
Automatic Symbolic Modelling of 
Co-evolutionarily Learned Robot Skills 

Agapito Ledezma, Antonio Berlanga and Ricardo Aler 

Universidad Carlos III de Madrid Avda. de la Universidad, 30, 28911, Leganes 
(Madrid). Spain 

Abstract Evolutionary based learning systems have proven to be very 
powerful techniques for solving a wide range of tasks, from prediction to 
optimization. However, in some cases the learned concepts are unreadable 
for humans. This prevents a deep semantic analysis of what has been 
really learned by those systems. We present in this paper an alternative 
to obtain symbolic models from subsymbolic learning. In the first stage, a 
subsymbolic learning system is applied to a given task. Then, a symbolic 
classifier is used for automatically generating the symbolic counterpart 
of the subsymbolic model. 
We have tested this approach to obtain a symbolic model of a neural net-
work. The neural network defines a simple controller of an autonomous 
robot. A competitive coevolutive method has been applied in order to 
learn the right weights of the neural network. The results show that the 
obtained symbolic model is very accurate in the task of modelling the 
subsymbolic system, adding to this its readability characteristic. 

1 Introduction 

The use of evolutionary computation (EC) techniques for software development 
suffers in some aspects from analogous problems to other software development 
methodologies or paradigms. In particular, we will focus in this paper in the 
declarative representation of the evolutionary generated descriptions; that is, 
how we (humans) interpret the output of the EC systems (their generated knowl-
edge). 

In the case of the application we present here, robot control, there are many 
types of knowledge that could be acquired by means of EC in order to build 
such systems. Examples are the internal model of robots, models of other robots, 
communication strategies, or reasoning heuristics. One way of automating this 
task consists on learning those models by either applying genetic algorithms [1], 
evolutionary strategies [2], classifier systems [3], or genetic programming [4]. 
Another view of this type of tasks is centered on the representation structure of 
the output: the systems can generate rules [5], neural networks [6], etc. When 
the output is represented in terms of subsymbolic structures (such as neural 
networks), it is very difficult to interpret the results in order to extract general 
conclusions on the correctness of the learned knowledge, its possible drawbacks, 
or the definition of improvements. 
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The ability to transform a procedural description of the reasoning process of
a given control skill into a declarative representation allows to more easily share
knowledge, or reason about other robots behaviors. Speci�cally, one of our goals
was the study of automatic ways of extracting knowledge (models) from non-
symbolic representations, such as neural networks. This has been already studied
by some authors by analysing the internal structure of the neural network [7].
We propose an alternative that consists on modeling their behavior by observing
how they \solve problems": what output they generate from what input.

In this paper, Section 2 describes the task that we have used as the testbed.
Section 3 presents our learning approach to symbolic modelling. Section 4 de-
scribes the way in which experiments were de�ned, and presents the obtained
results. Finally, Section 5 discusses the obtained results.

2 Co-evolution of skills for robot control

Problems related with robotics have been one of the main �elds of application
of evolutive computation. A wide variety of robotic controllers, to solve speci�c
tasks, have been investigated; robot planning [8], wall following task [4], collision
avoidance [9], etc. The traditional evolutive computation techniques have sev-
eral disadvantages. Coevolution has been proposed as a way to evolve a learner
and a learning environment simultaneously such that open-ended progress arises
naturally, via a competitive arms race, with minimal inductive bias [10,11]. The
viability of an arms race relies on the sustained learnability [12,13] of environ-
ments. The capability to obtain the ideal learner, the better environments where
the learning takes place, is the main advantage of the coevolutive method.

In this work, the task faced by the autonomous robot is to reach a goal
in a complex bidimensional environment while avoiding obstacles found in its
path. In the proposed model, the robot starts without information about the
right associations between environmental signals and actions responding to those
signals. The number of inputs (robot sensors), the range of the sensors, the
number of outputs (number of robot motors) and its description is the only
starting information. From the initial situation the robot is able to learn through
experience the optimal associations between inputs and outputs.

The input sensors considered in this approach are the ambient and proximity
sensors, si.

The Neural Network outputs are the wheel velocities v1 and v2. The velocity
of each wheel is calculated by means of a linear combination of the sensor values,
equation 1, using those weights (Equation 1):

vj = f(
5X

i=1

wijsi) (1)

wij are the weights to be learned, si are sensor input values and f is a function
for constraining the maximum velocity values of the wheels.

Weight values depend on problem features. To �nd them automatically, an
evolutionary strategy (ES) with uniform coevolution (UC) is used [6] . In this
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approach each individual is composed of a 20 dimensional-real valued vector,
representing each one of the above mentioned weights and their corresponding
variances. The individual represents the robot behavior resulting from applying
the weights to the equation 1. The evaluation of behaviors is used as the �tness
function for the ES.

From all the general controllers obtained for navigation purposes using UC,
a controller has been selected for automatic adquisition of its model. The main
characteristic of this controller is that it only determines the speed of wheel v2.
The speed of wheel v1 is �xed to the maximum velocity.

3 Automatic acquisition of models

The behaviour of a reactive robot can be understood in terms of its inputs
(sensors readings) and outputs. Therefore, there is a clear analogy with a classi-
�cation task in which each input parameter of the robot will be represented as
an attribute that can have as many values as the corresponding input parameter.
In terms of a classi�cation task, this allows to de�ne a class for each possible
output. Therefore, the task of modelling (generating a declarative representation
of a robot behavior) has been translated into a classi�cation task.

For this problem, any classi�cation technique c could be employed: instance
based learning [14], learning decision trees [15], learning rules [16,17], or neural
networks [18]. However, we want to obtain a declarative symbolic representation.
This constrains the type of technique to be used to those that generate symbolic
representations, such as decision trees, or rules.

In a previous paper we have presented results for agents whose outputs is
discrete [19]. Given that the outputs of the robot control task are wheel veloc-
ities, which are continuous values, two di�erent approaches can be used: either
discretize the output and use a typical symbolic classi�er (like c4.5 [17]), or use
a symbolic algorithm that is able to deal with continous outputs (like regression
trees [20,21]). Here, we have followed both approaches.

In the preliminary results presented here, the robot to be modelled is con-
trolled by a neural network. The symbolic techniques to model this robot are
c4.5 [17,22]1 and m5 [21]. C4.5 generates rules and m5 generates regression
trees. The latter are also rules, whose then-part is a linear combination of the
values of the input parameters.

The actual learning task is as follows:

{ Inputs:
� Set of attributes that model the input parameters (sensors) of robot r1

� For each attribute, the set of values that its corresponding input param-
eter can have (in this case, they are continuous variables)

� Set of possible outputs in the case of discrete classes, and continuous
range in the case of continuous classes

1 We have used WEKA's C4.5 rules implementation [22] rather the original Quinlan's
algorithm
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� Set of training instances T
� A classi�cation technique c

{ Output: a declarative classi�er that provides the same (or approximate)
output as the robot r would provide given the same input instances

Figure 1. Architecture of the modelling of robots behavior.

4 Experimental Setup and Validation

The general framework is described in Figure 1 which shows the interrelation
between the robot r1, the modeler r2 that tries to learn and reason about a
model of r1, the classi�cation technique c used for modelling its behavior, and the
obtained classi�er m (model of r1). This classi�er m should model the behavior
of robot r1, in such a way that if one presents the same set of input patterns
(sensory data) to both r1 and m the error between the output provided by r1

and m should be minimal.
To validate m (i.e. how closely r2 knowledge models r1 behaviour) we carried

out ten-fold cross-validation. Testing data, which is di�erent from the training
data used in the previous section, was obtained in a similar way, by running r1
and logging its inputs and outputs. In C4.5, the closeness of the performance of
both r1 and r2 is measured as the number of examples in which the predictions
of r2 and r1 di�er (for the same sensory input). In the experiment that uses M5
to model r1 behavior we use the correlation coeÆcient to measure the model
error. The correlation coeÆcient is the measure of the correlation between the
predic ted values and the real values of test instances. If correlation coeÆcient is
1, the predicted and real values are perfectly correlated. If the correlation coef
�cient value is close to 0 there are no correlation. A -1 value means that they
are inversely correlated. The next two subsections explain the validation carried
out for the m obtained by C4.5 and m5, respectively.
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4.1 Generating rules with C4.5

As C4.5 can only predict discrete outputs, wheel velocities have been discretized
into �ve classes (see Table 1).

Table 1. Velocity Range

Class Velocity Number of instances

Slow -1.000 to -0.500 54
Middle-slow -0.499 to -0.003 26
Null 0 1
Middle-high 0.010 to -0.500 36
High 0.501 to 1.000 46

165

The total number of testing instances is 165, which are distributed in �ve
classes (see Table 1). Testing results are shown in Table 2. The �rst column shows
the 10-fold crossvalidation modeling accuracy of pure C4.5, whose output is a
decision tree. The second column shows the accuracy for C4.5 when it generates
a set of rules. In short, the model m generated by C4.5-rules is able to guess
the output of the neural net 88 times out of 100, which is a quite good result.

Table 2. Results using c4.5.

Hits/c4.5 Hits/c4.5 Rules
Cross-Validation 86.66% 88.48 %
Mean Absolute Error 0.0642 0.0534
Root Mean Squared Error 0.2221 0.2089

The rules learned can be seen in Table 3.

4.2 Generating regression trees with M5

The total number of instances is 976 with continuos classes (the class is the
velocity of one wheel of r1). We applied the m5 algorithm to generate a regression
tree. The results of 10-fold crossvalidation are: Correlation Coe�cient: 0.995,
Mean Absolute error: 0.034 and Root Mean Square Error: 0.064. The regression
tree predicts almost perfectly r1 neural network.

The regression tree obtained is shown in Table 4. Each rule from a regres-
sion tree corresponds to a Linear Model (table 5) that estimate the class value
(velocity of wheel v2).
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Table 3. Rules generating by c4.5 Rules.

SENSOR-4 > -0.046587 AND
SENSOR-4 > 0.362908: slow (30.0)
SENSOR-1 > 0.186667 AND
SENSOR-2 � 0.453333: slow (21.0/1.0)
SENSOR-4 � -0.424854 AND
SENSOR-3 � 0.16 AND
SENSOR-1 � 0.053333 AND
SENSOR-2 � 0.28: high (43.0)
SENSOR-4 > -0.046587 AND
SENSOR-3 � 0.026667: middle-slow (16.0)
SENSOR-4 � 0.060036 AND
SENSOR-3 � 0.506667 AND
SENSOR-2 � 0.293333 AND
SENSOR-5 > 0.058883: middle-high (28.0)
SENSOR-4 � 0.060036 AND
SENSOR-3 > 0.413333: middle-slow (8.0/1.0)
SENSOR-4 � 0.060036 AND
SENSOR-1 � 0.053333 AND
SENSOR-2 � 0.293333: middle-high (6.0)
SENSOR-3 � 0.026667 AND
SENSOR-1 > 0.053333: middle-slow (4.0/1.0)
SENSOR-3 > 0.026667: slow (4.0)
SENSOR-5 � 0.786346: high (3.0)
: null (2.0/1.0)

Table 4. Rules from the regression tree.

Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Model
� 0.0333 - � 0.233 � -0.841 �0.29 LM1
� 0.0333 - � 0.233 > -0.841 and � -0.743 �0.29 LM2
� 0.0333 - � 0.233 > -0.743 �0.29 LM3
� 0.0333 - � 0.233 �-0.59 >0.29 and �0.761 LM4
� 0.0333 - � 0.233 �-0.59 >0.761 and �0.975 LM5
� 0.0333 - � 0.233 �-0.59 >0.975 LM6
� 0.0333 - � 0.233 >-0.59 and � -0.453 - LM7
� 0.0333 - � 0.233 >-0.453 - LM8
� 0.0333 - > 0.233 �-0.161 - LM9

> 0.0333 and �0.22 - - �-0.161 - LM10
>0.22 and �0.587 - �0.213 �-0.161 - LM11
>0.22 and �0.587 - >0.213 �-0.161 - LM12

>0.587 - - �-0.161 - LM13
�0.193 - - >-0.161 and �0.134 - LM14
�0.193 - - >0.134 and �0.711 - LM15
�0.193 - - >0.711 - LM16
>0.193 - - >-0.161 - LM16

5 Conclusions

In this paper, we have presented an approach that allows to acquire a declarative
representation of the behavior of a robot, by observing what output it produces
from the inputs it receives. That is, instead of inspecting the robot internal
model, it is considered as a black box and observed by another agent/robot. In
particular, we have �rst used c4.5 to acquire a symbolic model (set of rules)
of a neural-net based robot. Results show that c4.5 is quite good at modeling
neural robots. The model obtained by c4.5 could be used by an opponent robot,
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either directly, or even better, reasoning about the model, taking advantage of
its symbolic representation.

Then, we have used m5 to obtain a regression tree that approximates even
better the target robot. However, although there is greater accuracy in this
second case, the knowledge obtained is not so easily understandable.

It is important to remark that this method will only be applied successfully
to reactive agents. If the agent to model is not reactive (i.e. its output depends
on something else, like memory, besides the sensors), models would be quite
inaccurate.

Table 5. Linear Models.

Model Prediction Independent Sensor1 Sensor2 Sensor3 Sensor4 Sensor5

factor

LM1: class = 0.36 -0.0936 +0.0711 -0.895 -0.723 - 0.276

LM2: class = 0.358 -0.0936 +0.129 -1.25 -0.668 -0.35

LM3: class = 0.0201 -0.0936 +0.0288 -1.2 -1.15 -0.423

LM4: class = 0.201 -0.0936 +0.0751 -1.29 -0.969 -0.531

LM5: class = 0.886 -0.0936 +0.0365 -1.11 -0.427 -0.859

LM6: class = 0.933 -0.0936 +0.0365 -1.11 -0.427 -0.943

LM7: class = 0.0814 -0.0936 +0.0257 -0.312 -1 -0.134

LM8: class = -0.0041 -0.0936 +0.0202 -1.22 -1.2 -0.453

LM9: class = -0.00956 -0.0936 +0.0155 -1.14 -1.12 -0.166

LM10: class = -0.073 -2.6 +0.0441 -0.964 -1.03 -0.264

LM11: class = -0.149 -2.23 +0.0065 -0.407 -0.895 -0.0413

LM12: class = -0.427 -1.33 +0.0065 -0.424 -0.488 -0.0413

LM13: class = -0.719 -0.62 +0.0065 -0.226 -0.305 -0.0413

LM14: class = -0.0313 -2.87 +0.0897 -1.14 -1.13 -0.33

LM15: class = -0.0435 -2.25 +0.0879 -1.11 -1.11 -0.329

LM16: class = -0.408 -0.757 +0.0364 -0.38 -0.652

LM17: class = -0.839 -0.126 +0.013 -0.129 -0.135
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