
Probabilistic Proximity Searching Algorithms

Based on Compact Partitions�

Benjamin Bustos2 and Gonzalo Navarro1,2

1 Center for Web Research
2 Departamento de Ciencias de la Computación, Universidad de Chile

Blanco Encalada 2120, Santiago, Chile
{bebustos,gnavarro}@dcc.uchile.cl

Abstract. The main bottleneck of the research in metric space search-
ing is the so-called curse of dimensionality, which makes the task of
searching some metric spaces intrinsically difficult, whatever algorithm
is used. A recent trend to break this bottleneck resorts to probabilistic al-
gorithms, where it has been shown that one can find 99% of the elements
at a fraction of the cost of the exact algorithm. These algorithms are wel-
come in most applications because resorting to metric space searching
already involves a fuzziness in the retrieval requirements. In this paper
we push further in this direction by developing probabilistic algorithms
on data structures whose exact versions are the best for high dimensions.
As a result, we obtain probabilistic algorithms that are better than the
previous ones. We also give new insights on the problem and propose
a novel view based on time-bounded searching.

1 Introduction

The concept of proximity searching has applications in a vast number of fields,
for example: multimedia databases, machine learning and classification, image
quantization and compression, text retrieval, computational biology, function
prediction, etc. All those applications have in common that the elements of
the database form a metric space [6], that is, it is possible to define a posi-
tive real-valued function d among the elements, called distance or metric, that
satisfies the properties of strict positiveness (d(x, y) = 0 ⇔ x = y), symmetry
(d(x, y) = d(y, x)), and triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). For ex-
ample, a vector space is a particular case of metric space, where the elements are
tuples of real numbers and the distance function belongs to the Ls family, de-

fined as Ls ((x1, . . . , xk), (y1, . . . , yk)) =
(∑

1≤i≤k |xi − yi|s
)1/s

. For example, L2

is the Euclidean distance.
One of the typical queries that can be posed to retrieve similar objects from

a database is a range query, which retrieves all the elements within distance r to
a query object q. An easy way to answer range queries is to make an exhaustive
� Work supported by the Millenium Nucleus Center for Web Research, Grant P01-
029-F, Mideplan, Chile.

A.H.F. Laender and A.L. Oliveira (Eds.): SPIRE 2002, LNCS 2476, pp. 284–297, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

http://www.springerlink.com/content/?k=Probabilistic+Proximity+Searching+Algorithms
http://kops.ub.uni-konstanz.de/volltexte/2009/6992/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-69928

285

search on the database, but this turns out to be too expensive for real-world
applications, because the distance d is considered expensive to compute. Think,
for example, of a biometric device that computes the distance between two fin-
gerprints.

Proximity searching algorithms build an index of the database and perform
range queries using this index, avoiding the exhaustive search. Many of these
algorithms are based on dividing the space in partitions or zones as compact as
possible. Each zone stores a representative point, called the center, and a few
extra data that permit quickly discarding the entire zone at query time, without
measuring the actual distance from the elements of the zone to the query object,
hence saving distance computations. Other algorithms are based in the use of
pivots, which are distinguished elements from the database and are used together
with the triangle inequality to filter out elements of the database at query time.

An inherent problem of proximity searching in metric spaces is that the
search becomes more difficult when the “intrinsic” dimension of the metric space
increases, which is known as the curse of dimensionality. The intrinsic dimension
of a metric space is defined in [6] as µ2/2σ2, where µ and σ2 are the mean and the
variance of the distance histogram of the metric space. This is coherent with the
usual vector space definition. Analytical lower bounds and experiments [6] show
that all proximity searching algorithms degrade their performance systematically
as the dimension of the space grows. For example, in the case of vector space
there is no technique that can reasonably cope with dimension higher than 20 [6].
This problem is due to two possible reasons: high dimensional metric spaces
have a very concentrated distance histogram, which gives less information for
discarding elements at query time; on the other hand, in order to retrieve a fixed
fraction of the elements of the space it is necessary to use a larger search radius,
because in high dimensional spaces the elements are “far away” from each other.

Probabilistic algorithms are acceptable in most applications that need to
search in metric spaces, because in general the modelization as a metric space
already carries some kind of relaxation. In most cases, finding some close ele-
ments is as good as finding all of them.

There exists a pivot-based probabilistic proximity searching algorithm which
largely improves the search time at the cost of missing few elements [5]. On the
other hand, it is known that compact partitioning algorithms perform better
than pivot-based algorithms in high dimensional metric spaces [6] and they have
lower memory requirements.

In this paper we present several probabilistic algorithms for proximity search-
ing based on compact partitions, which alleviate in some way the curse of the
dimensionality. We also present experimental results that show that these al-
gorithms perform better than probabilistic algorithms based on pivots, and the
latter needs much more memory space to beat the former when the dimension
of the space is very high.

286

2 Basic Concepts

Let (X, d) be a metric space and U ⊆ X the set of objects or database, with
|U| = n. There are two typical proximity searching queries:

– Range query. A range query (q, r), q ∈ X, r ∈ R+, reports all elements that
are within distance r to q, that is (q, r) = {u ∈ U, d(u, q) ≤ r}.

– k nearest neighbors (k-NN). Reports the k elements from U closer to q, that
is, returns the set C ⊆ U such that |C| = k and ∀x ∈ C, y ∈ U−C, d(x, q) ≤
d(y, q).

The volume defined by (q, r) is called the query ball, and all the elements
inside it are reported. Nearest neighbors queries can be implemented using range
queries.

There exist two classes of techniques used to implement proximity searching
algorithms: based on pivots and based on compact partitions.

2.1 Pivot-Based Algorithms

These algorithms select a number of “pivots”, which are distinguished elements
from the database, and classify all the other elements according to their distance
to the pivots.

The canonical pivot-based algorithm is as follows: given a range query (q, r)
and a set of k pivots {p1, . . . , pk}, pi ∈ U, by the triangle inequality it follows for
any x ∈ X that d(pi, x) ≤ d(pi, q) + d(q, x), and also that d(pi, q) ≤ d(pi, x) +
d(x, q). From both inequalities it follows that a lower bound on d(q, x) is d(q, x) ≥
|d(pi, x) − d(pi, q)|. The elements u ∈ U of interest are those that satisfy d(q, u) ≤
r, so one can exclude all the elements that satisfy |d(pi, u) − d(pi, q)| > r for some
pivot pi (exclusion condition), without actually evaluating d(q, u).

The index consists of the kn distances d(u, pi) between every element and
every pivot. Therefore, at query time it is necessary to compute the k distances
between the pivots and the query q in order to apply the exclusion condition.
Those distance calculations are known as the internal complexity of the algo-
rithm, and this complexity is fixed if there is a fixed number of pivots. The list
of elements {u1, . . . , um} ⊆ U that cannot be excluded by the exclusion condi-
tion, known as the element candidate list, must be checked directly against the
query. Those distance calculations d(ui, q) are known as the external complexity
of the algorithm. The total complexity of the search algorithm is the sum of
the internal and external complexity, k + m. Since one increases and the other
decreases with k, it follows that there is an optimum k∗ that depends on the tol-
erance range r of the query. In practice, however, k∗ is so large that one cannot
store the k∗n distances, and the index uses as many pivots as space permits.

Examples of pivot-based algorithms [6] are BK-Tree, Fixed Queries Tree
(FQT), Fixed-Height FQT, Fixed Queries Array, Vantage Point Tree (VPT),
Multi VPT, Excluded Middle Vantage Point Forest, Approximating Eliminating
Search Algorithm (AESA) and Linear AESA.

287

2.2 Algorithms Based on Compact Partitions

These algorithms are based on dividing the space in partitions or zones as com-
pact as possible. Each zone stores a representative point, called the center, and
a few extra data that permit quickly discarding the entire zone at query time,
without measuring the actual distance from the elements of the zone to the
query object. Each zone can be partitioned recursively into more zones, induc-
ing a search hierarchy. There are two general criteria for partitioning the space:
Voronoi partition and covering radius.

Voronoi partition criterion. A set of m centers is selected, and the rest of the
elements are assigned to the zone of their closest center. Given a range query
(q, r), the distances between q and the m centers are computed. Let c be the
closest center to q. Every zone of center ci �= c which satisfies d(q, ci) > d(q, c)+2r
can be discarded, because its Voronoi area cannot have intersection with the
query ball. Figure 1 (left) shows an example of the Voronoi partition criterion.
For q1 the zone of c4 can be discarded, and for q2 only the zone of c3 must be
visited.

Covering radius criterion. The covering radius cr(c) is the maximum distance
between a center c and an element that belongs to its zone. Given a range query
(q, r), if d(q, ci)− r > cr(ci) then zone i cannot have intersection with the query
ball and all its elements can be discarded. In Figure 1 (right), the query ball of q1
does not have intersection with the zone of center c, thus it can be discarded. For
the query balls of q2 and q3, the zone cannot be discarded, because it intersects
these balls.

Generalized-Hyperplane Tree [14] is an example of an algorithm that uses
the Voronoi partition criterion. Examples of algorithms that use the covering
radius criterion are Bisector Trees (BST) [11], Monotonous BST [13], Voronoi
Tree [8], M-Tree [7] and List of Clusters [4]. Also, there exist algorithms that use
both criteria, for example Spatial Approximation Tree (SAT) [12] and Geometric

u10

u13
c1

u4

c3

u12
c2

u7

u1

u15

u14
c4

u6

u8

q1

u11

q2

q
1

q
2

q
3

r

r

r

c

cr(c)

Fig. 1. Voronoi partition criterion (left) and covering radius criterion (right)

288

Near-neighbor Access Tree [2]. Of all these algorithms, two of the most efficient
are SAT and List of Clusters, so now we explain briefly how these algorithms
work.

2.3 Spatial Approximation Tree

The SAT [12] is based on approaching the query spatially rather than dividing
the search space, that is, start at some point in the space and get closer to the
query, which is done only via “neighbors”. The SAT uses both compact partition
criteria for discarding zones, it needs O(n) space, reasonable construction time
O(n log2(n)/ log(log(n))) and sublinear search time O(n1−Θ(1/ log(log(n)))) in high
dimensional spaces.

Construction of SAT is as follows: an arbitrary object a ∈ U is chosen as the
root node of the tree (note that since there exists only one object per node, we
use both terms interchangeably in this section). Then, we select a suitable set
of neighbors N(a) such that ∀u ∈ U, u ∈ N(a) ⇔ ∀v ∈ N(a) − {u}, d(u, v) >
d(u, a). Note that N(a) is defined in terms of itself in a non-trivial way, and that
multiple solutions fit the definition. In fact, finding the minimal set of neighbors
seems to be a hard combinatorial optimization problem [12]. A simple heuristic
that works well in most cases considers the objects in U−{a} in increasing order
of their distance from a, and adds an object x to N(a) if x is closer to a than
to any object already in N(a). Next, we put each node in U − N(a) into the
bag of it closest element of N(a). Also, for each subtree u ∈ N(a) we store its
covering radius cr(u). The process is repeated recursively in each subtree using
the elements of its bag. Figure 2 (left) shows an example of a SAT.

This construction process ensures that if we search for an object q ∈ U

by spatial approximation, we will find that element in the tree because we are
repeating exactly what happened during the construction process, i.e., we enter
into the subtree of the neighbor closest to q, until we reach q (in fact, in this
case we are doing an exact search because q is present in the tree). For general
range queries (q, r), instead of simply going to the closest neighbor, we first
determine the closest neighbor c of q among {a}∪N(a). Then, we enter into all
neighbors b ∈ N(a) such that d(q, b) ≤ d(q, c) + 2r. During the search process,
all the nodes x such that d(q, x) ≤ r are reported. The search algorithm can be
improved a bit more: when we search for an element q ∈ U (exact search), we
follow a single path from the root to q. At any node a′ in this path, we choose
the closest to q among {a′} ∪N(a′). Therefore, if the search is currently at tree
node a, we have that q is closer to a than to any ancestor a′ of a and also any
neighbor of a′. Hence, if we call A(a) the set of ancestors of a (including a), we
have that, at search time, we can avoid entering any element x ∈ N(a) such
that d(q, x) > 2r + min{d(q, c), c ∈ {a′} ∪ N(a′), a′ ∈ A(a)}. This condition is
a stricter version of the original Voronoi partition criterion. The covering radius
stored for all nodes during the construction process can be used to prune the
search further, by not entering into subtrees such that d(q, b) − r > cr(b).

289

2.4 List of Clusters

The List of Clusters [4] is a list of “zones”. Each zone has a center and stores its
covering radius. A center c ∈ U is chosen at random, as well as a radius rp, whose
value depends on whether the number of elements per compact partition is fixed
or not. The center ball of (c, rp) is defined as (c, rp) = {x ∈ X, d(c, x) ≤ rp}. We
then define I = U∩(c, rp) as the bucket of “internal” objects lying inside (c, rp),
and E = U − I as the rest of the elements (the “external” ones). The process is
repeated recursively inside E. The construction process returns a list of triples
(ci, rpi, Ii) (center, radius, internal bucket), as shown in Figure 2 (right).

This data structure is asymmetric, because the first center chosen has pref-
erence over the next centers in case of overlapping balls, as shown in Figure 2
(right). With respect to the value of the radius rp of each compact partition
and the selection of the next center in the list, there exist many alternatives.
In [4] it is shown experimentally that the best performance is achieved when the
compact partition has a fixed number of elements, so rp becomes simply cr(c),
and the next center is selected as the element which maximizes the distance sum
to the centers previously chosen. The brute force algorithm for constructing the
list takes O(n2/m), where m is the size of the compact partition, but it can
be improved using auxiliary data structures to build the partitions. For high
dimensional metric spaces, the optimal m is very low (we used m = 5 in our
experiments).

For a range query (q, r), d(q, c) is computed, reporting c if it is within the
query ball. Then, we search exhaustively inside I only if d(q, c) − cr(c) ≤ r
(covering radius criterion). E is processed only if cr(c) − d(q, c) < r, because of
the asymmetry of the data structure. The search cost has a form close to O(nα)
for some 0.5 < α < 1.0 [4].

u13

u4

u2

u12
u3

u7

u15

u6

u8

u9
u14

u11

u1
u5

u10

(c , r) (c , r) (c , r)
1 1 2 2 3 3

I I I

E E E

r

r
1

r

c

c

2

3

c
1

3

2

Fig. 2. Example of SAT (left) and List of Clusters (right)

290

3 Probabilistic Algorithms for Proximity Searching

All the algorithms seen in the previous section are exact algorithms, which re-
trieve exactly the elements of U that are within the query ball of (q, r). In this
work we are interested in probabilistic algorithms, which relax the condition of
delivering the exact solution. As explained before, this is acceptable in most
applications.

In [5] they present a probabilistic algorithm based on “stretching” the triangle
inequality. The idea is general, but they applied it to pivot based algorithms.
Their analysis shows that the net effect of the technique is to reduce the search
radius by a factor β, and that that reduction is larger when the search problem
becomes harder, i.e., the intrinsic dimension of the space becomes high. Even
with very little stretching, they obtain large improvements in the search time
with low error probability. The factor β can be chosen at search time, so the index
can be built beforehand and later one can choose the desired level of accurateness
and speed of the algorithm. As the factor is used only to discard elements, no
element closer to q than r/β can be missed during the search. In practice, all
the elements that satisfy |d(pi, u) − d(pi, q)| > r/β for some pi are discarded.
Figure 3 illustrates how the idea operates. The exact algorithm guarantees that
no relevant element is missed, while the probabilistic one stretches both sides of
the ring and can miss some elements.

4 Our Approach

We focus in probabilistic algorithms for high dimensional metric spaces, where
for exact searching it is very difficult to avoid the exhaustive search regardless
of the index and search algorithm used.

It is well known that compact partition algorithms perform better than pivot-
based algorithms in high dimensional metric spaces [6], and that the latter need

p q

u

p q

u

d(p,q)+r/β

d(p,q)-r/ β

d(p,q)+r

d(p,q)-r

r r

Exact Probabilistic

Fig. 3. How the probabilistic algorithm based on pivots works

291

more space requirements, i.e., many pivots, to reach the performance of the for-
mer. For this reason, it is interesting to develop probabilistic algorithms based
on compact partitions, with the hope that these algorithms could have at least
the same performance than pivot-based probabilistic algorithms, with less mem-
ory requirements. It is worth noting that the index data structure used with the
probabilistic search algorithm is the same used with the exact search algorithm.

We propose two techniques: the first based on incremental searching and the
last based on ranking zones.

4.1 Probabilistic Incremental Search

This technique is an adaptation of the incremental nearest neighbor search algo-
rithm [10]. This incremental search traverses the search hierarchy defined by the
index (whatever it be) in a “best-first” manner. At any step of the algorithm, it
visits the “element” (zone or object) with the smallest distance from the query
object among all unvisited elements in the search hierarchy. This can be done
by maintaining a priority queue of elements organized by their maximum lower
bound distance known to the query object at any time.

In [10] is proved that this search is range-optimal, that is, it obtains the kth

nearest neighbor, ok, after visiting the same search hierarchy elements as would
a range query with radius d(q, ok) implemented with a top-down traversal of the
search hierarchy.

The incremental nearest neighbor search can be adapted to answer range
queries. We report all objects u that satisfy d(q, u) ≤ r, but we stop when it is
dequeued an element with lower bound l > r (global stopping criterion). It is
not possible to find another object within the query ball among the unexplored
elements, because we have retrieved them ordered by their lower bounded dis-
tances to q. An equivalent method is to enqueue elements only if they have
a lower bound l ≤ r, in which case the queue must be processed until it gets
empty.

The idea of the probabilistic technique based on the incremental search is to
fix in advance the number of distance computations allowed to answer a range
query. Using the adapted incremental search for range queries, if the search is
pruned after we make the maximum number of distance computations allowed,
then we obtain a probabilistic algorithm in the sense that some relevant elements
can be missed. However, as the search is performed range-optimally, one can
presume that the allotted distance computations are used in an efficient way.

Figure 4 depicts the general form of the probabilistic incremental search.
Index is the data structure that indexes U, q is the query object, e is an element
of the index and dLB(q, e) is a lower bound of the real distance between q and all
the elements rooted in the search hierarchy of e, where dLB(q, e) = d(q, e) if e is
an object of U, and dLB(q, e) ≥ dLB(q, e′) if e′ is an ancestor of e in the hierarchy.
For example, in the List of Clusters, if e is a child of a and belongs to the zone of
center c then dLB(q, e) = max(d(q, c)−cr(c), dLB(q, a)); in SAT if e is a child of a
then dLB(q, e) = max(d(q, a)− cr(a), (d(q, e)−min{d(q, c), c ∈ {a′}∪N(a′), a′ ∈
A(a)})/2, dLB(q, a)). The maximum number of distance computations allowed

292

to perform the search is denoted by quota. Once quota has been reached, no more
elements are enqueued. Note that the only stopping criterion of the algorithm is
that the queue gets empty, even if the work quota has been reached, because for
all the objects enqueued their distance to q are already known. The syntax of
the enqueue procedure is Enqueue(queue, element, lower bound distance).
The dequeue procedure recovers the element e and its lower bound distance.
Variable cost indicates the number of distance computations needed to process
the children of element e in the search hierarchy. In SAT, cost is equal to N(e);
in List of Clusters, cost is equal to m.

4.2 Ranking of Zones

The probabilistic incremental search aims at quickly finding elements within the
query ball, before the work quota gets exhausted. As the maximum number
of distance computations is fixed, the total search time is also bounded. This
technique can be generalized to what we call ranking of zones, where the idea is
to sort the zones in order to favor the most promising and then to traverse the
list until we use up the quota. The probabilistic incremental search can be seen
as a ranking method, where we first rank all the zones using dLB(q, e) and then
work until we use up the quota. However, this ranking does not have to be the
best zone ranking criterion.

The sorting criterion must aim at quickly finding elements that are close
to the query object. As the space is partitioned into zones, we must sort these
zones in a promising search order using the information given by the index data
structure. For example, in List of Clusters the only information we have is the
distances from q to each center and the covering radius of each zone. One not

ProbIncrSearch(q, Index, quota)

1. Queue ← ∅ // Priority queue

2. e ← root of Index
3. counter ← 0 // Number of distances computed

4. Enqueue(Queue, e, 0)

5. while not IsEmpty(Queue) do
6. (e, dLB(q, e)) ← Dequeue(Queue)
7. if e is an object then report e
8. else
9. cost ← cost to process children of e
10. if counter + cost ≤ quota
11. for each child element e′ of e do
12. Compute dLB(q, e′)
13. if dLB(q, e′) ≤ r then
14. Enqueue(Queue, e′, max(dLB(q, e), dLB(q, e′)))
15. counter ← counter + cost

Fig. 4. Probabilistic incremental search algorithm

293

only would like to search first the zones closer to the query, but also to search
first the zones that are more compact, that is, the zones which have “higher
element density”. In spite of the fact that it is very difficult to define the volume
of a zone in a general metric space, we assume that if the zones have the same
number of elements, as in the best implementation of List of Clusters, then the
zones with smaller covering radii have higher element density than those with
larger covering radii.

We have tested several zone ranking criteria:

– the distance from q to each zone center, d(q, c), closest first.
– the covering radius of each zone, cr(c), in increasing order.
– d(q, c) + cr(c), the distance from q to the farthest element in the zone.
– d(q, c) · cr(c).
– d(q, c) − cr(c), the distance from q to the closest element in the zone.
– β(d(q, c) − cr(c)).

The first two techniques are the simplest ranking criteria. The next two
techniques aim to search first in those zones that are closer to q and also are
compact. The next technique, d(q, c) − cr(c), is equivalent to the incremental
search technique. The last technique is equivalent to reducing the search radius
by a factor β as in [4], where 1/β ∈ [0..1].

If factor β is fixed, then this technique is equivalent to the probabilistic
incremental search, because the ordering is the same in both cases. However,
instead of using a constant factor β ∈ [0..1], we can use a dynamic factor of the
form β = 1/(1.0− cr(c)

mcr), where mcr is the maximum size of the covering radius
of all zones. This implies that we reduce more the search radius as the covering
radius of a particular zone is greater. A special case is when cr(c) = mcr. In this
case we define dLB(q, e) = ∞ for all objects in the zone of center c.

Note that d(q, c) − cr(c) is the only criterion that can be used with the
incremental search technique, because only with this criterion is guaranteed
that dLB(q, e) ≥ dLB(q, e′) for any element e′ ancestor of e.

5 Experimental Results

We use the SAT and List of Clusters to implement the probabilistic techniques
described in Section 4, but with SAT we only implement the probabilistic incre-
mental search because in this data structure every node is a center, so it takes
O(n) time to compute the distances between the query and every center. We
have tested the probabilistic techniques on a synthetic set of random points in
a k-dimensional vector space treated as a metric space, that is, we have not used
the fact that the space has coordinates, but treated the points as abstract objects
in an unknown metric space. The advantage of this choice is that it allows us to
control the exact dimensionality we are working with, which is very difficult to
do in general metric spaces. The points are uniformly distributed in the unitary
cube, our tests use the L2 (Euclidean) distance, the database size is n = 10, 000

294

4000

5000

6000

7000

8000

9000

10000

0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved

128 dimensions, retrieving 0.01% of the database

List of Clusters: prob. incr. search
List of Clusters: dist(q,c)

List of Clusters: cr(c)
List of Clusters: dist(q,c)+cr(c)
List of Clusters: dist(q,c)*cr(c)
List of Clusters: dynamic beta

SAT: prob. incr. search

Fig. 5. Probabilistic List of Clusters and SAT in a vector space of dimension
128

and we perform range queries returning 0.01% of the total database size, taking
an average from 1,000 queries. The techniques were tested using a space of di-
mension 128, where no known exact algorithm can avoid an exhaustive search
to answer useful range queries.

Figure 5 shows the results of the probabilistic List of Clusters and SAT.
The best technique, in this case, is the ranking zone method with criterion
d(q, c) + cr(c).

Figure 6 shows a comparison of the probabilistic List of Clusters and the
probabilistic pivot-based algorithm, implemented in its canonical form (see Sec-
tion 2.1 and 3). In this experiment, the probabilistic List of Clusters performs
almost equal than the pivot-based algorithm with 256 pivots when more than
97% of the result is actually retrieved. The pivot-based techniques are slightly
better when the pivots are selected using the “good pivots” criterion [3]. How-
ever, the size of the List of Clusters index (0.12 Mb) is about 82 times less than
the size of the pivot-based index with 256 pivots (9.78 Mb) and about 5 times
less than the size of the pivot-based index with 16 pivots (0.62 Mb). Experiments
with different search radius and database size obtained similar results to those
presented here.

One of the most clear applications of metric space techniques to Information
Retrieval is the task of finding documents relevant to a query (which can be a
set of terms or a whole document itself) [1]. Documents (and queries) are seen as
vectors, where every term is a coordinate whose value is the weight of the term
in that document. The distance between two documents is the angle between
their vectors, so documents sharing important terms are seen as more similar.
Documents closer to a query are considered to be more relevant to the query.
Hence the task is to find the elements of this metric space of documents which
are closest to a given query.

295

4000

5000

6000

7000

8000

9000

10000

0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Fraction of the result actually retrieved

128 dimensions, retrieving 0.01% of the database

16 pivots, good
256 pivots, good

16 pivots, random
256 pivots, random

List of Clusters: d(q,c)+cr(c)

Fig. 6. Comparison among probabilistic algorithms in a vector space of dimen-
sion 128

Despite of this clear link, metric space techniques have seldom been used
for this purpose. One reason is that the metric space of documents has a very
high dimension, which makes any exact search approach unaffordable. This is
a case where probabilistic algorithms would be of great value, since the definition
of relevance is fuzzy and it is customary to permit approximations. Figure 7
shows a result on a subset of the TREC-3 collection [9], comparing the pivot-
based algorithm with the ranking zone method using the dynamic beta criterion
(m = 10 for the List of Clusters, retrieving on average 0.035% of the database per
query). The result shows that our probabilistic algorithms can handle better this

0

5000

10000

15000

20000

25000

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

D
is

ta
nc

es
 c

om
pu

ta
tio

ns

Fraction of the result actually retrieved

24.960 documents, retrieving 0.035% of the database

16 pivots, random
64 pivots, random

128 pivots, random
dynamic beta

Fig. 7. Comparison among probabilistic algorithms in a document space

296

space, retrieving more than 99% of the relevant objects and traversing merely
a 17% of the database, using much less memory, approximately 16 times less than
the index with 64 pivots, hence becoming for the first time a feasible metric space
approach to this long standing problem.

6 Conclusions

We have defined a general probabilistic technique based on the incremental near-
est search, that allows us to perform time-bounded range search queries in metric
spaces with a high probability of finding all the relevant elements. Our experi-
mental results show in both synthetic and real-world examples that our technique
performs better than the pivot-based probabilistic algorithm in high dimensional
metric spaces, as the latter needs much more memory space to be competitive.

Future work involves testing more zone ranking criteria. Also, we are inter-
ested in finding a formal model that allows us to predict how well will perform
an arbitrary index with our probabilistic techniques.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley, 1999. 294

[2] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference on
Very Large Databases (VLDB’95), pages 574–584, 1995. 288

[3] B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proxim-
ity searching in metric spaces. In Proc. of the XXI Conference of the Chilean
Computer Science Society (SCCC’01), pages 33–40. IEEE CS Press, 2001. 294

[4] E. Chávez and G. Navarro. An effective clustering algorithm to index high di-
mensional metric spaces. In Proc. 7th South American Symposium on String
Processing and Information Retrieval (SPIRE’00), pages 75–86. IEEE CS Press,
2000. 287, 289, 293

[5] E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In
Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01),
LNCS 2153, pages 147–160, 2001. 285, 290

[6] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın. Proximity searching
in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001. 284, 285, 286,
290

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for
similarity search in metric spaces. In Proc. of the 23rd Conference on Very Large
Databases (VLDB’97), pages 426–435, 1997. 287

[8] F. Dehne and H. Noltemeier. Voronoi trees and clustering problems. Information
Systems, 12(2):171–175, 1987. 287

[9] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third
Text REtrieval Conference (TREC-3), pages 1–19, 1995. NIST Special Publication
500-207. 295

[10] G. Hjaltason and H. Samet. Incremental similarity search in multimedia
databases. Technical Report TR 4199, Department of Computer Science, Uni-
versity of Maryland, November 2000. 291

297

[11] I. Kalantari and G. McDonald. A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering, 9(5):631–634, 1983.
287

[12] G. Navarro. Searching in metric spaces by spatial approximation. The Very Large
Databases Journal (VLDBJ), 2002. To appear. Earlier version in SPIRE’99, IEEE
CS Press. 287, 288

[13] H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous Bisector∗ Trees –
a tool for efficient partitioning of complex schenes of geometric objects. In Data
Structures and Efficient Algorithms, LNCS 594, pages 186–203. Springer-Verlag,
1992. 287

[14] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 40:175–179, 1991. 287

	Probabilistic Proximity Searching Algorithms Based on Compact Partitions
	Introduction
	Basic Concepts
	Pivot-Based Algorithms
	Algorithms Based on Compact Partitions
	Spatial Approximation Tree
	List of Clusters

	Probabilistic Algorithms for Proximity Searching
	Our Approach
	Probabilistic Incremental Search
	Ranking of Zones

	Experimental Results
	Conclusions

	Text1: First publ. in: Lecture notes in computer science, No. 2476 (2002), pp. 284-297
	Text2:
	Text3: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-69928URL: http://kops.ub.uni-konstanz.de/volltexte/2009/6992/

