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Abstract. Current development processes for parallel software often fail to de-
liver portable software. This is because these processes usually require a tedious
tuning phase to deliver software of good performance. This tuning phase often is
costly and results in machine specific tuned (i.e., less portable) software. Design-
ing software for performance and portability in early stages of software design
requires performance data for all targeted parallel hardware platforms. In this pa-
per we present a publicly available database, which contains data necessary for
software developers to design and implement portable and high performing MPI
software.

1 Introduction

The cost of todays parallel software mostly exceeds the cost of sequential software of
comparable size. This is mainly caused by parallel programming models, which are
more complex than the imperative sequential programming model. Although the sim-
plification of programming models for parallel and distributed systems is a promising
research area, in the next years no change of the dominance of the currently message-
passing or shared-memory imperative models for parallel and distributed systems is to
be expected. One common problem of the mentioned programming models for parallel
hardware is that parallelisation must be stated explicitely (despite a slightly better sup-
port for purely data-parallel programs through e.g., Fortran 90 or HPF [KLS+94]). (The
need for manual parallelisation arises because compilers do not support parallelisation
as good as vectorisation.)

Current software processes for the development of parallel software reflect this need
of manual parallelisation in two phases [Fos94].

Design phase: Various ways of problem specific parallelisation are known, such as
multi-grid methods, event-driven simulations, specialised numerical algorithms, etc. All
these approaches are used during the design phase to create a design which either re-
flects the parallelism inherent in the problem, or applies parallel algorithms to speed up
computations.
Tuning phase: Software development processes for parallel software contain a spe-
cial tuning phase, which comes after the integration test of the software. In this tuning
phase software is optimised for specific hardware platforms. That is, code is evaluated
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with measurements, and then several actions are applied: e.g., rearrangement of code,
hiding communication latency, replacement of standardised communication operations
by more specific ones, etc. These steps are often required to make the software as fast
as necessary on the targeted platform. Unfortunately, portability to other platforms is
usually lost.

Hence, machine specific performance considerations are not explicitely made during
design stage, but only in the tuning phase. Some of the performance measurements
done in the tuning phase are specific for the program’s design, but other measurements
concern the underlying MPI and hardware performance. In this paper we present a
public database containing MPI performance data.

MPI as the most widely used standard for developing message passing software
manifested compiling portability. This means, that the user is able to develop software
which just has to be recompiled when changing the hardware platform, opposed to lim-
ited prortability when using vendor specific libraries. (Ommiting here all the remaining
tiny peculiarities when trying to develop really portable software with the C program-
ming language.)

Due to the above mentioned platform specific program tuning, this compiling porta-
bility usually does not help much when writing high performance software. What is re-
ally needed is performance portability. This term refers to the requirement, that porta-
bility for a parallel program does not only mean that it is compilable on serveral plat-
forms, but also that it shows at least good performance on all these platforms without
modifications. (A more quantitative notion of portability would take into account (a)
the effort of making a program compilable, (b) the effort of showing good (or best)
performance, and (c) the really achieved performance before and after modifications.)

In section 2 we present work related to MPI benchmarking. How performance data
can be used during the design of parallel software is discussed in section 3. Section 4
contains a description of our performance database. An example is presented in section
5. Finally, section 6 concludes.

2 Related Work

Benchmarking in general and benchmarking communication operations on parallel plat-
forms in particular require a certain caution to ensure the validity of benchmarked re-
sults for “normal application programs”. Gropp et al. present guidelines for MPI bench-
marking [GL99]. Hempel gives some additional advice and formulates as a general
benchmarking principle, that benchmarks never should show better results when low-
ering the performance of the MPI implementation (the benchmarked entity in general)
[Hem99]. Most interestingly, he describes a case, where making MPI point to point
communication slower resulted in better results of the COMMS1 – COMMS3 suites
of PARKBENCH [PAR94]. Currently no benchmark exactly fulfils all these require-
ments. The mechanisms applied by SKaMPI to tackle MPI benchmarking problems
are described in [RSPM98,Reu99]. Some new algorithms to benchmark collective op-
erations reliable are given in [dSK00]. The benchmarks which come probably closest
to SKaMPI’s goals are the following two: A widely used MPI benchmark is the one

842 R. Reussner and G. Hunzelmann



shipped with the mpich1 implementation of MPI; it measures nearly all MPI oper-
ations. Its primary goal is to validate mpich on the given machine; hence it is less
flexible than SKaMPI , has less refined measurement mechanisms and is not designed
for portability beyond mpich.

The beff benchmark of Rabenseifner measures network performance data from a per-
spective interesting for the application programmer and complements the measures in-
cluded in SKaMPI . The results are publicly available on the web2. As intended for users
of the Cray T3E and other machines installed at the HLRS in Stuttgart this database of
the benchmark does not cover such a wide range of machines as SKaMPI does.

The low level part of the PARKBENCH benchmarks [PAR94] measure communica-
tion performance and have a managed result database3 but do not give much information
about the performance of individual MPI operations.

P. J. Mucci’s4 mpbench pursues similar goals as SKaMPI but it covers less functions
and makes only rather rough measurements assuming a “quite dead” machine.

The Pallas MPI Benchmark (PMB)5 is easy to use and has a simple well defined
measurement procedure but has no graphical evaluation yet and only covers relatively
few functions.

Many studies measure a few functions in more detail [GHH97,PFG97,RBB97,O.W96]
but these codes are usually not publicly available, not user configurable, and are not de-
signed for ease of use, portability, and robust measurements.

As one can imagine, the performance of a parallel computers (especially with a
complex communication hardware) cannot be described by one number (even a single
processor cannot be specified by one number). So many of the currently used bench-
marks (e.g. [BBB+94,PAR94]) may be useful to rank hardware (like in the “top500”
list6), but do not give much advice for program optimisation or even performance de-
sign.

3 Design of Parallel Software with MPI Performance Data Aware

When designing an MPI program for performance and portability the following ques-
tions arise:

Selection of point to point communication mode? MPI offers four modes for point
to point communication: standard, buffered, ready, synchronous. Their performance
depends on the implementation (esp. MPI Send, where the communication protocol
is intentionally unspecified) and the hardware support of these operations. (The ready
mode is said to only be supported by the Intel Paragon... .) Additionally, MPI differ-
entiates between blocking and non-blocking communication. Furthermore, there exist
specialised operations like MPI SendRecv for the common case of data exchange

1 http://www.mcs.anl.gov/Projects/mpi/mpich/
2 http://www.hlrs.de/mpi/b eff
3 http://netlib2.cs.utk.edu/performance/html/PDStop.html
4 http://www.cs.utk.edu/�mucci/DOD/mpbench.ps
5 http://www.pallas.de/pages/pmbd.htm
6 http://www.top500.org
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between two MPI processes. Also one is able to use wildcards like MPI ANY TAG or
MPI ANY SOURCEwhich modify the behaviour of these operations. The MPI reference
[GHLL+98] does a good job explaining the semantics of all these similar operations,
but their performance depends highly on the MPI implementation and on hardware sup-
port.
Should compound collective operations be used? The MPI standard offers some com-
pound collective operations (likeMPI Allreduce,MPI Allgather,MPI Reduce-
scatter, MPI Alltoall) which can be replaced by other, more primitive collective
MPI operations (e.g., MPI Bcast and MPI Reduce). The compound collective oper-
ations are provided by the MPI standard, since it is possible to provide better algorithms
for the compound operation than just putting some primitive collectives together. The
question for the application software designer is: Is a compound operation worth the
effort (e.g., designing particular data structures / partitionings) for using it?
Use of collective operations or hand made operations? Similar to compound collec-
tive operations made by more simple collective operations, also simple collective op-
erations can be made solely out of point to point communicating operations. Again,
the question arises, whether the MPI library provides a good implementation for the
targeted platform. It might be worth the effort to reimplement collective operations for
specific platforms with point to point communication in the application program.
Optimality of vendor provided MPI operations? The above question of the optimal-
ity of collective operations can be asked for all MPI operations provided by the vendor.
Often a vendor provides some optimised MPI operations, while other operations per-
form suboptimal. Unfortunately these subsets of well-implemented MPI operations vary
from vendor to vendor (i.e., from platform to platform).

Knowing the detailed performance of specific MPI operations helps to decide which
MPI operation to choose when many similar MPI operations are possible. Of course,
the best choice is the MPI operation performing well on all targeted platforms. If such
a everywhere-nice operation does not exist, one can decide which operations on which
platform must be replaced by hand-made code. Introducing static #ifdef PLAT-
FORM 1 ... alternatives in the code simplifies the task to create portable software.
Code selection during run-time is also feasible (by dynamically querying the platform),
but introduces new costs during run-time.

To test the quality of provided MPI operations we reimplemented some operations
with naive algorithms. Is the vendor provided implementation worse than these naive
approaches, the application programmer can easily replace the vendor implementation.
(Additionally, it says a lot about the quality of the vendor’s implementation.)

How to use the database to answer the above question questions is shown in the next
section, after a brief introduction of the database’s terms.

4 The Public Result Database

The detailed design of the database is described in [Hun99]. Summarising the key con-
cepts we present the following terms in a bottom-up order:
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Single Measurement: A single measurement contains the MPI operation to perform.
It has a right for its own, since it unifies calling different parameterised MPI operations
in a unique way.
Measurement: A measurement is the accumulated value of repeated single measure-
ment’s results: Several single measurements are performed at the same argument (e.g.,
MPI SendRecv at 1024 Kbytes). Their results are stored in an array. After reducing
the influence of outliers by cutting (user defined) quartiles of that array, the average
value is taken as the result of the measurement. The number of single measurements
to perform before computing the result of the measurements depends on the standard
error allowed for this measurement. Attributes of a measurement are: the single mea-
surement to perform, the allowed standard error, the maximum and minimum number
of repetitions.
Pattern: Patterns organise the way measurements are performed. For example collec-
tive operations must be measured completely different from point-to-point communi-
cating MPI operations. SKaMPI currently contains four patterns: (a) for point-to-point
measurements, (b) for measurements of collective operations, (c) for measuring com-
munication structures arising in the master-worker scheme [KGGK94], and (d) for sim-
ple, i.e., one-sided operations like MPI Commsplit. Besides grouping measurements
the benefit of patterns lies in the comparability of measurements performed by the same
pattern. Attributes of a pattern include the kinds and units of different arguments.
Suite of Measurements: A suite of measurements contains all measurements which
measure the same MPI operation with the same pattern. (Note that the same MPI op-
eration may be measured with two patterns, such as MPI Send in the point-to-point
pattern and the master worker pattern.) In a suite of measurements the measurements
are varied over one parameter (such as the message length or the number of MPI pro-
cesses). Informally spoken, the graph describing the performance of an MPI operation
is given by the suite of measurements. The points of the graph represent the measure-
ments. Important attributes of the suite are: the MPI operation, the pattern used, range
of parameters, step-width between parameters (if fixed), scale of the axes (linear or
logarithmic), use of automatic parameter refinement.
Run of Benchmark: A run is the top most relation, it includes several suites of mea-
surements and their common data, such as: a description of the hardware (processing
elements, network, connection topology), the date, the user running the benchmark, the
operating system (and its version), and the settings of global switches of SKaMPI .

The structure of the relations used in the database are shown in figure 1. The SKaMPI re-
sult database has two web-user-interfaces . One is for downloading detailed reports of
the various runs on all machines (http://liinwww.ira.uka.de/�skampi/cgi-bin/run list.cgi.pl).
The other interface (http://liinwww.ira.uka.de/�skampi/cgi-bin/frame set.cgi.pl) is able
to compare the operations between different machines according to the user’s selection.
In the following we describe this user-interface (see figure 2).

After loading the database’s web site with a common netbrowser, querying is per-
formed in three steps:

1. Choosing a run. Here you select one or more machine(s) you are interested in. Since
on some machines several runs have been performed (e.g., with a different number
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Fig. 1. Design of the SKaMPI result database

of MPI processes) you often can choose between several runs of one machine. This
selection is performed in the upper left part of the user-interface (see figure 2).

2. Choosing the suites. After you selected some runs, the database is queried for the
suites belonging to a run. The available runs are presented in a list for each selected
run at the upper right part of the user-interface. There you now can select for each
run the suites you are interested in (e.g., MPI Reduce). Of course you may also
select different suites on different machines (such as MPI GatherSR in run A and
MPI Gather in run B 7.

3. After choosing the suites of interest the database is queried for all relevant mea-
surements. The user-interface creates a single plot for all selected suites. The user
is able to download an additional plot in encapsulated postscript (if selected in the
previous step). There also exists the possibility to zoom into the plot.

5 Hamlet’s Question: Using MPI Gather or Not ?

As an example we discuss a special case of the question “Using collective operations
or hand made operations?”, as posed in section 3.8 Here we look at the MPI Gather
operation, because one can replace it relatively simple by a hand-made substitute. The
MPI Gather operation is a collective operation which collects data from MPI pro-
cesses at a designated root process. Two extremely naive implementations are provided
by the SKaMPI benchmark. Both implementations can be programmed easily and fast
by any application programmer.

The first implementation (MPI GatherSR) simply uses point to point communica-
tion (implemented with MPI Send - MPI Recv) from all processes to the root process.

7 An enumeration with detailed description of all operations measured by SKaMPI and all
possible alternative naive implementations of MPI operations can be found in the SKaMPI user
manual [Reu99]. This report is available online (http://liinwww.ira.uka.de/�reussner/ib-99-
02.ps)

8 and not by W. Shakespeare, as the heading might suggest.
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Fig. 2. Interactively querying the result database

Here the root process sequentially posts the receives. A receive is finished when the data
arrived; each (but the first) receive has to wait until the previous receive finished (even
if its data is ready to receive before).

The second implementation (MPI GatherISWA) is only slightly more clever: the
processes use the non-blocking MPI ISend and the root process posts non-blocking
receives (MPI IRecv). This allows the root process to receive data from the other
processes in the order the data arrives at the root process (assuming that the posting of
the non-blocking receives is finished before any data arrived). The root process controls
receiving with MPI Waitall.

More sophisticated algorithms of gather operations usually perform much better.
Their complexity depends on the topology of the underlying communication network;
details can be found in e.g., [KGGK94,KdSF+00].

Consider you are developing an application for two of the most common parallel
architectures: an IBM RS 6000 SP and a Cray T3E. Your implementation will make use
of MPI Gather. One of many questions is, whether MPI Gather should be replaced
by hand-made operations on all machines, or on one machine (which?), or never?

Looking at the SKaMPI result database for the Cray T3E shows, that the vendor
provided MPI Gather performs much better than the naive implementations. Con-
cerning the results for an IBM RS 6000 SP one has to say that the IBM RS 6000 SP is a
family of parallel computers rather than one single machine. Many different processors,
connection networks and even topologies exist. Hence, generalising from these results
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to the whole family is clearly invalid. But this shows once more the importance de-
tailed performance information. The results presented here are measured consistently
on the Karlsruhe IBM RS 6000 SP from 1999 – 2000. 9 These measurements show
that the hand-made MPI GatherSR is faster than the provided MPI Gather (by ap-
proximately the factor of 1.5) for a short message length of 256 Bytes on two to 32
processes (figure 3 (left)). Regarding the time consumed by the root process of the
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Fig. 3. (Left) Comparison of MPI Gather and MPI GatherSR on an IBM RS 6000 SP var-
ied over the number of nodes at a fixed message length of 256 bytes. (Right) Comparison of
MPI Gather, MPI GatherSR, and MPI GatherISWA on an IBM RS 6000 SP with 32 pro-
cesses varied over the message length

three implementations (MPI Gather, MPI GatherSR, MPI GatherISWA) varied
over the message length at the fixed number of 32 MPI processes (figure 3 (right)),
we see that MPI GatherSR is fastest if the message length is below 2048. For longer
messages the used MPI Send changes its internal protocol from a one-way direct-
sending to a two-way request-sending protocol. For message lengths up to 16 KBytes
the MPI GatherISWA algorithm is fastest. For longer message lengths the difference
between MPI Gather and MPI GatherISWA is not relevant; MPI GatherSR is
clearly the slowest. Till now, we looked at the time consumed by the root process.
A detailed dicussion on timing collective operation lies beyond the scope of this pa-
per (refer for example to [dSK00]). However, since MPI 1 collective operations are
all blocking, we we might consider the non-blocking MPI GatherISWA as useful, if
our application allows the processes to perform computations without using (the still
occupied) send buffer. The timing for all processes is shown in figure 4. From these re-
sults we can draw the conclusion, that we should provide a hand-made replacement for
MPI Gather for an IBM RS 6000 SP if we deal with short message lengths (below 10
KBytes). Whether we use the simple send-receive algorithm or the little more sophis-
ticated non-blocking algorithm depends from the message length (smaller or greater 2
KBytes). If the processes can perform calculations without using the message buffers,
we can hide communication latency by using the non-blocking MPI GatherISWA.
However, it is necessary to switch to the vendor provided MPI Gather implementa-

9 E.g., http://liinwww.ira.uka.de/�skampi/skampi/run2/l2h/
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Fig. 4. Times consumed for each single MPI process for the different MPI Gather implemen-
tations on an IBM RS 6000 SP.

tion on the Cray T3E (even when communication latency hiding would be possible, the
vendor supplied MPI Gather is to be preferred to the MPI GatherISWA).

6 Conclusion

We presented a new process for the development of parallel software which moves
the non-functional design considerations of performance and portability to the early
stages of design and implementations. This lowers costs, even if only one platform is
targeted. This process is supported by a publicly available MPI performance database.
How performance data influences the design of MPI programs was discussed and an
example for one particular case was presented.

To achieve an amount of standardised software in the parallel computing area more
similar to that in the area of sequential programs, parallel software has to increase its
portability. Considering this background, the creation of software development pro-
cesses and tools supporting the engineering of more portable software is really crucial.

URL of the SKaMPI project
http://liinwww.ira.uka.de/�skampi
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