
More Autonomous Hybrid Models in Bang2

Roman Neruda?, Pavel Krušina, and Zuzana Petrová

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 18207 Prague, Czech Republic

roman@cs.cas.cz

Abstract. We describe a system which represents hybrid computational
models as communities of cooperating autonomous software agents. It
supports easy creation of combinations of modern artificial intelligence
methods, namely neural networks, genetic algorithms and fuzzy logic
controllers, and their distributed deployment over a cluster of worksta-
tions. The adaptive agents paradigm allows for semiautomated model
generation, or even evolution of hybrid schemes.

1 Introduction

Hybrid models, including combinations of of artificial intelligence methods such
as neural networks, genetic algorithms or fuzzy logic controllers, seems to be a
promising and currently studied research area [2]. In our work [7] we have tested
this approach in the previous implementation of our system with encouraging
results on several benchmark test [7]. The models have included combinations as
using genetic algorithm to set parameters of a perceptron network or fuzzy logic
controller. Other example is setting learning parameters of back propagation
(learning rate, decay) or genetic algorithm (crossover, mutation rate) by a fuzzy
controller. Yet another example combination is using a fuzzifier or one back
propagation step as a special kind of a genetic operator.

Recently we have turned our effort to more complex combinations, which
have not been studied much yet, probably also because of the lack of a unified
software platform that would allow for experiments with higher degree hybrid
models. This is the motivation behind the design of the new version of our system
called Bang2 .

As before, the unified interface of the library of various AI computational
components allows to switch easily e.g. between several learning methods, and
to choose the best combination for application design. We have decided to allow
components to run in distributed environment and thus to make use of paral-
lel hardware architectures, typically a cluster of workstations. Second goal of
Bang2 design involves, beside creation of more complex models, also the semi-
automated model generation and even the evolution of hybrid models.

For distributed and relatively complex system as Bang2 it is favorable to
make it very modular and to prefer the local decision making against global
? This work has been partially supported by GAASCR under grant no. B1030006.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 935–942, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



936 R. Neruda, P. Krušina, and Z. Petrová

intelligence. This lead us to the idea to take advantage of agent technology.
Employing software agents simplifies the implementation of new AI components
and even their dynamic changes. We also hope that some of the developed hybrid
models will help the agents itself to become more adaptive and to behave more
independently, which in turn should help the user of the system to build better
models.

2 System Architecture

Bang2 consists of a population of agents living in the environment, which pro-
vides support for creation of agents, their communication, distribution of pro-
cesses. Each agent provides and requires services (e.g. statistic agent provides
statistic preprocessing of data and requires data to process). Agents commu-
nicate via special communication language encoded in XML. There are several
special agents necessary for Bang2 run (like the Yellow Pages agent who main-
tains information about all living agents and about services they provide). Most
of the agents realize various computational methods ranging from simple statis-
tics to advanced evolutionary algorithms.

Our notion of intelligent agent follows the excellent introductory work by
Franklin [5]. Generally, an agent is an entity (a part of computer program with
its own thread of execution in our case), which is autonomous, reacts to its
environment (e.g. to user’s commands or messages from other agents) in pursue
of its own agenda. The agent can be adaptive, or intelligent in a sense that it
is able to gather information it needs in some sophisticated way. Moreover, our
agents are mobile and persistent. We do not consider other types or properties
of agents that for example try to simulate human emotions, mood, etc.

Bang2 environment is a living space for all the agents. It supplies resources
and services the agents need and serves as a communication layer. One example of
such an abstraction is a location transparency in communication between agents
— the goal is to make the communication simple for the agent programmer and
identical for local and remote case while still exploiting all the advantages of the
local one. There should be no difference from the agent point of view between
communication to local and remote agent. On the other hand, we want to provide
an easy way how to select synchronous, asynchronous or deferred synchronous
mode of operation for any single communication act. The communication should
be efficient both for passing XML strings and binary data.

As the best abstraction from the agent programmer point of view we have
chosen the CORBA-like model of object method invocation. This approach has
several advantages in contrast to the most common model of message passing.
Among them let us mention the fact that programmers are more familiar with
concept of function calling then message sending and that the model of object
method invocation simplifies the trivial but most common cases while keeping
the way to the model of message passing open and easy.

We have three different ways of communication based on the way, how the
possible answer is treated: synchronous, asynchronous and deferred synchronous



More Autonomous Hybrid Models in Bang2 937

(cf. 1). The synchronous way is basically a blocking call of the given agent
returning its answer. In asynchronous mode, it is a non-blocking call discarding
answer, while the deferred synchronous way is somewhere in between: it is a
non-blocking call storing answer at a negotiated place.

Regarding the communication media, the standard way is to use the agent
communication language, described in section 3. In order to achieve faster com-
munication the agents can negotiate to use alternative binary interface (cf. 1)
which does not employ the translation of binary data into XML textual repre-
sentation and back.

Table 1. Communication functions properties: Sync is a blocking call of the given
agent returning its answer, Async is non-blocking call discarding answer and Dsync is
non-blocking call storing answer at negotiated place. BinSync and BinDsync are same
as Sync and Dsync but the exchange binary data instead of XML strings. UFastNX is
a common name for set of functions with number of different parameters of basic types
usually used for proprietary interfaces.

Medium XML CData* function
strings parameters

Call Sync BinSync UFastNX
Generality High Run-time Hardwired
Speed Normal Fast The fastest

From the programmer’s point of view, an agent in Bang2 is regular C++
classes derived from base class Agent which provide common services and con-
nection to environment (Fig. 1). Agent behavior is mainly determined by its
ProcessMsg function which serves as the main message handler. The ProcessMsg
function parses the given message, runs user defined triggers via RunTriggers
function and finally, if none is found, the DefaultBehavior function. The last
mentioned function provides standard processing of common messages. Agent
programmer can either override the ProcessMsg function on his own or (prefer-
ably) write trigger functions for messages he wants to process. Triggers are
functions with specified XML tags and attributes. RunTriggers function calls
matching trigger functions for a received XML message and fills up the variables
corresponding to specified XML attributes with the values and composes the
return statement from the triggers return values (see 3).

There are several helper classes and functions prepared for the programmers.
Magic agent pointer, which is one of them, is an association of a regular pointer
to Agent object with its name which is usable as a regular pointer to an agent
class but has the advantage of being automaticly updated, when the targeted
agent moves around.

The agent inner state is a general name for values of relevant member vari-
ables determining the mode of agent operation and its current knowledge. The
control unit is its counterpart — program code manipulation with the inner state



938 R. Neruda, P. Krušina, and Z. Petrová

and performing agent behavior, it can be placed in all ProcessMsg functions or
triggers.

ProcessMsg

ProcessFast

UFastNX1

UFastNX2

magic

agent

pointers

Inner
state

Control
unit

Fig. 1. The internal agent structure.

3 Communication Language

Agents need a communication language for various negotiations and for data
transfer between them. The language should be able to describe basic types of
communication, such as requests, acceptance, denial, queries. Also, the language
should be able to describe quite wide range of data formats, such as the arbitrary
data set on one hand, or the inner state of a neural network on the other. The
language should also be human readable, to some extent, although there might
be other tools that can provide better means of communication with the user.
Last but not least, we expect reliable protocol for message delivery (which is
TCP/IP in our case).

Several existing agent communication languages for agents already try to
solve these problems. ACL ([4]) and KQML ([3] — widely used, de facto stan-
dard) are lisp-based languages for definition of message headers. KIF (KQML
group — [6]), ACL-Lisp (ACL group — [4]) are languages for data transfer.
They both came out of predicate logic and both are lisp-based, enriched with
keywords for predicates, cycles etc. XSIL [8] and PMML [1] are XML-based lan-
guages designed for transfer of complex data structures through the simple byte
stream.

Messages in Bang2 have adopted XML syntax. Headers are not necessary,
because of the inner environment representation of messages — method invoca-
tion — the sender and receiver are known. The first XML tag defines the type
of the message (similar to message types defined in an ACL header). Available
message types are:



More Autonomous Hybrid Models in Bang2 939

– request (used when an agent require another agent to do something),
– inform (information providing),
– query (information gathering),
– ok (reply, no error),
– ugh (reply, an error occurs).

The content of the message (everything between outermost tags) contains
commands (type request), information provisions, etc. Some of them are under-
standable to all agents (ping, kill, move, . . . ), others are specific to one agent or
a group of agents. Nevertheless, agent is always able to indicate whether he/she
understands a particular message. For illustration of agent communication lan-
guage messages see figure 2.

<broadcast><halt/></broadcast>
<inform>
<created myid="!000000000001"

name="Lucy"
type="Neural Net.MLP"/>

</inform>

<ok>Agent Lucy, id=!000000000001,
type=Neural Net.MLP created</ok>

<request><ping/></request>

Fig. 2. Example of Bang2 language for agent negotiation.

There are two ways how to transfer data: as a XML string, or as a binary
stream. The former is human readable, but may lack performance. This is not
fatal in agents’ negotiation stage (as above), but can represent a disadvantage
during extensive data transfers. The latter way is much faster, but the receiver
has to be able to decode it. Generally in Bang2 , the XML way of data transfer
is implicit and the binary way is possible after the agents make an agreement
about format of transferred data. For illustration of agent data transfer language
see figure 3.

4 Conclusions and Future Work

For now, the design and implementation of the environment is complete. The
support agents, including the Yellow Pages and basic graphical user interface
agent (written in Tcl/Tk) are ready. We have started to create a set of agents of
different purpose and behavior to be able to start designing and experimenting
with adding more sophisticated agent oriented features to the system. A general
genetic algorithm agent and a RBF neural network agent has been developed
and tested so far, more is coming soon.



940 R. Neruda, P. Krušina, and Z. Petrová

<query><vector row="45"/></query>
<query><vector/></query>
<ok><data separator=",">
Here are binary data
</data></ok>
<query><bin><query>
<vector/>
</query></bin></query>
<ok session="5" funcnum="1"/>

Fig. 3. Example of Bang2 language for data transfer.

For experimenting with the more sophisticated agent schemes, we will focus
on mirroring agents, parallel execution, automatic scheme generating and evolv-
ing. Also the concept of an agent working as the other agent’s brain by means
of delegating the decisions seems to be promising. Another thing is the design
of load balancing agent able to adapt to changing load of host computers and
to changing communication/computing ratio. And finally we think about some
form of inter Bang2 -sites communication.

In the following we discuss some of these directions in more detail.

4.1 Task Parallelization

There are two ways of parallelization: by adding an agent the ability to parallelize
its work or by creating generic parallelization agent able to manage non-parallel
agent schemes. Both have their pros and cons. The environment creates a truly
virtual living space for agents, so the possibility for explicit inner parallel execu-
tion is there since the beginning. This approach will always be the most effective,
but in general quite difficult to program.

On the other hand, the general parallelization agent can provide cheap par-
allelization in many cases. Consider an example of a genetic algorithm. It can
explicitly parallelize by cloning fitness function agent and letting the population
being fitness-ed simultaneously. Or on the other hand, the genetic algorithm can
use only one fitness function agent, but be cloned together with it and share the
best genoms with its siblings via a special purpose genetic operator. We can see
this in figure 4, where agents of Camera and Canvas are used to automatize the
sub scheme-cloning. Camera looks over the scheme we want to replicate and pro-
duces its description. Canvas receives such description and creates the scheme
from new agents.

4.2 Agents Scheme Evolving

When thinking about implementing the task parallelization, we found it very
useful to have a way of encoding scheme descriptions in a way which is under-
standable by regular agents. Namely, we think of some kind of XML description



More Autonomous Hybrid Models in Bang2 941

Data
source

Mux
or

CopyNN

GA

Camera Canvas

GA
clone

NN

clone

Swap

Fig. 4. Generic task parallelization.

of a scheme (which was in the previous version of the system represented in
the custom Scheme Description Language). This lead to idea of agents not only
creating and reading such a description, but also manipulating it.

Once we are able to represent a hybrid scheme, we can think of their auto-
matic evolution by means of genetic algorithm. All we need is to create a suitable
genetic operator package to plug into a generic GA agent. As a fitness, one can
employ the part of generic task parallelization infrastructure (namely the Can-
vas, see fig. 5). For genetic evolving of schemes we use the Canvas for testing the
newly modified schemes.

CanvasCanvasCanvas

NN NN

FLCGA

FLC

GA

NN

GA
Scheme

ops.

Fig. 5. Evolving a hybrid scheme by means of a genetic algorithm.

4.3 Agent as a Brain of Other Agent

As it is now, the agent has some autonomous — or intelligent — behavior en-
coded in standard responses for certain situations and messages. A higher degree



942 R. Neruda, P. Krušina, and Z. Petrová

of intelligence can be achieved by adding some consciousness mechanisms into
an agent. One can think of creating a planning agents, Brooks subsumption
architecture agents, layered agents, or Franklin “conscious” agents.

Instead of hard-coding these mechanisms into an agent, we develop a univer-
sal mechanism via which a standard agent can delegate some or all of its control
to a specialized agent that serves as its external brain. This brain will provide
responses to standard situations, and at the same time it can additionally seek
for supplementary information, create its own internal models, or adjust them
to particular situations.

ProcessMsg

ProcessFast

UFastNX1

UFastNX2

magic

agent

pointers

Inner
state

Agent
as

Control unit

Fig. 6. Agent serving as an external brain of other agent.

References

1. PMML v1.1 predictive model markup language specification. Technical report, Data
Mining Group, 2000.

2. Pietro P. Bonissone. Soft computing: the convergence of emerging reasoning tech-
nologies. Soft Computing, 1:6–18, 1997.

3. Tim Finnin, Yannis Labrou, and James Mayfield. KQML as an agent communication
language. Software Agents, 1997.

4. Foundation for Intelligent Physical Agents. Agent Communication Language, Octo-
ber 1998.

5. Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Intelligent Agents III, pages 21–35. Springer-Verlag, 1997.

6. Michael Genesereth and Richard Fikes. Knowledge interchange format, v3.0 refer-
ence manual. Technical report, Computer Science Department, Stanford University,
March 1995.

7. Roman Neruda and Pavel Krušina. Creating hybrid AI models with Bang. Signal
Processing, Communications and Computer Science, I:228–233, 2000.

8. Roy Williams. Java/XML for scientific data. Technical report, California Institute
of Technology, 2000.


	Introduction
	System Architecture
	Communication Language
	Conclusions and Future Work
	Task Parallelization 
	Agents Scheme Evolving 
	Agent as a Brain of Other Agent


