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Abstract. Analysis of shape variability is important for diagnostic clas-
sification and understanding of biological processes. We present a novel
shape analysis approach based on a multiscale medial representation. Our
method examines shape variability in separate categories, such as global
variability in the coarse-scale shape description and localized variability
in the fine-scale description. The method can distinguish between vari-
ability in growing and bending. When used for diagnostic classification,
the method indicates what shape change accounts for the discrimination
and where on the object the change occurs. We illustrate the approach
by analysis of 2D clinical corpus callosum shape and discrimination of
simulated corpora callosa.

1 Introduction

Analysis of shape has begun to emerge as a useful area of medical image process-
ing because it has the potential to improve the accuracy of medical diagnosis,
the correctness of image segmentation, and the understanding of processes be-
hind growth and disease. We present a novel 2D shape analysis method that
can describe shape variability in intuitive terms, and pinpoint the places where
variability is most pronounced. We use our method to analyze the shape of the
mid-sagittal slice of the corpus callosum.

For example, consider the shapes in Fig. 1 which shows characteristic rep-
resentatives of three classes of shapes. Our method can detect that the three
classes are different. It can show that there is a global difference in width and
bending between classes 1 and 2, and that near the middle of the object there
is a local difference between classes 1 and 3.

Fig. 1. Representatives of three classes of shapes whose differences can be described
globally and locally.



Methods in 2D shape analysis can typically be divided into three high level
steps. First, a geometric representation is established. Second, a set of features
is derived from the representation; these features must be invariant under the
similarity transform. Finally, a statistical analysis method is chosen and applied
to the features. The shape analysis literature can be categorized by the decisions
taken at each step.

In their seminal paper on shape analysis, Cootes et al. represent shapes using
a point boundary model, which is a list of coordinates of points on the object
boundary. Invariance under rigid transform is achieved by alignment via the
Procrustes algorithm; aligned boundary positions form the features. Principal
component analysis (PCA) is used to gain both a qualitative and a quantitative
description of global shape variability [2].

Both Staib & Duncan and Szekely et al. represent boundaries in 2D as a
weighted sum of Fourier basis functions and perform statistical analysis on the
weights [8, 9]. In both methods the representation inherently provides invariance
under the similarity transform.

Bookstein and others use biological landmarks to represent shapes [3]. Land-
marks are aligned by the Procrustes algorithm. Analysis is based upon thin plate
spline warps which map one set of landmarks into another.

In a study of corpora callosa, Golland et al. represent 2D objects using a fixed
topology skeleton, which is a snake-like approximation to the medial axis of an
object [5]. Width and approximate curvature are sampled along the skeleton
and serve as features. These features are inherently invariant under similarity
transform. Classification is performed using linear discrimination and support
vectors.

Our method also uses the same three step framework. We make the following
decisions at each step. We describe shapes using a multiscale medial represen-
tation. A set of features, similar to those by Golland [5], is derived from the
representation; the features are invariant under the similarity transform. We
classify shapes using Fisher linear discriminants.

Our method is unique because it focuses on dividing the description of the
shape variability into parts. We can analyze variability in the coarse-scale de-
scription of entire object separately from the fine-scale variability in a part of
the object. The method also allows separate examination of growth-type shape
changes, such as narrowing and elongation, and bending-type shape changes.
Our choice of representation makes these two types of separability possible.

We describe objects using m-reps, which are formally defined by Pizer et al.
as a discrete multiscale medial representation of shape [6]. M-reps capture shape
in intuitive terms, such as widening, bending, and elongation because they are
medial. According to Blum, whose medial axis work lead to the development of
m-reps, the medial description is especially suitable for biological objects [1].

We say that m-reps are multiscale because they have an inherent level of
boundary tolerance. A coarse-scale m-rep describes the general properties of
shape, paying little attention to the details of the boundary. A fine-scale m-
rep captures detailed shape properties. Both types of m-reps provide different



information about shape, and a rich description is obtained when m-reps at
different levels of detail are used together.

To discriminate between classes of objects based on their shape, we apply
existing classification methods at multiple scales and locations. For example, in
a simulated set of corpora callosa, which Fig. 1 illustrates, we find that discrim-
inability between classes 1 and 3 is strongest at the bump location.

2 Methods

Fig. 2 summarizes our localized shape discrimination method. As most shape
classifiers, ours is trained on a sample set of shapes extracted from images.
Presently these are binary images of the corpus callosum.

Fig. 2. The components and flow of the localized shape discrimination method. Shape
features are extracted from each input image.

Our method analyzes shape at multiple levels of detail. Each shape is repre-
sented by both a coarse scale and a fine scale model. M-reps, defined in [6] serve
as the shape representation because they incorporate scale-sensitive metrics and
provide a geometrically rich shape description. A pair of m-reps, one with five
medial atoms and a large boundary tolerance and another with nine atoms and
a smaller tolerance are fitted to each image; these m-reps are called the coarse
and the fine m-reps (Fig. 3).

The coarse m-rep is computed first by warping a template five-atom m-rep
to maximize image match along its implied boundary. Image match is computed



Fig. 3. A typical simulated corpus callosum image (top left), a coarse m-rep (top right),
a prediction m-rep (bottom left), and a fine m-rep (bottom right).

using a Gaussian derivative operator with aperture proportional to local width
of the m-rep; the constant of proportionality is set large (ρ = 1.0) for coarse
m-reps. Medial atoms are constrained to remain at equal distances from each
other during warping.

Using a medial interpolation technique outlined in [10] we resample the coarse
m-rep, inserting a new medial atom half-way between each pair of existing atoms
to form a prediction m-rep. The latter has the same implied boundary as the
coarse m-rep but 9 atoms instead of 5. The prediction m-rep is again warped to
fit the image, this time using a smaller aperture-to-width ratio ρ = 0.5.

The three m-reps computed for each input image are used to derive sta-
tistical features. These features are geometrical in nature and describe shape
properties such as growth and bending; these features are invariant under simi-
larity transform. Two sets of features are computed. From the coarse m-rep we
derive coarse features which describe relationships between neighboring medial
atoms. From fine and prediction m-reps we derive the refinement features which
measure geometrical differences between corresponding pairs of medial atoms.
Refinement features describe the residual information gained from measuring
shape at a smaller scale.

We use coarse features to discriminate between classes of shapes based on
global shape properties. We perform three types of global discrimination, one
based on just the bending features, one based on just the growth features, and
one on the whole set of global features. When we compare the strengths of the
three discriminations, we learn whether the differences between the classes are
characterized more by differences in bending or growth.

We use refinement features to find locations on the shape where differences
between classes are most profound. We perform a separate dicrimination based
on the refinement features of each of the 9 atoms present in the fine m-rep. By
comparing the relative strengths of the discriminations we find the locations on
the object where the two classes differ most significantly.



For each feature set, discrimination between two classes is performed by
first reducing the features to one dimension by projection on the Fisher linear
discriminant and then performing the Student t test. [4]. The p-value of this test
indicates the separability strength between the two classes.

Fig. 4. Primary mode of variability in bending features (left), growth features (middle),
and combined growth and bending features (right) in a class of corpus callosum shapes.
Displayed are implied boundaries of m-reps corresponding to points at −2, 0, and +2
standard deviations from the mean along the primary mode.

Additionally, we compute the primary modes of shape variability in each
class or whole population, following a technique similar to Cootes et al. [2].
The feature extraction step is invertible, allowing reconstruction of m-reps from
points in feature space, and hence modes of variability can be visualized as
animations. We can analyze and visualize shape variability separately in terms
of growth and bending (Fig. 4).

3 Experimental Results

We demonstrate the diagnostic ability of our method in a case that supports
discrimination by constructing three artificial classes of objects based on the
corpus callosum shape with representatives shown in Fig. 1. Classes 1 and 2
differ slightly in coarse shape while classes 1 and 3 have same basic coarse shape
but differ locally because class 3 has a random bump at the midbody. Our
hypothesis is that the method would be able to discriminate between classes 1
and 2 globally while discriminating locally between classes 1 and 3.

Our simulation is based on elliptical harmonic representation of the seg-
mented corpora callosa, kindly provided by the group headed by Guido Gerig
[9]. The flexibility of the harmonics representation allows one to easily gener-
ate artificial shapes that resemble the corpus callosum. We create two Gaussian
distributions in the PCA space of the spherical harmonics. These have different
means and the same covariance. We take a random sample of 25 points from
each distribution; each point corresponds to a corpus callosum shape that is
rasterized. Thus we obtain training images for simulated classes 1 and 2.

The third simulated class is sampled from the same distribution as class 1
but each shape in this class has an artificial bump. To create this class, we follow
the same procedure as for class 1, but before rasterization we add a perturbation



in the shape of a truncated cosine function to the boundary. The location and
amplitude of the perturbation follow the normal distribution.

1 2 3 4 5 6 7 8 9

1 vs 2 -1.63 -3.49 -1.00 -1.62 -2.64 -3.75 -2.82 -2.72 -6.80

1 vs 3 -1.77 -1.26 -4.83 -9.72 -8.86 -9.23 -0.83 -1.25 -2.20

Table 1. Decimal exponents of p-values from Student t-test that show separability
between class pairs 1 vs. 2 and 1 vs. 3 for nine sets of refinement features.

We use leave-one-out analysis to test the classification ability of our method.
Using coarse features, we can discriminate between classes 1 and 2 with 70% ac-
curacy. This result is encouraging because the corresponding classes in spherical
harmonics coefficient space have 80% discrimination accuracy.

Table 1 demonstrates our ability to locate the bump. Here discrimination
between classes was performed on the refinement features at each of the medial
atoms. For classes 1 and 3, the p-values for atoms near the middle of the figure
are much smaller than at the ends, indicating stronger separability. Contrast
with the same discriminations for classes 1 and 2. The strongest separability is
found at one of the ends.

4 Discussion and Conclusions

The major contribution of this paper is the development of a shape analysis
method that leverages the intuitive and multi-scale properties of the medial
representation. We demonstrate this technique by the analysis of simulated data.
The application to real data remains.

Our statistical features have distributions that qualitatively do not appear
non-Gaussian, rather distributions of some features have outliers and are multi-
modal. Further examination is needed to improve the normality of the features.
Statistical methods that do not assume normality may also improve analysis.

We are extending the method to three dimensions because most of the po-
tential medical applications deal with 3D images of human anatomy. Transition
to 3D is possible in practice because recent progress in medial segmentation lets
us extract m-reps of 3D anatomical structures semi-automatically [7]. M-rep in-
terpolation and resampling pose the major theoretical difficulty. We plan use the
method to analyse hippocampal shape in alzheimers disease.

To be useful in practice, our method can not be limited to single figure
objects. Few shapes can be accurately represented by a single chain of medial
atoms (or a single mesh in 3D). The capability to analyze multi-figural objects
can be achieved easily if the medial branching topology is the same for all shapes
in the training set. In this case, we must simply add new features that describe
figure-to-figure relationships.



Homology is a problem common to all extant boundary and medial based
shape analysis approaches, including ours. We establish homology by sampling
medial atoms at equal spacing between the ends of the medial axis. Such cor-
respondence is too sensitive to the placement of the ends. Establishment of
homology based on the training statistics requires considerable research effort.
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