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Abstract. This research investigates cross-validation techniques for
performing neural network ensemble generation and performance
evaluation. The chosen framework is the Neural Network Ensemble
Simulator (NNES). Ensembles of classifiers are generated using level-one
cross-validation. Extensive modeling is performed and evaluated using
level-two cross-validation. NNES 4.0 automatically generates unique data
sets for each student and each ensemble within a model. The results of this
study confirm that level-one cross-validation improves ensemble model
generation. Results also demonstrate the value of level-two cross-validation
as a mechanism for measuring the true performance of a given model.

1 Introduction

In a traditional neural network system, a model is represented by an individual
network, one that has been trained on a single data set for a specific domain. Such a
system can be replaced by an "ensemble" [3][5][6], a system model composed of
multiple individual neural networks. In this study, the process of creating an ensemble
consists of training each network in the ensemble individually using a unique training
set, validating each network using a unique validation set, and combining all networks
to form an ensemble using the weighted contribution combination method [10].

A neural network model, represented by either an individual neural network or
an ensemble, is considered "good" if it is able to generalize over the entire domain
and correctly predict or classify unseen data [14]. In order to generate good ensembles
of unique neural networks, a sufficient amount of available data is needed for the
training and validation processes. In reality, the available data are limited, so it is
important to employ optimal usage of these data. Conventionally, researchers have
worked around the limited data to achieve unique networks by using one or more of
four methods: (1) changing the initial topology, (2) changing the tuning parameters,
(3) using multiple learning algorithms, or (4) using different training data. According
to Amari [1], with a fixed data set, the first three of these methods may lead to the
overfitting or overtraining problem, because the training data are potentially biased.

Cross-validation is one of several techniques of using different training data to
achieve unique networks [7][8]. Cross-validation rotates the training data and thus
reduces the bias that leads to overfitting. There are two levels of cross-validation
proposed in this study. The first one is level-one cross-validation (CV1), which
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potentially achieves unique networks by rotating the training and validation data. This
research claims that CV1 will make overfitting to the entire training data set less
likely.

Based on this research, CV1 as a method for cross-validation not only reduces
the overfitting problem, it also eliminates the bias problem caused by the location of
the test set in the sample data. Since it is commonly understood that a good neural
network should be able to generalize over the entire domain and correctly classify
unseen data, using one particular test set can lead to a misrepresentation in the
performance measurement. The second level of cross-validation proposed in this
study is called level-two cross-validation (CV2). CV2 eliminates the bias by grabbing
a new test set each time a new ensemble is generated. The overall performance of the
model is represented by the average performance over all ensembles in a given model.

2 Two-Level Cross-Validation

2.1. Level-Two Cross-Validation

Fig. 1. An example of how the CV2 process rotates the test set for P=100 data patterns and
K2=3 ensembles to generate ensemble data sets: (a) An original example data file with 100 data
patterns; (b) Data are divided into K2=3 groups of equal size with 1 data pattern left; (c) The
resulting ensemble data sets
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By using the CV2 ensemble creation procedure, all the available P data patterns
are divided into K2 non-overlapping groups, where K2 is the number of ensembles.
Each ensemble gets a different test set consisting of P/K2 data patterns and the rest of
the available data are used as the training and validation set. If the division is uneven,
the left over data patterns are always included in the training set for all ensembles.

Figure 1 illustrates the CV2 process for K2=3 ensembles and P=100 data
patterns. The test set for the first ensemble consists of 33 data patterns, numbered 68
to 100 in the original file. The remaining data, numbered 1 to 67 in the original file,
are used as the training and validation set of the first ensemble. This way all data are
used and each ensemble gets a test set of equal size.

2.2. Level-One Cross-Validation

Fig. 2. An example of how the CV1 process rotates the validation set for P=67 data patterns
and K1=3 students to generate student data sets:  (a) The data set for the first ensemble from
Figure 1(c);  (b) Training and validation data is divided into K1=3 groups of equal size with 1
data pattern left; (c) The resulting student data sets

After the CV2 process creates each data set, the CV1 creation procedure is
called for each K2 ensemble data set. CV1 divides all the P�=P-P/K2 training and
validation data in a given data set into K1 non-overlapping groups, where K1 is the
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number of networks (students) in an ensemble. Each student is assigned one of the K1

groups for its validation set. This group provides unique data, with a set size of P�/K1,
to validate each network. The remaining K1-1 groups of the available data are used as
the training set. If the division is uneven the extra patterns are assigned to the training
set for all students. Each student gets a non-overlapping validation set, while the
training set is overlapping.

Figure 2 illustrates the CV1 process for a training and validation set with P�=P-
P/K2=100-33=67 data patterns and K1=3 students. The data set in Figure 2(a) is the
data set for the first ensemble given in Figure 1(c). In this example, all P�=67 data
patterns reserved for the training and validation set are divided into three groups, with
one pattern remaining. The validation set for the first student consists of
P�/K1=67/3=22 data patterns, numbered 46 to 67 in the original data file from Figure
1(a). All the remaining data patterns, numbered 1 to 45 in the original data file, are
used as the training set. In this way, all data are used and each student gets a
validation set of equal size.

3 Implementation

The pseudo-code for ensemble creation using CV1 and CV2, within the NNES 4.0:
1. Get the number of ensembles (K2) and the number of students (K1)
2. Initialize all parameters using the NNES default values
3. Call the CV2 creation process with K2
4. Call the CV1 creation process with K1
5. Generate a network
6. Repeat steps 4-5 until all K1 networks have been generated
7. Combine all networks to form an ensemble
8. Compute the ensemble performance
9. Repeat steps 2-8 until all K2 ensembles have been generated and tested

The pseudo-code for the CV2 ensemble creation process:
1. Read in the P data patterns from the data file.
2. Define the test set size as T = ÐP/K2à .
3. For each enSeq where 0 � enSeq � K2-1,

a. Use data pattern (P-T�enSeq)-T+1 to data pattern (P-T�enSeq) to form a test
set for ensemble number (enSeq+1).

b. Use the remaining P� = P-T data patterns to generate the training and
validation sets.

The pseudo-code for the CV1 student creation process:
1. Define the validation set size as V = ÐP�/K1à .
2. For each stSeq where 0 � stSeq � K1-1,
a. Use data pattern (P�-V�stSeq)-V+1 to data pattern (P�-V�stSeq) and reserve

them for the validation set for student number (stSeq+1).
b. Use the remaining P�-V data patterns in the training set.

4 The Model Considered

The Neural Network Ensemble Simulator (NNES) [10][13] is chosen as the
development platform for CV1 and CV2.  To support this research, NNES version 3.0
has been updated to version 4.0, which supports CV1 and CV2.  Within the NNES 4.0
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framework, the cascade-correlation learning algorithm is selected to create ensemble
models [2]. The weighted contribution combination method is selected to combine
networks to form an ensemble classifier [10]. The number (K1) of networks desired
for a given ensemble and the number of ensembles (K2) for a given simulation model
are entered by the user. Once the aforementioned parameters are entered, NNES
default values are accepted for all remaining parameters.

Results presented in this research are generated from experimentation utilizing
the diabetes data set from the PROBEN1 repository [9]. The PROBEN1 diabetes data
set consists of three permutations of the same data set labeled diabetes1, diabetes2
and diabetes3. For purposes of comparison to earlier experiments with NNES 3.0
[10][11][12], diabetes1 is selected as the base data set. Diabetes1 contains 576 data
patterns for training and validation and an additional 192 for testing, for a total of 768
patterns.

Table 1.  Details of each simulation in this research
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5 Simulation Results

Nine simulations are run generating three sets of the 3-ensemble model, three sets of
the 5-ensemble model, and three sets of the 10-ensemble model (see Table 1). Each
student in all nine simulations is trained independently on diabetes1 using CV1 and
CV2. Performance evaluation focuses only on test data misclassification rates, and
rate of disparity or improvement amongst models.

5.1. Simulation Results for the 3-Ensemble Model

According to the 3-ensemble model results presented in Table 2, while individual
networks from Simulation 1, 2 and 3 misclassify the test data on average 31.57% of
the time, the 3-ensemble offers an average misclassification rate of 27.72%. The 3-
ensemble reflects an average misclassification reduction of 3.85, or 12.25%
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improvement from its average individual student. The ensemble set exhibiting the
best performance in this model is the 3-ensemble of ten students, with an average
misclassification rate of 26.56%. This rate reflects a 15.09% over the average of its
individual networks.

Table 2.  The 3-ensemble model result averages

Ensemble rate improvement
compared to the average

misclassification rate of its
individual students

6LPXODWLRQ��

Average
misclassification

rate of
individual
students

Misclassification
rate of ensemble

Improved % Improved
����HQV��VWG 31.36 27.08 4.28 13.65

����HQV��VWG 32.08 29.52 2.57 8.00

����HQV���VWG 31.27 26.56 4.71 15.09

$YHUDJH 31.57 27.72 3.85 12.25

5.2. Simulation Results for the 5-Ensemble Model

According to the 5-ensemble model results presented in Table 3, while individual
networks from Simulation 4, 5 and 6 misclassify the test data on average 30.63% of
the time, the 5-ensemble offers an average misclassification rate of 26.38%. The 5-
ensemble reflects an average misclassification reduction of 4.25, or 13.95%
improvement from its average individual student. The ensemble set exhibiting the
best performance in this model is the 5-ensemble of ten students, with an average
misclassification rate of 26.09%. This rate reflects a 16.21% improvement over that of
its average individual student. Table 3 depicts only the best, worst, and average
ensembles for each model, where best and worst are defined by the model
improvement factor.

Table 3.  The 5-ensemble model results
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5.3. Simulation Results for the 10-Ensemble Model

According to the 10-ensemble model results presented in Table 4, while individual
networks from Simulation 7, 8 and 9 misclassify the test data on average 29.97% of
the time, the 10-ensemble offers an average misclassification rate of 25.03%. The 10-
ensemble reflects a misclassification reduction of 4.94, or 17.47% improvement from
its average individual student. The ensemble set exhibiting the best performance in
this model is the 10-ensemble of ten students, with an average misclassification rate
of 24.38%. This rate reflects a 20.11% improvement over the average of its individual
networks.

Table 4. The 10-ensemble model results
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6 Discussion of Results

6.1. Results of CV1

From Tables 2,3, and 4, it can be concluded that all CV1 ensemble models have a
significantly lower misclassification rate than the average of their independent
counterparts. While individual networks misclassify the test data on average 30.72%
of the time (calculation based on overall averages from tables 2,3,4), the CV1 models
average 26.38%. This average represents a reduction of 4.35, or a 14.55%
performance increase. The model exhibiting the best performance is the 10-ensemble
model, with an average misclassification rate of 25.03%. This rate reflects a 17.47%
improvement over the average of its individual networks.

These results confirms the proposition that CV1 may be used to generate
ensembles that demonstrate a performance improvement over individual networks.
Two ensembles in Simulation 7 and two ensembles in Simulation 9 show an
individual student average which outperforms their respective ensembles by a small
margin (see Table 4 for details). However, the average performance of the models in
Simulation 7 and Simulation 9 are consistent with the CV1 proposition, reflecting a
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significant ensemble improvement of 15.05% and 20.11%, respectively. The most
probable explanation for the performance degradation on these few ensembles can be
attributed to a biased test set, based on its relative location. However, by rotating the
test set for each ensemble of a given model CV2 reduces the impact of such bias.

6.2. Results of CV2

By convention, the unseen test data typically come from the bottom of the data set.
Potential bias of a particular subset of the data, may inadvertently sabotage the testing
process leading to inaccuracies in performance evaluation. A better measure of
performance would test the model on as many different subsets of unseen data
patterns as possible. Table 3 and Table 4 nicely illustrate the bias problem. In Table 4
Simulation 9, the ensemble performance varies by as much as 12.8 points, or 52.86%.
The significance of these results provide support for the inclusion of cross-validation
techniques in the model, for performance evaluation. The bias problem is clearly
illustrated by the results presented for the 10-ensemble models with five or ten
students, where the classification range for ensemble performance is as great as 24.56
percentage points. These two models have the best misclassification rate of 12.28%
and the worst misclassification rate of 36.84%. Clearly, if the performance of a model
were measured by a single test set it is likely not to be an accurate reflection of model
performance [15][16]. These results and observations provide support for the
significance of CV2 as both a valuable evaluation method and technique for
experimentation efficiency in ensemble generation, testing, and analysis.

6.3. Secondary Findings

A secondary finding relates the misclassification rate of a given model to the number
of ensembles in that model. Results show a steady decrease in misclassification rates
when the number of ensembles in a given model is increased. This trend may be
explained by the increase in available training data, based on the train-test split [4].
When the data set subdivisions increase in numbers they cause a decrease in the
number of patterns per group. Further investigation is needed to provide conclusive
evidence on the impact of the train-test split in CV1 and CV2 modeling. This
investigation is left for future work.

7 Conclusions

The scope of this study represents only a small segment of the issues associated with
ensemble model generation and evaluation. Limitations imposed on the experimental
conditions provide avenues for future work. Deployment of future NNES versions
will provide support for testing of multi-classification problems. Classification
flexibility will encourage the continued evaluation of  CV1 and CV2 within the
NNES framework, as applied to other interesting domains. Another objective will
seek expansion of the framework to include increased options for learning and
combination methodologies. Future work will also explore the relationship between
the number of ensembles in a given model and its relative performance.
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In conclusion, although there is still much work to be done, significant progress
has been made into the investigation of two-level cross-validation techniques for
ensemble generation and evaluation. Ensembles generated using level-one cross-
validation (CV1) are shown to provide a lower misclassification rate than their
individual networks. Results support CV1 as a sound methodology for ensemble
model generation. Likewise, simulation models using level-two cross-validation
(CV2) provide a sound methodology for effectively evaluating the true performance
of a model. Furthermore, ensemble investigations requiring large-scale
experimentation have been simplified by this work and the deployment of CV1 and
CV2 in NNES 4.0.
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