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Abstract. Protein-protein interactions are critical to many biological
processes, extending from the formation of cellular macromolecular struc-
tures and enzymatic complexes to the regulation of signal transduction
pathways. With the availability of complete genome sequences, several
groups have begun large-scale identification and characterization of such
interactions, relying mostly on high-throughput two-hybrid systems. We
collaborate with one such group, led by Marc Vidal, whose aim is the
construction of a protein-protein interaction map for C. elegans. In this
paper we first describe WISTdb, a database designed to store the inter-
action data generated in Marc Vidal’s laboratory. We then describe In-
terDB, a multi-organism prediction-oriented database of protein-protein
interactions. We finally discuss our current approaches, based on induc-
tive logic programming and on a data mining technique, for extracting
predictive rules from the collected data.

1 The Biological Problem: Protein-Protein Interactions

Protein-protein interactions are critical to many biological processes, extending
from the formation of cellular macromolecular structures and enzymatic com-
plexes to the regulation of signal transduction pathways.

With the availability of complete genome sequences, several groups have be-
gun large-scale identification and characterization of such interactions [11], [22],
[25]. These groups rely mostly on high-throughput two-hybrid systems [23]. Al-
though such approaches significantly increase the rate at which interaction data
is produced, they will require several years to produce full interaction maps for
modest-sized organisms, whereas the “working draft” of the human genome has
been available since June 2000. It is therefore enticing and promising to develop
computational methods that could predict protein-protein interactions, be it in
a rough and approximate manner. Ideally, the data produced by those high-
throughput projects could suffice to develop prediction algorithms that could
then be applied to genome sequence as fast as it is being released. More reason-
ably, the high-throughput projects themselves could benefit from predictions to
speed up the discovery of interesting protein-protein interactions (see part 4).

In this paper we concentrate on a preliminary step to study protein-protein
interactions in Caenorhabditis elegans. C. elegans is the first multi-cellular organ-
ism whose genome has been completely sequenced [5], as well as being a choice
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model organism for many functional genomics projects, from cDNA microarrays
[9] to systematic knock-outs [10] and protein-protein interaction mapping. It is
also a convenient model organism for classical genetic studies [24].

We first describe our efforts to set up WISTdb (Worm Interaction Sequence
Tag database) [25], a database which gives access to interactions in C. elegans.
These interactions are the result of the C. elegans interaction mapping project
led by Marc Vidal at the Dana Farber Cancer Institute, Harvard Medical School,
Boston, Massachusetts. Our goal consisted in setting up the informatics platform
to annotate and store the interactions, and make them freely available through
Internet. This has been implemented in the form of a database using the ACeDB
database management system [21] and the AceBrowser [20] interface.

We then describe InterDB, a prediction-oriented database of protein-protein
interactions, which we have built. The goal is to have access in a homogeneous
way to as many known protein interactions present in available databases as
possible, with the aim of predicting interactions in C. elegans.

We finally explain our current approaches to using this data. The aim is
to extract rules that could explain the observed interactions of InterDB, and
perhaps generalize to other unknown interactions. We report on our efforts at
using an inductive logic programming technique, namely the Progol system [16],
and another data mining technique based on association rules [2], [14].

2 The WISTdb Database

As said before, Marc Vidal’s group at MGH is working on producing a protein
interaction map for C. elegans, based on a high-throughput two-hybrid system.
WISTdb is a database designed to store the data produced by this project. It
is based on ACeDB, an object-oriented database management system developed
initially to manage and distribute C. elegans genetic and genomic data. It also
uses the Acembly sequence assembly and edition package [1], which functions on
top of ACeDB. Both ACeDB and Acembly are freely available over the Internet.
Since all the data currently available for C. elegans is distributed in the ACeDB
format, the choice was a natural one. We first summarize the main ideas behind
two-hybrid systems, then describe the database schema adopted for WISTdb
and briefly discuss the algorithms involved.

The goal of conducting a two-hybrid experiment, or screen, is to identify
proteins that physically interact with a given protein, called the bait. This bait
can be expressed as a hybrid protein, fused to a specific DNA binding domain
(coming from the yeast GAL4 transcription factor). Using a library of plasmids
capable of expressing potential interactors fused to the GAL4 transcriptional ac-
tivation domain, a custom yeast strain is co-transformed with two plasmids: the
bait hybrid and one random plasmid from the library. The specifically engineered
yeast cell is designed such that under certain conditions, its survival depends on
the bait interacting with the unknown protein, thereby reconstituting the GAL4
activity. At this point, surviving yeast colonies contain a plasmid in which the
cDNA insert codes for an interactor of the bait. Those interactors are called
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fishes. To identify them, they are amplified by PCR, then sequenced. The data
produced is therefore a set of ABI automatic sequencer traces, for each bait
screened. Our task is to align those traces on the C. elegans genomic sequence,
so as to identify the fishes, and to store the newly discovered interactions in a
database along with all relevant information. The main conceptual difficulties
lay in the definition of a schema for the data. This is discussed below.

The data schema is derived from the schema distributed with the Acembly
package. This software system is designed to handle ABI trace files and perform
sequence assembly. It is well suited to the alignment of cDNA sequences on
genomic sequence, and includes a versatile graphical interface to visualize and
edit the traces. The new schema has been stripped of unnecessary classes and
attributes, and enriched with the new classes IST and ISTScreen to describe the
interactions found.

The main remaining standard classes are the following: locus, sequence,
cdna clone, and transcribed gene. The locus class represents genetic loci, in-
cluding gene names and other genetic information, as well as links to relevant
sequence objects when available. The sequence class contains all nucleic acid
sequences, be they genomic cosmids, expressed sequence tags (ESTs), predicted
open reading frames, or ABI sequence traces. Cdna clone objects store informa-
tion on the clones from which the ABI traces come. Finally, when the traces are
aligned on genomic sequence, they can be clustered into overlapping subsets of
traces. The transcribed gene objects are created by the system to reconstruct
the genes corresponding to these clusters.

The new classes can be described as follows. An ISTScreen object is created
for every gene used as a bait in a two-hybrid screen. It contains links to every IST
object that represents an interaction uncovered by this screen. It also contains
links to the gene (genetic locus) and sequence (physical locus) of the bait. An
IST object is basically a link between two proteins that interact in the context
of the two-hybrid system, a bait and a fish. It contains additional information
such as the observed strength of the interaction, in terms of what two-hybrid
phenotypes are observed. Both bait and fish may be referred to by gene name
and/or sequence identifier. In fact, given a bait and a transcribed gene, an IST
linking them is generated if the transcribed gene’s construction relies on an ABI
trace corresponding to a cdna clone which scored positive in the two-hybrid
screen with that bait.

The current version of WISTdb stores interaction data for 22 baits, there-
fore containing 22 ISTScreen objects. It also contains 1195 cdna clone objects,
which represent 117 different transcribed gene objects, and correspond to 146
interactions (IST objects).

3 Construction of InterDB from Current Databases

The first step in studying protein-protein interactions is the construction of a
database of such interactions. The main difficulties encountered are the scarcity
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of available data, and the problem of constructing an integrated database from
several independent heterogeneous databases, as described below.

First, computationally useful protein interaction data is hard to find. Still
today, biologists studying particular proteins search and identify interacting
partners for their protein of interest. That information is eventually published,
sometimes inconspicuously, along with other information on the protein. Reading
biology papers can be a daunting task for non-specialists like ourselves, let alone
reading thousands of them looking for specific data that rarely stands out. One
approach to this problem is to apply natural language processing techniques, in
order to extract protein-protein interaction information from the scientific lit-
erature. For example A. Valencia and colleagues, from Madrid University, have
initiated such studies based on Medline abstracts (personal communication). But
although this strategy appears promising, it can only give predictions of protein-
protein interactions, since the natural language processing involved is not com-
pletely accurate. The only reasonable scenario for obtaining experimental data
lay in either finding protein interaction databases compiled by third parties, or
teaming up with functional genomics projects that produce such data. As said
before, a collaboration was set up with the Vidal laboratory in Boston, which
gives us access to the interactions that they detect. But more data was desirable.
The following databases containing information on protein-protein interactions
were found.

The DIP database (Database of Interacting Proteins, [12]) is a collection
of interactions in a variety of organisms. Until recently, it used exclusively the
PIR (Protein Information Resource, [26]) unique identifier to identify interacting
proteins. The current release also provides SwissProt [3] identifiers when possible.
DIP is freely available and downloadable, and contains around 2290 interactions
at the time of writing.

Another source of interaction data is YPD (Yeast Protein Database, [27]).
YPD is a general database on Saccharomyces cerevisiae proteins. It is the result
of manual curation and annotation based on a review of the literature. YPD is
a proprietary database, although access is freely granted to academic users. A
lot of functional information is present, including protein-protein interactions,
but it is in the form of free text in English, and scriptable access to YPD is
forbidden. This would preclude using it in our context, but an agreement was
negotiated with Proteome Inc., leading to our having access to a table containing
all YPD protein-protein interactions. The table comprises 1115 interactions, and
interacting partners are referred to by gene name.

Finally, FlyNets [19] contains to date 53 protein-protein interactions in the
fly D. melanogaster. This database was considered but not used.

The second problem encountered is a classical one: starting with several het-
erogeneous databases, construct a single database integrating the knowledge
stored in the initial ones. In our case, a unique framework was needed to iden-
tify proteins. The protein databases SwissProt and TrEMBL [3] were chosen.
They are available as a non-redundant flat database, and respect a reasonably
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tight syntax. They contain links to corresponding PIR identifiers, as well as gene
names.

For each source of protein-protein interaction data, a Perl script was written
to parse the data files, and ace files were generated for all interactions in which
both partners could be identified in SwissProt or TrEMBL. This guarantees the
coherence of InterDB, but led to discarding some of the available interactions.
Out of 1115 YPD interactions, 247 (22%) were discarded because at least one
interactor could not be identified in SwissProt or TrEMBL, by the gene name
given in YPD. Similarly, 1010 of the 2290 DIP interactions (44%) were discarded
because they involved at least one protein whose PIR identifier was not refer-
enced in SwissProt or TrEMBL.

A new database, called InterDB, was built to store the interaction data col-
lected. It uses ACeDB as a database management system. The schema is designed
to fulfill two main goals:

– the quick construction of the database from new releases of the source
databases,

– the optimization of queries necessary to construct training sets of interac-
tions, and to predict protein-protein interactions using predictive rules.

The schema contains the three main classes Protein, Interaction and Pre-
dictive rule. Protein objects correspond to the SwissProt and TrEMBL entries.
The information contained in the following SwissProt fields is stored: identifica-
tion, including gene names and organisms concerned; database cross-references
to PIR, ProSite and Pfam; keywords; and Sequence. Interaction objects are basi-
cally links between two protein objects. Predictive rule objects are used to store
predictive rules, as generated by the approaches described below.

InterDB contains to date 307199 protein objects, and 2245 interaction objects
involving 1891 proteins. It should be noted that although only 1891 proteins are
involved in interactions, InterDB must store all 307199 proteins from SwissProt
and TrEMBL in order to identify interacting partners. 5% of the interactions are
between C. elegans proteins, 75% between S. cerevisiae proteins, 10% between H.
sapiens proteins, and the remaining 10% are spread over 40 various organisms.
45% of the 1891 proteins involved in at least one interaction are actually involved
in two or more interactions.

4 Protein Interaction Prediction

As stated before, protein-protein interactions are fundamental to a wide range
of biological processes, and several large-scale projects are under way to identify
them experimentally. Yet the prediction of such interactions by computational
methods remains a highly attractive goal, for reasons evoked earlier. Even if
the predictions are not reliable enough to be useful to the final user, i.e. the
biologist, they could still prove valuable, in the sense that they could guide the
high-throughput projects to speed up the discovery of interesting protein-protein
interactions.
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Indeed, two-hybrid experiments can be performed in two different manners:
the first approach is to screen against a library, as described in part 2; the
second is to clone some genes into both DNA binding domain and transcriptional
activation domain vectors, and to test all the cloned genes against one another.
The main advantage of the first strategy is that each cloned gene can be tested
and yield interesting results. Its main drawback is that every fished clone must be
sequenced. The second approach requires that many genes be cloned beforehand,
but the expensive sequencing step is avoided since the scientist knows what
protein-protein interactions he is testing. In this context, cloning the genes in a
favorable order can yield positive interactions rapidly. For example, if the aim
is to map interactions concerning proteins involved in DNA repair, a possible
strategy is to clone the fifty or so genes known to be involved in this process,
and another few hundred genes suspected, or predicted, to interact with them.

It seems that bioinformatics has become interested in the question of pre-
dicting protein-protein interactions fairly recently. To our knowledge, two groups
have published work in this direction [17]: Marcotte et al. [12] and independently
Enright et al. [7] have developed methods to predict protein-protein interactions.
They both rely on the hypothesis that when two proteins A and B are homolo-
gous to (a part of) a third protein in another organism, but are not homologous
to each other, then they interact (the ”fused domain” approach). Marcotte et
al. also proposed a multiparadigm algorithm to predict functional links between
S. cerevisiae proteins [13], which actually uses three prediction engines and two
sources of experimental data. The first prediction engine is the fused domain
algorithm discussed above. The second links proteins with related phylogenetic
profiles [18], e.g. two proteins that have homologs in approximately the same
subsets of genomes are predicted to interact. Finally, the third engine links pro-
teins whose mRNA levels are correlated across various microarray experiments
in S. cerevisiae [6]. This third method is not generalizable to other organisms
without access to genome-wide expression data. However, the first two meth-
ods can be applied to any sequenced organism, and aim at predicting physical
protein-protein interactions. But they are hypothesis-driven, meaning that their
starting point is a biological hypothesis, which is implemented then validated.

5 An ILP Approach

Our method is different, in that we seek to discover rules that could explain
protein-protein interactions, but don’t have strong preconceptions as to what
these rules should be. However, we do know that we need a formal language to
express and manipulate the relevant biological background knowledge. The cho-
sen formalism is first-order logic. The proposed predicates fall into two main cat-
egories: first, predicates that characterize individual proteins, specifically predi-
cates that express the presence of a Pfam [4] or ProSite [8] domain in the protein
considered, or its association with a keyword in SwissProt; second, predicates
that express relationships between proteins or functional domains, for example
predicates asserting that two proteins interact, or are homologs. We considered
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including predicates of the first category to use raw structural data from the
PDB. Indeed, the information content of a 3D structure is clearly much higher
than that of a Pfam or ProSite entry. In practice though, this idea is not im-
plementable due to the scarcity of structural data concerning C. elegans (there
are only 15 structures for partial or complete C. elegans proteins in the PDB as
of November 2000). This language is used in the framework of inductive logic
programming [15], which is an automated learning method inspired by logic pro-
gramming and machine learning. More specifically, the powerful inductive logic
programming system Progol [16] is used.

Progol generalizes a set of examples, i.e. positive instances of the predicate
interaction, by generating Horn clauses from which these examples can be de-
duced. However, the induced Horn clauses can be specified to abide by user-
defined rules, most notably the so-called mode declarations. Mode declarations
permit to restrict the form that induced rules may take, for example by specify-
ing whether the variables that appear in the atoms should be pre-bound or not.
Allowing too many unbound variables, i.e. output variables, greatly increases the
search space of inducible rules. Typically we decided, by using modes, to restrict
the induced rules to the form:

interaction(P,Q):-
descriptor(P,D1)∧descriptor(P,D2)∧ . . .∧descriptor(Q,D3)∧...,

where descriptor(P,D) is true if protein P is described by descriptor D, i.e. P
contains Pfam or ProSite domain D, or is described by keyword D in SwissProt.
Note that P and Q are always bound when they appear in the descriptor
predicate: they were bound in interaction(P,Q).

We tried several experiments with Progol. Unfortunately it appears that this
approach is not suitable for such large amounts of data, both in terms of num-
ber of interactions and number of attributes. In fact, we had to restrict the size
of our training sets to a maximum of 80 positive examples to avoid running
out of memory and to stay within reasonable runtimes. Also, this method is
particularly well adapted for dealing with highly structured and abundant back-
ground knowledge. Alas, the biological knowledge currently included in InterDB
is mostly flat. For these reasons, we shifted towards a data mining technique
supposedly better adapted to our data, namely association rules.

6 An Association Rule Approach

The idea behind the association rule data mining technique [2] [14] is the follow-
ing. Given a boolean matrix where each line is a transaction and each column is
an item, the goal is to find sets of items which are frequently present in the same
transactions. From these frequent itemsets, one can then derive rules that link
items. For example, if A and B are two items, and {A,B} is a frequent itemset,
then A=¿B is derived, provided that its confidence (the ratio of the frequency
of {A,B} over the frequency of {A}) is high enough. To apply this technique to
our problem, we proceeded as follows.
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The first task was to find a way of representing our data in an appropriate
boolean matrix. The proteins corresponding to the 2245 interactions of InterDB
are described by 497 Pfam domains, 406 ProSite domains, and 357 keywords,
adding up to a total of 1260 descriptors. We therefore built a matrix compris-
ing 2520 (1260×2) columns and 4490 (2245×2) lines. Each line represents an
interaction, and for each line the first 1260 columns represent the presence of
descriptors in the first protein, while the last 1260 columns correspond to the
second protein. Since this introduces a dissymmetry not present in the inherently
symmetrical “interaction” relation, we chose to enter interactions twice, once in
each orientation, hence the 4490 lines. This choice means that for every frequent
itemset, there is a dual itemset that appears with exactly the same frequency,
and actually represents the same link between descriptors.

We then used a program, which implements the classic Apriori algorithm,
to find frequent itemsets in this matrix. The frequency cutoff was set at 0.5%,
meaning that an itemset had to be present in at least 0.5% of the lines to be
considered frequent. This step produced 98391 frequent itemsets, along with
their respective observed frequencies.

We finally applied a series of custom filters, designed to extract significant
frequent itemsets from this list.

1. The first filter discards itemsets that concern only one protein. These item-
sets actually correspond to linked descriptors within a single protein. For ex-
ample, the well-known SH2 domain is represented by three different descrip-
tors: one Pfam domain, one ProSite domain, and one SwissProt keyword.
These three descriptors will therefore naturally form a frequent itemset. Al-
though such itemsets are not deprived of meaning, they are not useful to
predict interactions.

2. A second filter discards itemsets that contain specific user-specified descrip-
tors. Typically, we don’t want to consider itemsets containing the SwissProt
keyword “hypothetical protein”. Indeed, this keyword is obviously irrele-
vant to protein-protein interactions. Conceptually, these “bad” descriptors,
which are actually mostly keywords, could have been eliminated before run-
ning the Apriori algorithm. But checking every descriptor beforehand would
have been much more time-consuming than just looking at the descriptors
that occur frequently and checking that they make sense with regards to
protein-protein interactions. In a first approximation, we introduced an up-
per limit on the number of proteins described by each keyword to consider
the keyword valid.

3. A third filter assigns a significance score to each itemset. The itemsets whose
score is below a user-specified threshold are discarded. This score is defined
as follows. Consider a frequent itemset I occurring with frequency F. We can
write I=(D1,. . . ,Dn,D’1,. . . ,D’p), where D1. . . Dn are descriptors for protein
1 and D’1. . . D’p are descriptors for protein 2. The itemsets (D1,. . . ,Dn) and
(D’1,. . . ,D’p) are also frequent, although they have been filtered out by step
1, and occur with frequencies F1 and F2 respectively. Supposing that these
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two itemsets are independent, I is expected with a frequency F1xF2. We
define the score for I as F/(F1xF2).

4. A final filter is then applied, in order to favor large itemsets vis-a-vis their
subsets when the score penalty is not too heavy. Specifically, whenever two
itemsets I1 and I2, whose scores are S1 and S2 respectively, are such that
I1⊂I2, I1 is discarded if S1/S2 is smaller than a user-specified value.

To summarize, these filters generate a set of hopefully significant frequent
itemsets, parameterized by three user-defined variables: a list of “bad” descrip-
tors, a score cutoff, and a set to subset score ratio cutoff. Note that a frequent
itemset (D1,. . . ,Dn,D’1,. . . ,D’p) can be interpreted as the rule:

interaction(P,Q) :-
descriptor(P,D1)∧ . . .∧descriptor(P,Dn)∧descriptor(Q,D’1)∧ . . .
∧descriptor(Q,D’p).

Based on this idea, a set of rules is generated for every triplet of parameter
values. In practice, the filters are implemented in Perl, and a range of promising
values has been determined for each parameter. The filters have been run for
every combination of values in these ranges.

The next step involves validating the rules, and finding the optimal values
for each parameter. A new set of experimentally determined protein-protein
interactions has been produced recently by Anne Davy from CRBM, Montpellier
in collaboration with Marc Vidal’s laboratory. This test set TS contains 103
interactions, involving 81 proteins which play a role in the C. elegans proteasome.
Since these interactions have not been used to produce current predictive models,
they constitute a nice test set for these models.

In practice, the sets of rules are stored in InterDB and a Perl program has
been developed to apply them to any input protein. The result is a list of po-
tential interactors for that protein.

105 predictive models have been generated, using a promising range of values
for each parameter. The upper limit on the number of proteins described by
valid keywords has been set to 50, 100 and infinite (use all descriptors). The
score cutoff has been set to 1, 2, 3, 5, 8, 10 and 50. The set to subset score ratio
cutoff has been set to 1, 2, 3, 5 and infinite (keep all subsets). Using the most
stringent values for these parameters, i.e. 50 for the upper limit, 50 for the score
cutoff and 1 for the set to subset score ratio cutoff, we obtained 385 predictive
rules. Using the most permissive values, i.e. infinite, 1 and infinite respectively,
we obtained 83469 predictive rules.

We applied a representative subset of the predictive models to each TS pro-
tein, to obtain predicted interactions involving it. No interaction from TS was
predicted successfully. This can be explained by the following observation: only
3 interactions from TS could possibly have been predicted by the most per-
missive model. We mean by this that those 3 interactions are the only ones in
which each partner is described by at least one descriptor present in at least
one predictive rule. We can propose two possible explanations for this. First, the
initial frequency cutoff used in the Apriori algorithm seems too high, as only



144 N. Thierry-Mieg and L. Trilling

79 descriptors out of 1260 are present in the predictive rules. Note that this is
independent of the filters, since the most permissive model uses values which
completely bypass filters 2 and 4, and reduce filter 3 to eliminating blatantly
bad rules. Second, the information content of InterDB could be insufficient to
produce pertinent rules for proteins from the proteasome.

7 Conclusion

Protein-protein interaction prediction is a difficult task, due to several reasons.
First, it seems that there are not enough biological experiments to build training
sets with enough coverage. Second, as always in bioinformatics, the data is never
completely reliable. Third, counter-examples are not available, mostly due to the
nature of the problem. This is particularly the case in a high-throughput setting,
where it is vital to keep the generation of false positives as low as possible,
therefore tolerating a higher rate of false negatives.

Three aspects of our work have been presented. We have first described
the development of WISTdb, a platform designed to generate, store, annotate
and make available the C. elegans protein-protein interaction data generated by
the Vidal laboratory. Second, we have described InterDB, a prediction-oriented
multi-organism protein interaction database. Finally, we have reported on our
attempts to generate predictive rules for protein-protein interactions, using the
Progol inductive logic programming system and an association rule data mining
technique. We have not yet obtained satisfactory results with these approaches,
perhaps for the reasons detailed above.

Work is under progress in two directions. On one hand, we plan to include
richer and more structured biological knowledge in InterDB, from three sources.
First, although the subcellular localization information from SwissProt is speci-
fied as free text, a close inspection reveals that most of the entries are chosen in
a list of 66 localizations, which could be used as descriptors for our proteins. Sec-
ond, we are replacing the Pfam and ProSite descriptors by InterPro descriptors
(http://www.ebi.ac.uk/interpro/). InterPro is an integrated resource of protein
families, domains and sites, and federates data from Pfam and ProSite, along
with ProDom and Prints, two other databases with similar aims but different
approaches. This resource will certainly provide more reliable information than
the independent use of Pfam and ProSite, and also structures its entries by in-
troducing relationships between them. Finally, we wish to incorporate data from
the Gene Ontology Consortium (http://genome-www.stanford.edu/GO/), which
features a hierarchical classification system for the functional annotation of pro-
teins from Drosophila, Saccharomyces, Mus, Arabidopsis and Caenorhabditis.
On the other hand, studies on fine-tuning the parameters used in the associa-
tion rule approach are under way, especially by lowering the initial frequency
threshold.
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