Skip to main content

Reduced Support Vector Selection by Linear Programs

  • Conference paper
  • First Online:
Book cover Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence (IWANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2084))

Included in the following conference series:

  • 1404 Accesses

Abstract

The problem of selecting a minimal number of data points required to completely specify a nonlinear separating hyperplane classifier is formulated as a concave minimization problem and solved using a linear program. A comparison of the prediction errors for several rule extraction methods shows a good compromise between complexity of the classifier and the errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, R. and Geva, s. (1995). Rulex & Cebp Networks as the Basis for a rule refinement system, In: Hybrid Problems, Hybrid Solutions, j. Hallam (Ed.), pages 1–12, IOS Press

    Google Scholar 

  2. Bennet, K. P. and Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1;23–34.

    Article  Google Scholar 

  3. Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability and the Vapnik-Chervonenkis dimension. Communications of the ACM, 36(4): 929–965.

    MATH  MathSciNet  Google Scholar 

  4. Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning Journal, 3(4): 261–283.

    Google Scholar 

  5. Craven, M. and Shavlik, J. (1999). Rule extraction: where do we go from here?, TR-CS-99-1, University of Wisconsin, Madison.

    Google Scholar 

  6. Mangasarian, O. L. (2000). Generalized support vector machines. In A. J. Smola, P. L. Bartlett, B. Schoelkopf, and D. Schuurmans (eds.) Advances in Large Margin classifiers, Pages 135–146, Cambridge, MA: MIT Press

    Google Scholar 

  7. Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (Eds.)(1994). Machine Learning, Neural and Statistical Classification, New York: Ellis Horwood.

    MATH  Google Scholar 

  8. Nauck, D. and Kruse, R. (1995). NEFCLASS-A neuro-fuzzy approach for the classification of data, Symposium on applied computing.

    Google Scholar 

  9. Platt, J. (1998). Fast training of support vector machines using sequentil minimal optimization, In B. Schoellkopf, C. J. C. Burges, and A. J. Smola, (Eds.) Advances in Kernel Methods Support Vector Learning, Pages 185–208, Cambridge, MA: MIT Press.

    Google Scholar 

  10. Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning 1:81–106.

    Google Scholar 

  11. Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27:1134–42.

    Article  MATH  Google Scholar 

  12. Vanderbei, R. J. (2001). Linear Programming: Foundations and Extensions. Kluwer.

    Google Scholar 

  13. Vapnik, V. (1995), The Nature of Statistical Learning Theory, New York: Springer-Verlag.

    MATH  Google Scholar 

  14. Wagner, T. and Wagner, O. (1995). Datenanalyse mittels Fuzzy-Clustering, diplomarbeit, TU Braunschweig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fellenz, W.A. (2001). Reduced Support Vector Selection by Linear Programs. In: Mira, J., Prieto, A. (eds) Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. IWANN 2001. Lecture Notes in Computer Science, vol 2084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45720-8_81

Download citation

  • DOI: https://doi.org/10.1007/3-540-45720-8_81

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42235-8

  • Online ISBN: 978-3-540-45720-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics