Machines (JVM) cooperating through inter-objects method calls
on a distributed infrastructure.
1 Java and Java-based marks are trademarks or registered trademarks of Sun Microsys-

tems, Inc. in the United States and other countries. The authors are independent of
Sun Microsystems, Inc.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 831–840, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



832 F.-G. Ottogalli et al.

This work was carried out in the context of the Jonathan project [6] devel-
oped at France Télécom. Jonathan is a meta-ORB, that is a framework allow-
ing the construction of object-oriented platforms such as ORBs (Object Request
Brokers). Jonathan could be specialised to be CORBA or a Java RMI (Remote
Method Invocation) style. In the following we will be concerned with the CORBA
specialisation.

Performance traces are recorded at the applicative level of abstraction, by
recording the method calls through the Java Virtual Machine Profiling Interface
(JVMPI) [1,14,15]. Additional information needs to be recorded at the oper-
ating system level, in order to identify inter-JVMs communications. Execution
traces are then passed to the interactive visualisation tool Pajé [4]. Pajé was
used because it is an interactive tool – this characteristic being very helpful for
performance debugging – which can be tailored conveniently to visualise the
execution and communications between JVMs.

The existing Java monitoring and visualisation tools cannot be used conve-
niently for performance debugging of distributed Java applications. hprof [12]
and Optimizeit [7] provide on-line cumulative information, without support for
distributed applications (monitoring of communications). Although this infor-
mation can be very useful to exhibit performance problems of sequential Java
applications, it is of little use to help identifying the origin of performance prob-
lems in the distributed settings. The JaVis tool [10] can be used to trace the
communications performed by Java Virtual Machines. However the recording is
performed by modified JVMs while we decided to stick to standard JVMs.

The main outcome of this work is the ability to observe and visualise the
dynamic behaviour of distributed Java applications including communica-
tions, without any modification of the application programs. Moreover it allows
a temporal analysis of the hierarchy of methods invocations.

The organisation of this paper is the following. The recording of execution
traces is described in Section 2. Section 3 describes the visualisation tool Pajé
and its specialisation for the visualisation of the behaviour of distributed Java
applications. Then comes the conclusion which also sketches future work.

2 Recording Traces of the Execution of Java Applications
on Distributed Platforms

Performance analysis is performed off-line, from execution traces which are or-
dered sets of events. An event is defined as a state change in a thread of a JVM.
Two types of events will be considered: the infrastructure events, correspond-
ing to state changes associated with the JVM machinery and to the standard
JDK classes used, and the applicative events, associated with the execution of
the methods of the application classes. In order to take into account the state
changes of internal variables, it is possible to build specific recording classes, to
be observed as well as applicative classes.



Visualisation of Distributed Applications for Performance Debugging 833

CPU

Time

JV
M

PI
Profiling
Agent

Profiling
Client

Profiling
Client

Profiling
Client

JV
M

PI

Profiling
Agent

JV
M

PI

Profiling
Agent

inter−thread
communication

control from the
profiling agent

by the JVM
event generated

Communication 
of the records

processing Dynamic visualisation

SI
T

E
 B

JVM
thread

storage

SI
T

E
 Ain

te
r−

JV
M

 c
om

m
un

ic
at

io
n

Traces

Methods call architecture

Visualization and analysis of records

Pajé

Statistical informations about
resource consumption

of the concurrent executions

Fig. 1. Global architecture for analysis and performance debugging. Profiling
agents are used to observe events and interact with the JVM. Profiling clients connect
profiling agents to the applications dedicated to collect and process the data traces.
Then, the data traces are visualised with Pajé.

To each recorded event a date, identification and location are assigned so
that the execution path of the application as well as the communications can be
reconstructed post-mortem by the analysis tools.

2.1 Application Level Recording Traces (Figure 1)

Events are recorded using the JVM Profiling Interface (JVMPI) defined by SUN
and implemented in the Linux JDK 1.2.2 RC4. This functional interface allows
event occurrences and control operations to be observed [14]. The JVMPI is
accessed by implementing an observation agent [1,15], loaded during the initial-
isation of the JVM. The following events are observed:

– loading or unloading of a class;
– beginning or termination of a method call;
– creation, destruction or transfer of an object in the execution stack;
– creation, suspension, destruction of a thread;
– use of monitors (waiting and acquisition);
– user defined events (program annotations to observe specific events).

Observing these events is used to reconstruct the execution from the JVM
point of view. It is used to construct several representations of the execution.
One, based on thread execution, displays the execution path of the methods
(Figure 4). Another, not shown in this paper, represents the execution in terms
of object and method execution.

Constructing an event trace requires to date, identify and localise each event.
A unique identifier is associated to each loaded class, and each method defined



834 F.-G. Ottogalli et al.

in these classes. Similarly, Java threads are given a unique identifier. Since the
events of a thread are sequentially ordered, it is possible to reconstruct the causal
order of an execution by grouping the records by thread.

Using a JVMPI to observe events can potentially produce an important vol-
ume of recorded events. It is therefore necessary to provide filtering functions
to limit the size of the recorded traces. For example (see Section4), filtering an
execution trace by a mere exclusion of standard Java classes from the recording,
divided by a factor of 32 the size of the execution trace.

Additional information, relating to communications and use of system re-
sources will be recorded at the operating system level of abstraction.

2.2 Information Needed for Communications Observations

To observe the communications between JVMs, we need to identify the links
created between them. Calls to the methods performing the communications
are recorded by the JVMPI. However, communication parameters, necessary to
reconstruct the dynamic behaviour of the applications, are lost in our records.

Accessing these parameters through the JVMPI would not have been simple
since calling parameters cannot be accessed without delving into the execution
stack of the JVM; this would be the case for example with the communication
parameters, when recording a communication event. The approach used instead
to obtain the parameters is to observe the messages sent and received at the
operating system level of abstraction. This choice was driven by two major
reasons :

– to have a direct access to the parameters associated to the communications;
– to obtain information about operating system resources consumption [13].

We assume that “sockets” are used to establish connections between JVMs.
The identification of the sockets used for inter-objects communications is per-
formed at the operating system layer. In the case of the Linux operating system,
the sockets used by a process or a thread are represented as typed “i-nodes”.
The data structures associated to these i-nodes can be used to identify a given
link by the IP address of the remote host and the port number used.

Once all the data have been collected, as described in figure 1, they can be
visualised with Pajé.

3 Visualisation Using the Pajé Generic Tool

Pajé is an interactive visualisation tool for displaying the execution of parallel
applications where a (potentially) large number of communicating threads of
various life-times execute on each node of a distributed memory parallel system
[2,3,4]. The main novelty of Pajé is an original combination of three of the most
desirable properties of visualisation tools for parallel programs: extensibility,
interactivity and scalability.



Visualisation of Distributed Applications for Performance Debugging 835

In contrast with passive visualisation tools [9] where parallel program enti-
ties – communications, changes in processor states, etc. – are displayed as soon
as produced and cannot be interrogated, it is possible to inspect all the ob-
jects displayed in the current screen and to move back in time, displaying past
objects again. Scalability is the ability to cope with a large number of visual
objects such as threads. Extensibility is an important characteristic of visuali-
sation tools to cope with the evolution of parallel programming interfaces and
visualisation techniques. Extensibility gives the possibility to extend the envi-
ronment with new functionalities: processing of new types of traces, adding new
graphical displays, visualising new programming models, etc.

3.1 Adapting Pajé for Visualising Distributed Java Executions

Extensibility is a key property of a visualisation tool. The tool has to cope with
the evolutions of parallel programming models – since this domain is still evolv-
ing rapidly – and of the visualisation techniques. Several characteristics of Pajé
were designed to provide a high degree of extensibility: modular architecture,
flexibility of the visualisation modules and genericity. It is mainly the generic-
ity of Pajé which made possible to specialise it for visualising distributed Java
applications.

The Pajé visualisation tool can be specialised for a given programming model
by inserting an instantiation program in front of a trace file. The visualisation
to be constructed from the traces can be programmed by the user, provided that
the types of the objects appearing in the visualisation are hierarchically related
and that this hierarchy can be described as a tree (see Figure 2). This description
is inserted in front of the trace file to be analysed and visualised.

Execution

Communications

Threads

Events States

JVM

Fig. 2. Example of type hi-
erarchy for visualising Java
distributed applications. In-
termediate nodes are containers
while the leaves of the type hi-
erarchy are the types of the ele-
mentary visual entities. Method
calls are represented as state
changes of the displayed threads.

3.2 Trace Visualisation with Pajé

The Pajé command language, allowing users to discribe how traces should be
visualised, is based on two generic types: containers and entities. While entities



836 F.-G. Ottogalli et al.

can be considered as elementary visual objects, containers are complex objects,
each including a (potentially high) number of entities. An entity type is further
specified by one of the following generic types: event, state, link or variable.
Another generic type used to program Pajé is the value type which can describe
the type of one or several fields of complex entity types. Java abstractions were
mapped to the Pajé generic command language according to the type hierarchy
of Figure 2.

The visualisation is similar to a space-time diagram, where the time varies
along the x-axis while JVMs and threads are placed along the y-axis (see Fig-
ure 3). The execution of the Java methods are represented as embedded boxes in
the frame of each of the threads. Inter-thread communications appear as arrows
between the caller and the callee communication methods. It is also possible to
visualise, on the same diagram, the evolution of several system variables and the
use of monitors, in order to draw correlations between application programs and
consumption of system resources (not shown in this paper).

JVM
Client

JVM
Server

thread 3
:
:

thread 6

Method 2 Method 3

Beginning of remote invocation

Mouse cursor indicates object propertiesScroller in the space time diagram

Communication

Time zooming

Method 1

Beginning of method 1 on thread 6 End of method 1 

Beginning of the invocated method

Fig. 3. Visualisation of the Book Server program execution using Pajé. The
interactivity of Pajé allows programmers to select a period of execution and to “zoom”
with respect to the time scale in order to have more details on the period of interest
displayed on the screen. Similarly, it is possible to filter the displayed information, to
restrict the amount of details to be visualised. For example, it is possible to filter the
communications or the calls to some methods.

4 Observation of a Book Server Execution

The main purpose of this observation is to highlight the ordering of events corre-
sponding to the beginning and the end of methods execution as well as communi-



Visualisation of Distributed Applications for Performance Debugging 837

cations. This will help identifying performance bottlenecks in terms of processing
and network resources consumption.

The target application, an electronic book server, is an important application
of the “net economy”. In addition it is representative of a whole set of on-
demand data server applications in the domains of multimedia, video and music.
Such applications can be characterised by massively concurrent accesses to the
provided resources. In this example, the objective was to optimise the global
performances of the application. One situation was identified where a bottleneck
resulted from the excessive execution time of some methods and not from the
communication delays. This drove us to conclude that optimisations should first
concern these methods and their scheduling on the threads of the application.

4.1 Description of the Experiment

The displayed trace represents the execution of two clients and of the “book”
resource: these entities perform most of the computations and communications.
Since our objective is to analyse and improve performances, these entities have
to be analysed in priority.

The execution trace was realized during an experiment involving three differ-
ent locations. The resources and the resource server are hosted by the first site
while two clients are located on the two other sites and access the same resource
simultaneously. The three computers are interconnected by a 10 MBit Ethernet
network; they all run Linux - kernel 2.4.0 of Debian woody - and use the 1.2.2
RC4 JDK from SUN.

This execution environment does not have a hardware global clock. Therefore,
a global clock had to be implemented by software [11,8,5].

4.2 Trace Processing and Interpretation

Trace files need to be processed to convert local dates into global dates using
Maillet’s algorithm [11]. Matching of Java and system threads is then performed,
allowing system and application level traces to be merged.

Figure 4 exemplifies the functionalities provided by Pajé to visualise execu-
tion paths and communications. It is a detailed view showing the beginning of
a communication.

Figure 5 displays a global view of the experiment described in Section 4.1.
The execution of the book server, two clients as well as the communications
between one of the clients and the server are visible. This representation makes
it clear that the communication phase is very short with respect to the entire
duration of the experiment.

Figure 6 is used to identify the origin and destination of communications
(JVM, thread, method) as well as the interleaving of the computation and com-
munication phases of threads.

Thus it is possible to observe a pattern (gray area in Figure 6) composed
of four communications occurring five times during the visualised time interval.



838 F.-G. Ottogalli et al.

Fig. 4. Visualisation of the execution path of a thread. This visualisation
represents the execution of two threads inside the same JVM. The embedding of clear
and dark boxes represents the embedding of method calls. Dark boxes represent se-
lected boxes. The line originating from the upper thread represents the beginning of a
communication.

Fig. 5. Visualisation of the execution of three JVMs. This figure represents
the execution of three JVMs on three different sites. An area, representing a period
which includes several communications between two JVMs, was selected (in gray) to
be magnified, using the zooming facilities of Pajé (Figure 6).

JVM_0’s
threads

JVM_1’s
threads

JVM_2’s
threads

Fig. 6. Observing a series of communication sequences between two JVMs.
JVM 0 represents the execution of the “book” resource while JVM 1 and 2 represent
the executions of the first and second clients. Only communications between the “book”
resource and the first client are displayed.



Visualisation of Distributed Applications for Performance Debugging 839

This pattern can be divided in two phases including each two communications:
the first one from the client to the server and the second one from the server to
the client. The execution time of this pattern is fairly constant, except for the
forth occurrence. A trace analysis indicates that the whole execution is slowed
down by the excessive duration of a thread (third from the top). The remaining
of the sequence is indeed dependent on the sending of a message from this thread.

On the contrary, communication delays are low and constant with respect
to computation times. In such a situation, improving the performances of this
application is better done by optimising some specific methods that are identified
to be time consuming than by trying to reduce the communication delays.

5 Conclusion

This paper presents a method to perform visualisations of the behaviour of
distributed applications in the scope of performance analysis and performance
debugging. Application level traces are recorded without any modification of the
monitored applications nor of the JVMs. Trace recording includes recording of
the method calls at the application level by the JVMPI as well recording com-
munication information at the socket level of the operating system. Recorded
traces are visualised post mortem, using the interactive Pajé visualisation tool,
which can be conveniently specialised to visualise the dynamic behaviour of dis-
tributed Java applications. This method has been applied to a Java distributed
application. It was thus possible to discriminate between two possible origins of
a performance problem, ruling out the hypothesis of inefficient communications.

This work is still in progress and is amenable to several new developments,
some of them concerning the tracing activity while the other extensions concern
the visualisation tool.

First of all, the tracing overhead should be analysed in order to be able to
assess the quality of the traced information and therefore of the visualisations of
the executions of the traced programs. Further work will aim at evaluating the
system resources required by on-line analysis of the traces: this analysis could
help evaluating the system resources to be provided to analyse on-line distributed
applications while keeping the analysis overhead low. Another perspective is the
use of the observation and visualisation environment for system “black-box”
analysis.

For the Pajé visualisation tool, the perspectives include several extensions
in order to integrate the operating system resource consumption observations
– such as the use of processors, memory or the bandwidth of the network – with
the application visualisations and therefore help programmers to relate both. In
addition, Pajé could be extended in order to take into account several problems
related with the visualisation of embedded systems, such as the display of the
synchronisation mechanisms.



840 F.-G. Ottogalli et al.

References

1. Java virtual machine profiler interface (JVMPI). Technical report, Sun Miscrosys-
tems, 1999.

2. J. Chassin de Kergommeaux and B. de Oliveira Stein. Pajé: an extensible and
interactive and scalable environment for visualizing parallel executions. R.R. 3919,
INRIA, april 2000. http://www.inria.fr/RRRT/publications-eng.html.

3. J. Chassin de Kergommeaux and B. de Oliveira Stein. Pajé: an extensible environ-
ment for visualizing multi-threaded programs executions. Euro-Par 2000 Parallel
Processing, LNCS 1900, pages 133–140. Springer, 2000.

4. J. Chassin de Kergommeaux, B. de Oliveira Stein, and P. Bernard. Pajé, an inter-
active visualization tool for tuning multi-threaded parallel applications. Parallel
Computing, 26(10):1253–1274, aug 2000.

5. J. Chassin de Kergommeaux, E. Maillet, and J.-M. Vincent. Monitoring parallel
programs for performance tuning in distributed environments. Parallel Program
Development for Cluster Computing: Methodology, Tools and Integrated Environ-
ments, chapter 6. Nova Science, 2001. To appear.

6. B. Dumant, F. Dang Trang, F. Horn, and J.-B. Stefani. Jonathan : an open dis-
tributed processing environment in java. In Middleware’98: IFPI Int. Conf. on
Distributed Systems Platforms and Open Distributed Processing, Sept. 1998.

7. G. Freedman. Common java performance issues and solutions. Technical report,
Intuitive System Inc., 1998.

8. Y. Haddad. Performance dans les systèmes répartis : des outils pour les mesures.
PhD thesis, Université de Paris-Sud, centre d’Orsay, Septembre 1988.

9. M. T. Heath. Visualizing the performance of parallel programs. IEEE Software,
8(4):29–39, 1991.

10. I. Kazi and al. Javiz : A client/server java profiling tool. IBM - Systems Journal,
39(1):82, 2000.

11. E. Maillet and C. Tron. On efficiently implementing global time for performance
evaluation on multiprocessor systems. Journal of Parallel and Distributed Com-
puting, 28(1):84–93, 1995.

12. N. Meyers. A performance analysis tool. Tech. report, Sun Miscrosystems, 2000.
13. F.-G. Ottogalli and J.-M. Vincent. Mise en cohérence et analyse de traces logi-

cielles. Calculateurs Parallèles, Réseaux et Systèmes répartis, 11(2), 1999.
14. Sun Microsystems. Java Virtual Machine Profiler Interface (JVMPI), Feb 1999.
15. D. Viswanathan and S. Liang. Java virtual machine profiling interface. IBM -

Systems Journal, 39(1):82, 2000.


	Introduction
	Recording Traces of the Execution of Java Applications on Distributed Platforms
	Application Level Recording Traces (Figure T @ref {fig:PlateFormeObserv})
	Information Needed for Communications Observations

	Visualisation Using the Paj{accent 19 e} Generic Tool
	Adapting Paj{accent 19 e} for Visualising Distributed Java Executions
	Trace Visualisation with Paj{accent 19 e}

	Observation of a Book Server Execution
	Description of the Experiment
	Trace Processing and Interpretation

	Conclusion

