Skip to main content

The Spiral Array: An Algorithm for Determining Key Boundaries

  • Conference paper
  • First Online:
Music and Artificial Intelligence (ICMAI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2445))

Included in the following conference series:

Abstract

Computer models for determining key boundaries are important tools for computer analysis of music, computational modeling of music cognition, content-based categorization and retrieval of music information and automatic generating of expressive performance. This paper proposes a Boundary Search Algorithm (BSA) for determining points of modulation in a piece of music using a geometric model for tonality called the Spiral Array. For a given number of key changes, the computational complexity of the algorithm is polynomial in the number of pitch events. We present and discuss computational results for two selections from J.S. Bach’s “A Little Notebook for Anna Magdalena”. Comparisons between the choices of an expert listener and the algorithm indicates that in human cognition, a dynamic interplay exists between memory and present knowledge, thus maximizing the opportunity for the information to coalesce into meaningful patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfgang Auhagen and Piet G. Vos: Experimental Methods in Tonality Induction Research: A Review. Music Perception 17:4 (2000) 417–436

    Google Scholar 

  2. Jeanne S. Bamberger: Developing Musical Intuition. Oxford University Press, NY (2000)

    Google Scholar 

  3. Jeanne S. Bamberger: The Mind Behind the Musical Ear. Harvard University Press, MA (1991)

    Google Scholar 

  4. Brown: Tonal implications of the diatonic set. In Theory Only 5 (1981) 3–21

    Google Scholar 

  5. Chew, E.: Modeling Tonality: Applications to Music Cognition. Proceedings of the 23rd Annual Meeting of the Cognitive Science Society (2001)

    Google Scholar 

  6. Chew, E.: Towards a Mathematical Model of Tonality. PhD Dissertation, MIT (2000)

    Google Scholar 

  7. Richard Cohn: Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective. Journal of Music Theory 42:2 (1998) 167–180

    Article  Google Scholar 

  8. Richard Cohn: Neo-Riemannian Operations, Parsimonious Trichords, and their Tonnetz Representations. Journal of Music Theory 41:1 (1997) 1–66

    Article  Google Scholar 

  9. Peter Desain and Henkjan Honing and Huub Vanthienen and Luke Windsor: Computational Modeling of Music Cognition: Problem or Solution?. Music Perception 16:1 (1998) 151–166

    Google Scholar 

  10. Robert Gjerdingen (ed.): Music Perception 17:4 (2000) Note: Special issue on Tonality Induction

    Google Scholar 

    Google Scholar 

  11. Oswald Jonas: Introduction to the theory of Heinrich Shenker: the nature of the musical work of art. Longman, NY. (1982)

    Google Scholar 

  12. Krumhansl, C. L.: Perceived Triad Distance: Evidence Supporting the Psychological Reality of Neo-Riemannian Transformations. Journal of Music Theory 42:2 (1998) 254–281

    Article  Google Scholar 

  13. Krumhansl, Carol L.: Cognitive Foundations of Musical Pitch. Oxford University Press, NY (1990)

    Google Scholar 

  14. David Lewin: Generalized Musical Intervals and Transformations. Yale University Press, CT (1987)

    Google Scholar 

  15. H. C. Longuet-Higgins: Mental Processes. MIT Press, MA (1987)

    Google Scholar 

  16. H. C. Longuet-Higgins and M. J. Steedman: On Interpreting Bach. B. Meltzer and D. Michie (eds.) Machine Intelligence 6 Edinburgh U. Press (1971) 221

    Google Scholar 

  17. Robert Rowe: Key Induction in the Context of Interactive Performance. Music Perception 17:4 (2000) 511–530

    MathSciNet  Google Scholar 

  18. Shmulevich, I., Yli-Harja, O.: Localized Key-Finding: Algorithms and Applications. Music Perception 17:4 (2000) 531–544

    Google Scholar 

  19. Steedman, Mark: The well-tempered computer. Phil. Trans. R. Soc. Lond. 349 (1994) 115–131

    Article  Google Scholar 

  20. Temperley, David: What’s Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Reconsidered. Music Perception 17:1 (1999) 65–100

    Google Scholar 

  21. Temperley, David: The Perception of Harmony and Tonality: An Algorithmic Approach. PhD dissertation, Columbia University (1996)

    Google Scholar 

  22. Piet G. Vos and Erwin W. Van Geenen: A Parallel-Processing Key-Finding Model. Music Perception 14:2 (1996) 185–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chew, E. (2002). The Spiral Array: An Algorithm for Determining Key Boundaries. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds) Music and Artificial Intelligence. ICMAI 2002. Lecture Notes in Computer Science(), vol 2445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45722-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45722-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44145-8

  • Online ISBN: 978-3-540-45722-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics