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Abstract. This paper introduces and formalizes a new variant of Timed
Automata, called Time Labeled Scheduling Automata. A Time Labeled
Scheduling Automaton is a single clock implementation model expressing
globally the time constraints that a system has to meet. An algorithm
is presented to show how a Time Labeled Scheduling Automaton can be
synthesized from a minimal reachability graph derived from a high-level
specification expressing the composition of different time constraints. It
is shown how the reachability graph may be corrected before synthesiz-
ing the Time Labeled Scheduling Automaton to remove all its poten-
tially inconsistent behaviors. Current applications of the model are the
scheduling of interactive multimedia documents and a simple illustration
is given in this area.
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1 Introduction

Starting from a high-level specification of a time-dependent system that explic-
itly expresses a composition of time constraints, our purpose is to derive an
operational specification of that system based on a new temporal model, called
a Time Labeled Scheduling Automaton (TLSA) for scheduling.

The TLSA model has been designed within the framework of the RT-Lotos
project at LAAS-CNRS, and the associated tools have been integrated within the
rtl (RT-Lotos Laboratory) tool environment. It is assumed that the system
high-level specification is written in RT-Lotos [§], but results are also applicable
to other formalisms that can express composition of time constraints, like timed
automata [3], temporal extensions of Petri nets [I7] and process algebra [T1].

The main purpose of the paper is to introduce the TLSA model and to show
how a TLSA can be synthesized from a (minimal) reachability graph expressing
the global behavior of a specification. A TLSA is a variant of classical timed
automata intended to express globally the time constraints that a system has to
meet. It is not a specification model, but rather an operational implementation
model using a single clock.

Performing the synthesis of a TLSA from a reachability graph presents a ma-
jor advantage: it allows to take into account the results of the reachability graph
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analysis at the level of the TLSA synthesis. Thus, when the verification process
has detected that a reachability graph features inconsistent behaviors (a behav-
ior is said to be inconsistent if it leads to a deadlock state, i.e. a state where
no transition is enabled), it is easy to eliminate these inconsistencies from the
reachability graph just by removing the paths leading to the deadlock states, and
then to generate the TLSA from the corrected reachability graph. Thus, a consis-
tent operational model of the system may be obtained without having to modify
the high-level specification. This approach has been completely automated, and
it has proven to be very powerful for the design and scheduling of interactive
multimedia presentations [13[14/15]. It will be illustrated in the next paragraph
on a simple example.

The paper is organized as follows: Section B provides the intuition of the
TLSA model and its use, based on an example derived from the multimedia
area. Section 3 formalizes the Timed Labeled Scheduling Automaton model and
Section Hl proposes an algorithm to derive a TLSA from a (minimal) reachability
graph. Finally, Section [ reviews some current work in this area, and Section
draws some conclusions.

2 Intuition through an Example

This example deals with the specification and scheduling of interactive multi-
media documents. Within this framework, a formal method is used to describe
the temporal constraints characterizing both the presentation of the media com-
posing a document and the interactions with the user, as well as the global
synchronization constraints among media defined by the author of the docu-
ment. The formal specification, derived from the high-level authoring model,
consists essentially in a composition of simple (RT-Lotos) processes describing
elementary time constraints. Reachability analysis is then performed on the for-
mal specification to check the temporal consistency of the specification. Different
variations of this temporal consistency property have been defined, depending
on whether the actions leading to potential deadlock states are controllable or
not (see [IBJI6] for details).

Consider the example depicted in Fig.[[h. The author of this multimedia
scenario wishes to present three media called A, B and C respectively. The pre-
sentation durations of these media are respectively defined by the following time
intervals: [3,6], [3,5] and [3,8]. This means that, for example, the presentation of
media A should last at least 3 seconds and 6 seconds at the most. Thus, from
the author’s perspective, any value belonging to the time interval is acceptable.

Moreover, the author expresses the following synchronization constraints:

—_

. the presentation of media A and B should end simultaneously;

. the presentation of media B and C should start simultaneously;

3. the start of this multimedia scenario is determined by the start of A, and its
end is determined either by the end of A and B, or by the end of C.

[\]

The RT-Lotos specification is presented in Fig.[[b, and the associated (min-
imal) reachability graph obtained with the rtl tool is presented in Fig.2h.
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Fig. 1. (a) Multimedia scenario and (b) RT-Lotos specification

The minimal reachability graph allows the temporal consistency of the mul-
timedia scenario to be analyzed. The scenario is said to be potentially consistent,
if there exists at least one path starting with i(sA) (action i(sA) characterizes
the start of medium A presentation, hence the start of the scenario presentation)
and leading to the end of the scenario presentation (either the occurrence of ac-
tions i(eC) or i(eAB)). Looking at Fig.Ba, the scenario is indeed potentially
consistent.

Analyzing the high-level requirements, one may note that the start of the pre-
sentation of B and C has been left completely unspecified regarding the start of
A. On such a simple example, it is easy to realize that if the start of media B and
C is triggered too late with respect to the start of A, some time constraints will
never be met (for instance, the constraint that A and B should finish simultane-
ously). This characterizes potentially inconsistent behaviors in the presentation
of the multimedia scenario, which are represented in the reachability graph by
the paths starting from the initial state and leading to deadlock states (see, for
instance, state denoted 4-(inf 3) at the bottom of Fig.Bh).

Deadlock states are not desirable and therefore, one wants to eliminate them
by removing from the reachability graph all the paths starting from the initial
state and leading to these deadlock states. Deadlock states are states without
outgoing edges, which are not final states. Edges leading to those deadlock states
and nowhere elsewhere are called inconsistent paths and removed. By removing
all the inconsistent paths from the reachability graph (see Fig.Bh) we ensure the
scheduling of a consistent scenario applying the concept of controllability, that
is, proposing a valid temporal interval inside which the scenario is consistent
[T3/14].

Fig.2b represents the TLSA derived from the reachability graph of Fig.B2h,
following the algorithm presented in Section @l This TLSA cannot be used as a
basis for scheduling the multimedia scenario, since it features the same inconsis-
tent behaviors as its associated reachability graph. For example, let us assume
the behavior where actions i(sA), i(sBC), i(eC) occur respectively at times
to =0, t; = 5 and t3 = 6, leading the scenario in state 4 of Fig.Zb. It can be
note that, in this state, there is no transition enabled, since the two enabling
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Fig. 2. (a) Minimal Reachability Graph and (b) associated TLSA

conditions (see the formal semantics of the TLSA in the next paragraph) feature
either 0 <t; < 1or 1 <t; <3 whereas t; = 5.

Fig.[Bb represents the TLSA derived from the reachability graph of Fig.Bh.
This TLSA allows implementation of a consistent scheduling of the multimedia
scenario, where the presentation of media B and C should begin no later than 3
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Fig. 3. (a) Consistent Minimal Reachability Graph and (b) associated TLSA

seconds after the beginning of A (see firing condition 0 < t; < 3 defined for the
transition between states 1 and 2). This information appears explicitly at the
level of a transition of the TLSA, whereas it is hidden in the state characterization
of the reachability graph.

Therefore, the proposed approach consists in the three following steps:

1. using RT-Lotos for expressing a composition of time constraints,

2. deriving the reachability graph of the RT-Lotos specification and removing
all its inconsistent behaviors to obtain a consistent reachability graph,

3. performing the synthesis of the TLSA from the consistent reachability graph.

The TLSA may then be used for scheduling purposes, in the sense that it is
an implementation model that defines when actions should occur to meet the
initial composition of time constraints.

Semantics of the TLSA model will be presented in Section Bland the algorithm
for deriving a TLSA from a reachability graph will be described in Section [l

3 Time Labeled Scheduling Automata

3.1 Introduction

Timed automata [3] have been proposed to model finite-state real-time systems.
A timed automaton has a finite set of control states and a finite number of
clocks. All clocks proceed at the same rate and measure the amount of time that
has elapsed since they were started or reset. Each transition of the system might
reset some of the clocks, and features an associated enabling condition expressed
as a constraint on the values of the clocks.

A TLSA enjoys some specific features that differentiate it from classical timed
automata. A TLSA has as many clocks as there are control states in the automaton



134 Christophe Lohr and Jean-Pierre Courtiat

these clocks being called timers. Each timer measures the time during which
the automaton remains in a control state. No explicit function is defined to
determine when timers should be started or reset. Indeed, the timer associated
with a control state is reset when the automaton enters the control state, and
its current value is frozen when the automaton leaves the control stat. Two
timed conditions are associated with each transition of the automaton:

1. the firing window (denoted W) that defines the temporal slot during which
the transition may be fired. It takes the form of an inequality to be satisfied
by the timer associated with the transition input control state.

2. the enabling condition (denoted K') that defines the temporal constraints to
be satisfied to fire the transition. It is expressed as a conjunction of inequal-
ities to be satisfied by a subset of timers excluding the timer associated with
the input control state of the transition.

Note: W, the temporal firing window, relates only to the current timer. Intu-
itively, W expresses the time during which the system is allowed to stay in the
current control state. Note also that K, the enabling condition, relates only to
past timers and expresses which transitions are enabled with respect to the past
behavior of the system.

3.2 Formal Definition of a Time Labeled Scheduling Automaton

Let L be a set of action labels. Let D = {t € Q | ¢ > 0} the time domain,
Dy =D U{0} and D§° = Dy U {c0}.

Let L denote the “undefined” value, and Dy = Do U {L}. By definition, we
state that L +6 =1, L — ¢ = L for any § € Dg°.

Let Tset = {t;]i € [0,n — 1]} be a set of timers, with t; € Dy, . Within
this context, a timed condition is a conjunction of inequalities of the form m <
t; < M where m, M are linear expressions of constants (in D§°) and timers t;
(tj S Tset7 ] 7é Z) and <€ {<a <}

Let = (u% ..., u""1) € DZ| be the value of timers ¢; with i € [0,n—1], and
K a timed condition defined on a subset of timers ¢;. Notation p F K indicates
that all inequalities of K are true when replacing timers ¢; by their values u'.

Definition 1 (Time Labeled Scheduling Automaton).
A Time Labeled Scheduling Automaton is a 3-tuple (S, E, sg) where:

— S ={s0,...,8n—1} 15 a finite set of control states;

— E is a finite set of transitions of the form (s;,s;, W, K,a), where s;,s; € S
are the source and destination control states of the transition, W and K are
timed conditions, a € L is a labeling action

— 8p 18 the initial control state.

! For this reason, we said previously that a TLSA is a single clock model, since, in
any control state, there is one and only one running timer.
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The firing window W of a transition (s;,s;, W, K, a) is a timed condition de-
fined as an inequality of the form m < t; < M where m, M are linear expressions
of constants and timers ¢y (tx € Tset, k # i). If either m or M is equal to L
when replacing timers t; by their value p*, then we assume & W.

The enabling condition K of a transition (s;, s;, W, K, a) is a timed condition
defined as a conjunction of inequalities of the form Z = (m < t, < M), where
k # i, and m, M are linear expressions of constants and timers ¢; (¢; € Tset,
Il # k and I # 4). If t; is equal to L, then we assume u F Zj; furthermore, if
either m or M is equal to L when replacing timers ¢; by their value x!, then we
assume p F 7.

These rules are illustrated in Fig.[l

Assuming that we are in control state 1, transition 1 -+ 3
is fired inside temporal window 0 <= t; <= 2. Coming from

control state 1, transition 3 45 5 is not enabled, because

to = L and then W is false (see the definition of the fir-

ing window). Looking at enabling condition X of transition

s \Veste? 3 %5 4, the first inequality is satisfied (0 <= t; <= 2), as

=25 <255 well as the second one, since to = L (see the definition of the

enabling condition). Transition 3 —+ 4 will then be fired at
time t3 = 3 — t1.

Fig. 4. Illustrations of the firing rules

A labeled transition system LT'S(TLSA) is associated with each time labeled
automaton T'LSA. A state (s, u) of LT'S(TLSA), also called a configuration, is
fully described by specifying the control state s of TLSA and the value u € D,
of all timers of the automaton. The transitions of LT'S(T'LSA) correspond either
to explicit transitions of T'LS A, representing the occurrence of an action, or to
implicit transitions representing the passage of time. The former are described
by the transition successor rule and the latter by the time successor rule.
Definition 2 (Initial state of LTS(TLSA)).
The initial state of LTS(T'LSA) is the configuration (so, ft0), where po € Df|
with po = (0, L,...,1).
Definition 3 (Explicit transition of LTS(TLSA)).
Let (s,u) € LTS(TLSA) and (s,s',W,K,a) € E a transition of TLSA. If
pEW and pE K, then (s,1) —= (s', F(s,s', 11)).

where F': S xS x D}, — Dy, is the functio defined as:

/j,/j:()
F(si,s5,u) = p'  where pt =1 Vk #i| (sk,s;,W,K,a) € E
w=pt Vieon—1)1#4l+k

2 In the example of Fig.H while firing transition 1 — 3, timer t is re-initialized
with L by function F'.
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Fig. 5. Derivation of the TLSA

The role of function F' is to avoid possible firing history conflicts in cyclic
TLSA. In the presence of cycles and in the absence of function F', an action fired
in a previous iteration around the cycle but not belonging to the current flow of
execution, could influence the future conditions W and K.

Definition 4 (Implicit transition of LTS(TLSA)).
Let (s,pn) € LTS(TLSA) and § € D. If act(s,G(s, 11,9)), then (s, i) N (s,G(s,

1t,6)).
where G : S x Dy, x D — D{, s the function defined as:

1" iys
G i ,6 — / h /’L /‘L
(8i,0) = ' where {u'k:,uk Vk #£i€[0,n—1]

and where act : S x D{, — {true, false} is the predicate that indicates
whether there is, for configuration (s;, j1), at least one enabled transition (s;, s;,
W, K, a) (i.e. a transition satisfying both its firing window and its enabling con-
dition), thus authorizing a temporal progression. This predicate is defined as:

act(s;, p) = V wEW)A(pEK)
V(si,55,W,K,a)EE

4 An Algorithm to Synthesize a TLSA

In this section, we develop an algorithm to synthesize a TLSA from a minimal
reachability graph, itself derived from a RT-Lotos specification.

As illustrated in Fig.[l the first sub-section summarizes the main steps of
the RT-Lotos reachability analysis. The second sub-section details the algorithm
which has been implemented in the rg2tlsa module integrated within the rtl
tool.

4.1 RT-Lotos Reachability Analysis

RT-Lotos is one of the temporal extensions of the standard Lotos formal de-
scription technique. A detailed description of RT-Lotos is provided in [g].

RT-Lotos provides three main temporal operators, namely: the delay - see
construct delay(d), the latency operator - see construct latency(l) and the time
restrictor operator - see construct a{t}.

As detailed in [7], the reachability analysis of RT-Lotos specifications is car-
ried out as follows: An RT-Lotos specification is first translated into a DTA -
Dynamic Timed Automaton; reachability analysis is then applied to the DTA
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Fig. 6. Overview of the algorithm

relying on a minimization algorithm [18] that generates a minimal reachability
graph, which describes the global behavior of the RT-Lotos specification.

A global state or configuration of a timed system includes the control state of
the timed automaton (the DTA), and the clocks values. Therefore, the number of
configurations is not finite. A finite analysis of such a system requires a partition
of the configuration space into a finite number of regions. Algorithms to perform
reachability analysis, and to minimize timed transition systems were proposed
in [2JI8]. The second algorithm has been adapted to DTA and implemented in
the rtl tool. The resulting graph is a minimal reachability graph where:

— a node (also called a class) defines both a control state, and a region rep-
resented as a convex polyhedron whose dimension is equal to the number
of clocks of the control state; configurations belonging to the same region
have the same reachability properties since they cannot be differentiated in
terms of future actions that may occur; hence, a class corresponds to a finite
representation of an infinite number of configurations (s, v).

— an arc corresponds either to a Lotos action occurrence or to a time progres-
sion (arc labeled by t).

Due to the minimization algorithm, all configurations of a class are not nec-
essarily reachable from the initial configuration; it can be proven that at least
one configuration per class is actually reachable [I8]. The minimization algo-
rithm allows regions larger than those required from a strict reachability point
of view to be considered, minimizing thereby, the number of regions within a
graph, compared to other algorithms such as [6].

The formal definition of a minimal reachability graph and the way it may be
derived from a DTA are presented in [7].

4.2 TLSA Synthesis Algorithm

The input of the TLSA synthesis algorithm is a minimal reachability graph. Three
main steps are defined in the algorithm in order to produce a TLSA (see Fig.[).

The algorithm will first process each transition of the minimal reachability
graph (labeled either by t or a Lotos action). It starts from the initial reachable
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configuration (s, Vo) in order to determine the earliest reachable configuration of
each class of the minimal reachability graph. Then, it determines for each tran-
sition between two classes, the time progression between their earliest reachable
configurations. Finally, it selects the transitions labeled by a Lotos action, de-
fines their associated firing window and enabling condition, and groups them
together in order to minimize the number of transitions, leading to the TLSA.
These steps are recapitulated in the pseudo-code algorithm of Fig.[7

Set the clocks of the earliest reachable configuration of initial class to 0.

For each transition of the minimal reachability graph do:

Evaluate the earliest reachable configuration of the reached class.

Set the temporal valuation of the transition with the time elapsed from the earliest
reachable configuration of the starting class until the earliest reachable configuration
of the reached class.

Add this temporal valuation to the history of the transitions leaving the reached

class.
End loop.

For each Lotos transition do:

Set firing window W with the temporal valuation of the transition plus the valua-
tions of the temporal transitions fired into the current control state.

Set enabling condition K according to the history of the transition.

End loop

Ezxtract Lotos transitions and rename nodes with the number of their control state.
Group transitions according to W and K.

Fig. 7. Steps of the algorithm

4.2.1 Identification of the Earliest Reachable Configuration

for Each Class

Let DTA = (S,Nclock,E,sy) be a dynamic timed automaton and RG =
LTS(DTA/n’) its associated minimal reachability graph derived from an RT-
Lotos specification (see [7] for details).

Definition 5 (Earliest reachable configuration within a class).
This is a recursive definition. Let A, B be classes of RG, Sy the initial class of
RG ((so,10) € So), and transition A — B € RG.

— (so,vp) is the earliest reachable configuration of class Sy.

— Let (s,v) € A be the earliest reachable configuration of class A, where values
of v are expressed as linear expressions of constants (defined in D) and
timers (whose values are defined in Dy ):

o if A LI B, then:
Let 6., be the minimal time value such that (s,v + 0,,) € B; 6y is
expressed as linear expressions of constants and timers. Then, (s,v+0,,)
is reachable and it is, furthermore, the earliest reachable configuration of
class B. b,, is called the temporal valuation of the t transition. Note
that, in this case, classes A and B are associated with the same DT A
state, namely control state s.
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e if A% B, then:

Let (s,s',K,U,a,C,0) a transition of the DT A, where s’ is the control
state of B. Let dpr be the mazimal time value such that (s,v+dp) € A;
Opr is expressed as linear expressions of constants and timers; note that
if A is urgent then ép; = 0. Let § be the time spent within all the classes
associated with control state s before reaching the earliest configuration
of class A. Let timer t, be defined as: 6 <ts < 6+0p. Then (s',V) € B
is the earliest reachable configuration of class B, where v'* =0 Vi e C,
and v'' =1 44, —§ Vie[l,Nclock(s')], i € C.

Intuitively the earliest reachable configuration of a class of RG may be defined
as the first configuration of the class that the system may reach (starting from
the initial configuration of the system) before any time progression within the
class.

The following paragraphs detail the TLSA synthesis algorithm based on ex-
amples coming from the Minimal Reachability Graph depicted in figure [3a.

e Processing t Transitions

Let a = (s, (4!, ..., v,")) be the earliest reachable configuration of class A,
with N = Nclock(s); for example, as depicted in Fig.Bh, a = (2, (3 + t1,3,3))
and A=2—(4.533).

A t transition from A to B means that there is a time progression to reach
class B. Let b = (s, (!,...,15")) be the earliest reachable configuration of
class B. Configuration b can be defined by determining the minimal value 6y,
such that v, = (Vo' + 6y -+, Ve + &) belongs to the region of class B (i.e.
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Fig. 9. Processing a Lotos transition

it satisfies the system of inequations bounding this region). For instance, the
region of class B =2 — (6 3 3) is bounded by

C1 = 6

3< <8

3<e3<H

—3<cp—c1 <2

—3<c3—cp < -1

—bH<eg—cecg <2

ca=vt=3+tl+6,
With co =12 =3+, the solution is 4,, =3 —t1
s =13 =346,

Thus, the earliest reachable configuration of class B is b = (2, (6,6 — t1,6 — t1),
and the temporal valuation of transition A 5 Bis equal to 3 — t1.

e Processing Lotos Transitions

Let a = (s, (V4! ...,v.") be the earliest reachable configuration of class A,
with N = Nclock(s); for example, in Fig.Bh, a = (2,(3 +¢1,3,3)) and A =
2 — (4.5 3 3). A Lotos transition from A to B means that time may progress
within class A (unless A is an urgent class) before reaching class B by the
occurrence of a Lotos action. Therefore, we are looking for the mazimal value
of 6ar, such that (vo' + dar,..., va'¥ +dar) belongs to the region of class A. In
the example, this region is bounded by
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4<cl<6
I3 < <8
3<es3<d
—3<cp—c1 <2
—3<ce3—c<—1
—H<cg—cg <2

(&1 :3+t1+51\/1
With co =3+ the solution is  d,s =311
c3 =3+

which means that d,s is the maximal value less than 3 — ¢1.

In our example, the system has to fire two t transitions between classes asso-
ciated with control state 2 before reaching class A; then § = (3 —¢1) + (t1) = 3,
which characterizes the time spent in all the classes associated with control state
2 before reaching class A.

Therefore, the Lotos action can be fired in class A after a progression of time
ts comprised between & and § + dp4.

In the example, the system can stay 3 < ¢2 < 3 — ¢1 units of time in the
classes associated with control state 2 before firing action i(eC). This defines
the firing window of this transition.

When the system leaves class A, the values of clocks are:

cl=v,  +t;—6

eN=v,N+t,—96

By applying functions C' (clocks reset) and 6 (copy of clocks values) (see the
formal definition of the DTA in [7]) of this transition, we obtain the earliest reach-

able configuration of class B. In our example, the earliest reachable configuration
of class 4 — (4.5 3) is: (4, (¢2 4 t1,12)).

4.2.2 Replication of Multi-reachable Nodes
Some classes (such as 4 — (6 5) in Fig.[[0) are reachable by two or more tran-
sitions. In these cases, the algorithm may determine distinct earliest reachable
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Fig. 11. Selecting and grouping Lotos transitions

configurations. As a consequence, the minimal reachability graph nodes associ-
ated with these classes must be replicated as many times as there are distinct
earliest reachable configurations; outgoing transitions are replicated as well.

This case appears in particular in the presence of cycles: for each class con-
cerned with a cycle, the algorithm finds a first earliest reachable configuration
at the first iteration, then it finds a second one, corresponding to the following
iterations, which may include timers affected during the cycle.

4.2.3 Selecting and Grouping Lotos Transitions
Finally, in order to produce the TLSA, the algorithm selects the Lotos transi-
tions. It adds to these transitions their respective firing window and enabling
condition. The firing window has been defined previously, and the enabling con-
dition corresponds to the firing window’s history of the Lotos transitions that
lead to the class where the current transition is enabled.

The nodes of the TLSA are named according to the corresponding control
state of the DTA, as it is illustrated in the transformation of Fig.[ITh to Fig.[IIb.

At this point, the algorithm has already produced a TLSA, although some
transitions may still be redundant regarding firing windows and enabling condi-
tions. The algorithm will then try to group together transitions having the same
input and output control state and the same label. Space defined by the new
firing window and enabling condition is the convex hull of polyhedra defined
by the set of the firing window and enabling condition of each transition to be
groupedﬁ. For instance, the three transitions of Fig.[TIb can be grouped together
in the single transition on Fig.[TTk.

5 Related Works

A certain number of work propose new types of temporal automata to express
clearly the temporal relations between events.

3 The vector of the current timer have only two coefficients equal to 1 and —1 in order
to get a pair of inequalities - current timer superior to a constraint and current timer
inferior to a constraint - which define W.
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In [10], I. Kang and I.Lee employ the notion of time distance between tran-
sitions to propose a reachability algorithm. This seems to be close to how our
timed conditions are expressed. However, these relations do not appear in their
resulting graph, whereas the transition firing windows are explicit in the TLSA
and they may themselves depend on the instants at which previous transitions
were fired.

A TLSA may also be compared to event-recording-clock automata [4]. How-
ever, a TLSA does not record time of events, but instead, the time elapsed in
control states. Furthermore, timed constraints compare values to linear expres-
sions including values of other timers, and not just constants.

The problem of synthesizing scheduling automata is also the subject of several
studies.

By constraining the specification of certain types of temporal constraints
known as implementable, an algorithm to synthesize schedulers is proposed in
[9]. Our approach does not make any assumption on the nature of the specified
temporal constraints, the inconsistent behaviors being explicitly removed before
the synthesis of the TLSA.

Another approach, proposed initially in [5] then extended in [12], aims to
restrict the transition relation of temporal automata, based on a real time game,
so that the resulting behaviors satisfy certain properties. Our approach is dif-
ferent, in the sense that the non-desirable inconsistent behaviors are removed
at the level of the reachability graph. Thus, our approach is completely auto-
matic, although it is necessary that the system knows in advance the set of all
configuration classes.

Finally, in [1] the authors propose a method to build a scheduler satisfying a
set of temporal constraints as well as a policy for scheduling. In the opposite, the
only goal of our approach is to synthesize a temporal automata (TLSA) character-
izing the set of the consistent behaviors of our high level specification expressed
in RT-Lotos. However, the policy for scheduling to be applied is not described
on the level of the TLSA, but on the level of the application that implement it
(for example a browser for a multimedia document [I5]).

6 Conclusion

We have introduced the TLSA model as an operational model intended to ex-
press globally time constraints that a system has to meet. Also an algorithm
designed to synthesize a TLSA from a minimal reachability graph (derived from
an RT-Lotos specification) has been described.

A TLSA expresses desirable consistent behaviors when it is synthesized from
a minimal reachability graph from which all inconsistent paths (those leading
to a deadlock configuration) have been removed. It describes in a simple way
how to schedule events because there is one and only one running timer at a
moment. Firing conditions of a transition are easy to compute: when the system
enters a control state, the bounds of conditions W and K of all outgoing edges
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can immediately be evaluated by substitution of variables and simple arithmetic
operations. So, as time progresses, the current timer has just to be compared
to some constant values. Thus, the TLSA ensure the scheduling of consistent
scenario applying the concept of controllability.

Works on the verification analysis and scheduling of multimedia documents
based on the TLSA have been developed in [I5]. In this sense, all the inconsis-
tent behaviors of a document can be detected and removed and, further on, the
scheduling of a consistent document can be accomplished by means of the con-
cept of controllability, that is proposing a valid temporal interval inside which the
scenario is always consistent. Fur this purpose, a TLSA Player was developed.
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