Skip to main content

Dimensionality Reductions That Preserve Volumes and Distance to Affine Spaces, and Their Algorithmic Applications

  • Conference paper
  • First Online:
Randomization and Approximation Techniques in Computer Science (RANDOM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2483))

Abstract

Let X be a subset of n points of the Euclidean space, and let 0 < ɛ < 1. A classical result of Johnson and Lindenstrauss [JL84] states that there is a projection of X onto a subspace of dimension O(ɛ-2 log n), with distortion ≤ 1 + ɛ. Here we show a natural extension of the above result, to a stronger preservation of the geometry of finite spaces. By a k-fold increase of the number of dimensions used compared to [JL84], a good preservation of volumes and of distances between points and affine spaces is achieved. Specifically, we show it is possible to embed a subset of size n of the Euclidean space into a O-2 klogn)-dimensional Euclidean space, so that no set of size sk changes its volume by more than (1+ɛ)s-1. Moreover, distances of points from affine hulls of sets of at most k-1 points in the space do not change by more than a factor of 1 + ɛ. A consequence of the above with k = 3 is that angles can be preserved using asymptotically the same number of dimensions as the one used in [JL84]. Our method can be applied to many problems with high-dimensional nature such as Projective Clustering and Approximated Nearest Affine Neighbor Search. In particular, it shows a first poly-logarithmic query time approximation algorithm to the latter. We also show a structural application that for volume respecting embedding in the sense introduced by Feige [Fei00], the host space need not generally be of dimensionality greater than polylogarithmic in the size of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dimitris Achlioptas. Database-friendly random projections. In roceedings of PODS 01, pages 274–281, 2001.

    Google Scholar 

  2. R.I. Arriaga and S. Vempala. An algorithmic theory of learning: Robust concepts and random projections. In Proceeding of the 31th Symposium on the Theory of Computing, New York, 1999.

    Google Scholar 

  3. S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma. In Technical Report TR-99-06, Computer Scinece Institute, Berkeley, CA, 1999.

    Google Scholar 

  4. L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality reduction with applications. In Proceedings of the 13th Symposium on Discrete Algorithms. IEEE, 2002.

    Google Scholar 

  5. U. Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput. System Sci., 60(3):510–539, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Frankl and H. Mahera. The johnson lindenstrauss lemma and the sphericity of some graphs. J. Combin. Theory Ser. B, 44(2):355–362, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions using core-sets. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 312–318, 2002.

    Google Scholar 

  8. P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse of dimensionality. In Proceedings of the Thirty Second Symposium on Theory of Computing, pages 604–613. ACM, 1998.

    Google Scholar 

  9. W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), pages 189–206. Amer. Math. Soc., Providence, RI, 1984.

    Google Scholar 

  10. N. Linial, E. London, and Yu. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Meiser. Point location in arrangements of hyperplanes. Information and Computation, 106:286–303, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. Agarwal P. and Procopiuc C. Approximation algortihms for strip cover in the plane. In Proceeding of the 11th ACM-SIAM Symposium on Discrete Algorithms, pages 373–382, 2000.

    Google Scholar 

  13. S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the Fifteenth Annual Symposium on Computational Geometry (Miami Beach, FL, 1999), pages 300–306 (electronic), New York, 1999. ACM.

    Google Scholar 

  14. S. Vempala. Approximating vlsi layout problems. In Proceedings of the thirty ninth Symposium on Foundations of Computer Science. IEEE, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magen, A. (2002). Dimensionality Reductions That Preserve Volumes and Distance to Affine Spaces, and Their Algorithmic Applications. In: Rolim, J.D.P., Vadhan, S. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 2002. Lecture Notes in Computer Science, vol 2483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45726-7_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45726-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44147-2

  • Online ISBN: 978-3-540-45726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics