Fault Diagnosis for Timed Automata

Stavros Tripakis

VERIMAG
Centre Equation, 2, avenue de Vignate, 38610 Gieres, France
tripakis@imag.fr

Abstract. We study the problem of fault-diagnosis in the context of
dense-time automata. The problem is, given the model of a plant as a
timed automaton with a set of observable events and a set of unobserv-
able events, including a special event modeling faults, to construct a de-
terministic machine, the diagnoser, which reacts to observable events and
time delays, and announces a fault within a delay of at most A time units
after the fault occurred. We define what it means for a timed automa-
ton to be diagnosable, and provide algorithms to check diagnosability.
The algorithms are based on standard reachability analyses in search of
accepting states or non-zeno runs. We also show how to construct a di-
agnoser for a diagnosable timed automaton, and how the diagnoser can
be implemented using data structures and algorithms similar to those
used in most timed-automata verification tools.

Keywords: Fault diagnosis, Partial observability, Timed Automata.

1 Introduction

In this paper we study the problem of fault diagnosisin the context of dense-time
automata. Our work is inspired from [21l22], who have studied the problem in
the context of discrete event systems (DES) [19].

In the DES framework, the fault diagnosis problem is as follows. We are
given the description of the behavior of a plant, in the form of a finite-state
automaton. A behavior of the plant corresponds to a run of the automaton,
that is, a sequence of events. An event is either observable or unobservable. One
or more special unobservable events model faults that may occur during the
operation of the plant. The objective is to design a diagnoser. The diagnoser
is a deterministic machine which reacts to observable events by changing state
instantaneously. The requirements are as follows. If the plant performs a fault
event, the diagnoser should detect it after at most n steps (i.e., moves of the
plant), where n has a known upper bound. Detection means, for instance, that
the diagnoser enters a special state which announces that the fault has occurred.
Another obvious requirement is that the diagnoser does not create any false
alarms, that is, whenever it announces a fault, the fault has indeed occurred.
Finally, once a fault is announced, the diagnoser cannot stop announcing it (i.e.,
on-line fault repairs are not modeled).

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 205221} 2002.
© Springer-Verlag Berlin Heidelberg 2002

206 Stavros Tripakis

b
oo B
z:=0 u b

<6 2 <~0O—0O

r <3

Fig.1. A diagnosable timed automaton.

Not every plant is diagnosable. For example, a plant with two behaviors,
a, f,b and a,u, b, is not diagnosable if f,u are unobservable and f is the fault.
Indeed, the diagnoser, observing only a, b, has no way to know whether a fault
actually occurred or not. On the other hand, a plant with behaviors a, f, b, c and
a,u,b,d is diagnosable: after seeing c or d, the diagnoser can distinguish what
happened.

Our motivation has been to extend the above framework to dense-time au-
tomata [3]. Such an extension is useful, since it permits us to model plants with
timed behaviors, for example, “a followed by b within a delay of 7 time units”.
It also allows for diagnosers to base their decisions not only on the sequences
of events observed, but also on the time delays between these events. That is,
the diagnoser not only observes events, but can also measure the time elapsed
between two successive events and, consequently, between any two events.

For example, consider the plant modeled by the timed automaton of Figure[Il
The plant has two sets of behaviors: faulty behaviors (where f occurs) and non-
faulty behaviors. If events a and b are observable, then the plant is diagnosable.
Indeed, in all behaviors, a and b occur, in that order. In every faulty behavior,
the delay between a and b is greater than 3 time units, while in every non-
faulty behavior, the delay is at most 3. Thus, a diagnoser observing a and b, and
measuring their interarrival delay can tell whether a fault occurred or not.

The contributions of this paper are as follows. First, we propose a notion of
diagnosability for timed automata. This notion, called A-diagnosability, ensures
that a fault can always be detected at most A time units after the time it
occurs. Second, we provide an algorithm to check whether a given automaton
A is diagnosable. The algorithm is based on a reachability analysis in search of
non-zeno runs in a special product automaton of A with itself. Third, we provide
an algorithm to find the minimum A such that A is A-diagnosable (assuming
that it is already known that A is diagnosable). The algorithm conducts a binary
search on the constant A, each time performing a reachability analysis of the
above product, composed with an observer automaton with one clock.

Finally, we show how to build a diagnoser for A. The diagnoser works as a
state estimator for A, that is, a state of the diagnoser is a set of all possible states
that A could be in, according to what has been observed so far. The diagnoser
changes state each time it observes an event a or a delay ¢, and it is guaran-

Fault Diagnosis for Timed Automata 207

teed not to produce any false alarms and to announce a fault at most A time
units after the fault occurs. We also show how a diagnoser can be implemented
effectively using finitary data structures to represent its current state, and how
the transition function of the diagnoser can be effectively computed on these
structures.

The rest of the paper is organized as follows. In Section Rl we present our
model. In Section Bl we introduce the notion of diagnosability and show how it
can be algorithmically checked. In Section] we define diagnosers and show how
they can be implemented. Related work is discussed in Section [

2 Timed Automata with Faults and Unobservable Events

Let X be a finite set of variables taking values in the set of non-negative reals,
denoted R. We call these variables clocks. A valuation on X is a function v : X —
R which assigns a value to each clock in X. Given a valuation v and a delay § € R,
v + ¢ denotes the valuation v such that for all z € X, v'(z) = v(z) + J. Given
a valuation v and a subset of clocks X C X, v[X := 0] denotes the valuation v’
such that for all x € X, v'(2) =0 and for all y € X — X, v/(y) = v(y).

A polyhedron on X is a set of valuations which can be represented as a
boolean expression with atomic constraints of the form x < k or z — y < k,
where z,y € X and k is an integer constant. For example, z = 0 Ay > 3 is a
polyhedron. By definition, polyhedra are closed by boolean operations A, V, -,
which correspond to set intersection, union and complementation. Polyhedra are
also closed by existential quantification: for x € X', 9z . { denotes the polyhedron
{v| W e,Vye X,y#z=v(y) =2 (y)}. For example, Iz . (z <3 Ay < x)
is the polyhedron y < 3. We use true to denote the polyhedron A ., > 0 and
false to denote the empty polyhedron. We also use 0 to denote the singleton

Npex =0.
A timed automaton [3l[15] is a tuple A = (Q, X, X, E, I), where:

— @ is a finite set of discrete states; ¢° € Q is the initial discrete state.

— X is a finite set of clocks.

— XY is a finite set of events. X is the union of two disjoint sets X' = X, U X,
and f € X, is a distinguished event, called the fault eventl]. An event in PO
is called observable, otherwise, it is called unobservable.

— E is a finite set of transitions. Each transition is a tuple e = (q,¢’, a, ¢, X),
where ¢,¢' € Q, a € X, (is a polyhedron on X and X C X. We use source(e)
to denote ¢, dest(e) for ¢, event(e) for a, guard(e) for ¢, and reset(e) for X.
Given an event a € X, E(a) denotes the set of all transitions e € E such
that event(e) = a.

— [is the invariant function which associates with each discrete state ¢ € Q a
polyhedron on X, I(q). We require that 0 € I(q°).

1 For simplicity, we assume a single type of fault. The definitions and results generalize
directly to more than one fault types. In Section [8l we discuss how this can be done.

208 Stavros Tripakis

A state of A is a pair s = (g, v), where ¢ € @ and v is a valuation on X, such
that v € I(q). We denote q by discrete(s). The initial state of A is s° = (¢°,0).
Each delay ¢ € R defines a partial function on the states of A: if s = (¢,v) is a
state of A, and V¢’ < 0, v+ 0" € I(q), then §(s) = (q,v + J), otherwise, d(s) is
undefined. Each transition e = (q,¢’,a,(, X) € E defines a partial function on
the states of A: if s = (q,v) is a state of A such that v € ¢ and v[X := 0] € I(¢'),
then e(s) = (¢, v[X :=0]), otherwise, e(s) is undefined.

A timed sequence over a set of events X is a finite or infinite sequence
V1,72, - - -, where each ~; is either an event in Y or a delay in R. We require
that between any two events in p there is exactly one delay (possibly 0). For ex-
ample, if @ and b are events, a,0,b,3,cand a,1,1,1, ... are valid timed sequences,
while a,b and a,1,2,b are not. Let TSy denote the set of all timed sequences
over /.

If p is a finite timed sequence, time(p) denotes the sum of all delays in p. If p
is infinite, then time(p) denotes the limit of the sum (possibly co). We say that p
is non-zeno if time(p) = co. Note that a non-zeno timed sequence is necessarily
infinite, although it might contain only a finite number of events.

We define a projection operator P as follows. Given a (finite or infinite) timed
sequence p and a set of events X' C X P(p, X’) is the timed sequence obtained
by erasing from p all events in X’ and summing the delays between successive
events in the resulting sequence. For example, if p = 1,a,4,b,1,¢,0,d, 3, e, then
P(p,{b,d}) =1,a,5,¢,3,e. Note that, in the definition of P(p, X’), X’ is the set
of events to be erased. Also notice that, time(p) = time(P(p, X)), for any p and
2.

Given a state s of A, a run of A starting at s (or simply a run of A, if
s = s°) is a (finite or infinite) timed sequence p = 71,79, - -, for which there
exists a sequence of states sg, s1, So, - - -, such that s) = s and for each i = 1,2, ...,
if v; is a delay § € R then s; = 0(s;—1), whereas if ; is an event a € X, then
s; = e(s;—1), for some e € E(a). If p is a finite run vy, s, - - - , 7, starting from s,
we say that s, is reachable from s via p. A finite run p defines a function on the
states of A as follows. If s is a state of A, p(s) is the set of all states reachable
from s via p (note that p(s) might be empty). The set of all states of A reachable
from sY via some run is denoted R4.

A is well-timed if for all s € R4, there is a non-zeno run of A starting at s.

A run p = 71,79, is called faulty if for some i = 1,2,..., v, = f. Let j
be the smallest ¢ such that v; = f, and let p’ = 7;,7vj41,---. Given 6 € R, if
time(p’) > 4, then we say that at least § time units pass after the first occurrence
of f in p, or, in short, that p is §-faulty.

The following lemma states an important property of the model, which will
be used in the sequel.

Lemma 1. If for all A € N, A has a A-faulty run, then A has a non-zeno faulty
rUn.

Proof Our proof relies on the region graph [3] of A, call it G. G is a finite
quotient graph with respect to a time-abstracting bisimulation [28]. Each node
of G (called a region) contains a set of bisimilar states of A. The edges of G

Fault Diagnosis for Timed Automata 209

correspond either to transitions of A or to symbolic passage of time. We refer
the reader to timed-automata papers for more details on the region graph. What
is important for our proof is that every run of A is inscribed in a path of G and,
vice-versa, every path of G contains a set of runs of A.

Let Ry be the set of regions of G which are reachable by a faulty path. Note
that for every r € Ry, all successors of r are also in Ry. Let Gy be the restriction
of G to Ry. We claim that G, has a strongly-connected component (SCC) A,
such that for every clock z, z is either reset and can grow strictly greater than
zero in /A, or remains unbounded in A: this implies the existence of a faulty non-
zeno run [4]. Suppose our claim is false, that is, for every SCC A in Gy, there is
a clock x which remains upper bounded in A and is never reset or never grows
above zero. In both cases, & never grows in A above some constant I'4 (in the
last case, I’y = 0). Then, for every run p inscribed in A, time(p) < I'4. Since
there is a finite number of SCCs in a finite graph, the time spent in any faulty
run is bounded by some I' (obtained as the maximum of I'§, plus the times
spent in the finite paths linking the SCCs). But this contradicts the hypothesis.

O

3 Diagnosability

We assume that the behavior of the plant to be diagnosed can be modeled as a
timed automaton A. We also assume that A is well-timed. This is a reasonable
assumption, since, in real plants, time elapses without upper bound. Therefore,
if A can reach a state from which time cannot progress, this is due to a modeling
error. Well-timedness can be algorithmically checked using, for instance, the
techniques proposed in [27].

3.1 The Notion of Diagnosability for Timed Automata

In discrete-event systems, diagnosability has been defined with respect to a pa-
rameter n (a natural constant), representing the maximum delay required for
the diagnoser to detect a fault [21J22]. Since time is not an inherent part of the
DES model, delays are captured by counting events: the diagnoser must detect
a fault after at most n steps of the plant, where a step corresponds to an event
(observable or not).

For timed automata, we propose a more natural definition: a timed automa-
ton A is diagnosable with respect to a delay A, if a fault can be detected in A
at most A time units after it occurs. Note that, since A is well-timed, A time
units will eventually elapse.

Definition 2 (Diagnosability for Timed Automata). Consider a timed au-
tomaton A. We say that A is A-diagnosable, for a natural number A € N, if
for any two finite runs p1, p2 of A, if p1 is A-faulty, then either ps is faulty or
P(p1, X)) # P(p2, Xu). We say that A is diagnosable if there exists some A € N,
such that A is A-diagnosable.

210 Stavros Tripakis

b
oo B
z:=0 u b
r<3~O—0

<3

Fig.2. A non-diagnosable timed automaton.

Ezxample 8. Assuming that events a and b are observable, f and u are unobserv-
able and f is the fault, the timed automaton of Figure [[is 3-diagnosable. On
the other hand, the slightly modified automaton shown in Figure [is not di-
agnosable. Indeed, the two runs a,2.5, f,0.1,b and a, 2.5, u,0.1, b have the same
projection a, 2.6, b, but only the first one is faulty. Moreover, an arbitrary amount
of time can elapse after b in both runs, and their projections will remain identical.

We make some remarks about Definition

For the sake of simplicity, we consider only one type of fault. This is not
an essential assumption. The framework can be extended in a straightforward
manner so that a number of different faults are considered, modeled by a set of
events Xy C X,. Then, the diagnosability definition would state that for each
f € Xy, there should not be two runs p; and ps, such that f occurs in p; and
at least A time passes afterwardsﬁ, the projections of p; and ps to observable
events are the same, but f does not occur in ps. Checking diagnosability with
multiple faults can be done by checking diagnosability separately for each fault.
Building diagnosers which detect multiple faults can also be done by a simple
extension of the single-fault construction.

We do not model on-line “repairs” of faults, that is, we assume that faults
cannot be “undone”. This means that, once a fault has occurred, we consider
the behavior erroneous and we would like to detect the fault, no matter what
the plant does afterwards.

We define diagnosability with respect to a natural constant A, rather than,
say, a real number. This allows us to speak of A,,;, in the lemma that follows.
If A is taken to be real, we can find plants which are diagnosable for all A > 3,
say, but not for A = 3. Assuming A natural also gives a simple enumerative
procedure to find A,,;,, as we show in Section 331

Lemma 4. Let A be A-diagnosable. Then, for any A" > A, A is A'-diagnosable.
Also, there exists A, such that A is Ay, -diagnosable and for all A < A,in,
A is not A'-diagnosable.

2 We could also consider a definition with a different delay Ay for each fault f € X.

Fault Diagnosis for Timed Automata 211

Lemma 5. A is A-diagnosable iff there exists a function ¢ : TSx, — {0,1},
such that for every finite Tun p of A, if p is not faulty, then ¢(P(p, X)) = 0,
whereas if p is A-faulty, then ¢(P(p, X)) = 1.

Proof Assume A is A-diagnosable. Define ¢ as follows. Given 7 € TSy, if
there exists a finite run 7 of A, such that P(7, X,) = 7 and 7 is A-faulty, then
¢(m) = 1, otherwise, ¢(m) = 0. Now, consider some finite run p of A and let
m = P(p,X,). If p is A-faulty, then ¢(7) = 1, by definition of ¢. If p is not
faulty, then we claim that ¢(w) = 0. Suppose not. Then, there exists a finite
run 7 of A, such that 7 is A-faulty and P(r,X,) = w. But this means that
P(r,X,) = P(p, X.), which contradicts the hypothesis that A is A-diagnosable.

Conversely, assume A is not A-diagnosable, that is, there exist two finite
runs p; and py of A, such that p; is A-faulty, ps is not faulty, and P(p1, X)) =
P(p2,%,) = m. Now, ¢(m) cannot be 0, because ¢(P(p1, X)) must be 1, and
¢(m) cannot be 1 either, because ¢(P(p1, 2,)) must be 0. So, ¢ cannot exist. O

3.2 Checking Diagnosability

Checking diagnosability and building diagnosers are well-known problems for
finite-state models. Diagnosability can be decided in polynomial time, whereas
building a diagnoser relies on a subset construction and is exponential in the
worst case [29)].

In the dense-time case, in order to check whether a given timed automaton
A is diagnosable or not, we first form a special parallel product of A with itself.
This product, denoted (A s, A)~72, has as set of states the cartesian product of
the states of A and contains twice as many clocks as A. Checking diagnosability
of A will be reduced to finding non-zeno faulty paths in (A s, A)~/2.

(Al|s, A)~7'2 is obtained in two phases. First, we build a product A||s, A as
follows:

1. We make two “copies” of A, A; and As, by renaming unobservable events,
discrete states and clocks of A:

— Each discrete state q of A is renamed ¢; in A; and g5 in As. The initial
state ¢° is copied into ¢? and ¢J.

— Each clock z of A is renamed z; in A; and x5 in As.

— Each unobservable event u of A is renamed u; in A; and ug in Ay. Let X}
and X2 denote the corresponding sets of renamed unobservable events.
Observable events are not renamed.

— The transitions are copied and renamed accordingly. For example, e =
(q,¢',u,z < 3,{y}) becomes e; = (q1,q7,u1,21 < 3,{y1}) in 4; (assum-
ing the event u is unobservable, otherwise it would not be renamed).

2. A||s, A is obtained as the usual parallel composition of A; and As, where

transitions of A; and A labeled with the same (observable) event are forced
to synchronize. For example, if e; = (¢, 4}, a,(;, X;) are transitions of A;,
for i = 1,2, and a is an observable event, then e = ((¢1,q2), (41, ¢5),a,(1 A
C2, X1 U X5) is the synchronized transition of A||x, A. All other transitions
interleave. The invariant of a product state (q1,qz) is I(q1) A I(ga).

212 Stavros Tripakis

Fig. 3. The product (A| s, A)~’2 for the timed automaton of Figure [

Now, let (A5, A)~72 be the timed automaton obtained from A|| s, A by removing
all transitions labeled f5 from the latter. An example is shown in Figure Bl

The intuition is that every run of (A||s, A)~/2 corresponds to two runs of
A which yield the same observation, that is, the same projection to observable
events. We obtain this property by synchronizing the two copies in all observable
events. (Note that time advances synchronously in both copies.)

To prove this, we need some notation. Let p be a run of (Al|x, A)~%2. p is
called faulty if f; appears in it. We denote by p' (resp., p?) the timed sequence
obtained by taking the projection P(p, X2) (resp., P(p, X'.)) and then renaming
each event u; € X! (resp., ug € X2) back into u. That is, p! and p? are timed
sequences over Y. For example, if p = a,1,us, 3, u1, then p! = a,4,u and p? =
a,l,u,3.

Lemma 6. p is a run of (A|ls,A)~2 iff p' and p? are runs of A, p? is not

o

faulty and P(p*, X,) = P(p?, X.). For such p,p*, p?, the following also hold:

1. p is faulty iff p* is faulty.
2. time(p) = time(p!) = time(p?).

Proposition 7 (Diagnosability Check). A is diagnosable iff every faulty run
of (Al|s,A)~72 is zeno.

Proof Let p be a non-zeno faulty run of (Al s, A)~/2. Pick some A € N. Let
pa be the finite prefix of p up to exactly A time units after the first occurrence
of f1 in p. Since p is non-zeno, pa is well-defined and it is clearly a run of
(Al|s,A)~'2. Thus, by Lemma Bl pl, and p?% are both runs of A, p? is not
faulty, and P(pl, X,) = P(p?%, Xu). Moreover, ply is A-faulty: this is because
the time elapsing after fi; in pa is equal to the time elapsing after f in pl.
Because of pY, p%, A is not A-diagnosable. Since such runs can be found for any
A, A is not diagnosable.

Fault Diagnosis for Timed Automata 213

h

J1 Uu
z:=0 zZA@

Fig. 4. Observer automaton Obs(A).

In the other direction, assume A is not diagnosable. This means that for any
A € N, there exist two finite runs pl, and p% of A, such that pY contains f,
p% does not, P(pY, X,) = P(p%, Xu), and at least A time units elapse after the
first occurrence of f in pY. Therefore, by LemmalB, for any A € N, there exists a
run p of (Al|s, A)~/2 such that pa is A-faulty. By Lemmalll, A has a non-zeno
faulty run. ad

From Proposition [, it follows that checking diagnosability for timed au-
tomata is decidable. Indeed, (A5, A)~/2 can be automatically generated from
A using simple copying and renaming operations, and the standard syntactic
parallel composition of timed automata. Finding non-zeno runs of a timed au-
tomaton was first shown to be decidable in [4] using the region graph construc-
tion, with a worst-case complexity of PSPACE. Since the size of (A s, A)~/2 is
polynomial in the size of A, it follows that the worst case complexity of checking
diagnosability is also PSPACE.

In practice, non-zeno runs can be found more efficiently, using the algorithms
proposed in [§]. These algorithms work on the simulation graph, which is a much
coarser graph than the region graph, and can be constructed on-the-fly using,
for instance, a depth-first search. The above algorithms have been implemented
in the model-checking tool Kronos [26]9].

3.3 Finding the Maximum Delay for Fault Detection

In the previous section we showed how to check whether a given timed automaton
A is diagnosable. Now, we show how to find the required delay for fault detection,
Apnin, introduced in Lemma [4l.

Consider the observer automaton shown in Figure Bl The automaton is pa-
rameterized by the constant A € N, that is, for each given A, there is a different
automaton, which will be denoted Obs(A). The clock z of Obs(A) is a new
clock, different from all clocks in A or (Al s, A)~/2. The event u is a new un-
observable event, different from all events in A or (A||s, A)~/2. The rightmost
discrete state of Obs(A) (drawn with two concentric circles) is its accepting state.
Let (Al s, A)~72|;,0bs(A) be the parallel product of (A||x, A)~/2 and Obs(A),
where the two automata synchronize only on the transitions labeled f;. Then,
we have the following result.

214 Stavros Tripakis

Proposition 8 (Maximum Delay for Fault Detection). For any timed
automaton A and any A € N, A is A-diagnosable iff the accepting state of
(Alls, A)~/2|| 7, Obs(A) is unreachable.

If we know that a given automaton A is diagnosable, then we can use Propo-
sition Bl in the following way. We check repeatedly, for A = 0,1, 2, ..., whether
the accepting state of (A||s, A)~/2||;, Obs(A) is reachable. Since A is diagnos-
able, reachability will eventually fail. This will happen for the first time when

The above method is simple, but not very efficient (especially when A, ;, is
large), since it requires A,,;, + 1 reachability tests. An alternative way is to use
the well-known binary search technique, which involves O(log A,) reachability
tests. The binary search starts by performing the reachability test repeatedly for
A =0,1,2,4,8, ..., until the first time the test fails. Assume this happens for
A = 2% Then, we know that A is 2¥-diagnosable but not 2*~!-diagnosable, so,
Appin, must lie in the interval [2¢~1 41, 2¥]. We search this interval by “splitting”
it in two, [2¥71 41, M] and [M, 2¥], checking reachability for the middle value
M, and repeating the procedure recursively, for [28=1 4 1, M], if the test fails,
and for [M, 2*], if it succeeds.

4 Diagnosers

For this section, we fix a timed automaton A, which is well-timed and A-
diagnosable.

Our objective is to construct a diagnoser for A, as illustrated in Figure [l
The diagnoser is a deterministic machine which instantaneously observes each
observable event generated by the plant and measures delays between successive
events. It is also realistic to assume that the diagnoser sets a time-out, so that,
even if no event happens for some time, the diagnoser will still react to the
passage of time.

Each time an event or a delay is observed, the diagnoser changes its state.
A state of the diagnoser is marked yes (a fault has been detected) or not-yet (no
fault has been detected so far). A valid diagnoser should announce a fault only
if a fault indeed occurred. Moreover, when a fault occurs, the diagnoser should
announce it at most A time units later. Finally, a diagnoser should never stop
announcing a fault once it has announced it.

Definition 9 (Diagnoser). A diagnoser for a timed automaton A is a tuple
(W, WO f.. fi, fa), where W is a set of states, W° € W s the initial state,
fe : W x X, — W is the event transition function, f; : W x R — W is the time
transition function, and fq : W — {not-yet, yes} is the decision function. The
time transition function must satisfy the usual semi-group property, that is, for
al W eW, for all 6,8',8" € R, if 6 =8 + 6", then f:(W,8) = fi(f:(W,8),8").

A finite timed sequence p = 71,72, -+, Vs over X, defines a function on the
states W of the diagnoser. If W € W, p(W) is defined to be the last state W,, in

Fault Diagnosis for Timed Automata 215

Plant

a 2 u 1 f 15 b 1 .-

a,4.5,0,1,---
Diagnoser
OaO4'5ObOl{)m
not-yet not-yet not-yet not-yet yes

Fig. 5. Illustration of a diagnoser.

a sequence of states Wy, W1, ---, W,,, where Wy = W, and for each i = 1,2, ...,
if v; is a delay 0 € R, then W; = f,(W,;_1,0), whereas if v; is an event a € X,
then Wz = ft(Wi_l,a).

A diagnoser is called wvalid if it satisfies the following conditions:

1. If p is a non-faulty finite run of A, then fy(7(W)) = not-yet, where
m = P(p, Xy).

2. If pis a finite A-faulty run of A, then fy(m#(W?)) = yes, where m = P(p, X,,).

3. If p1,po are finite runs of A, p; is a prefix of pa, and m; = P(p;, Xy), for
i =1,2, then, if fq(71 (WY)) = yes, then fy(m2(W?)) = yes. That is, once
the diagnoser has output yes, it can no longer output not-yet.

4.1 Constructing a Diagnoser

We now show how to construct a diagnoser for A. The diagnoser will work as a
state estimator for A, that is, each state of the diagnoser will correspond to a
set of possible states of the timed automaton.

For simplicity of the presentation, we will assume that the set of discrete
states) of A is partitioned in two disjoint sets: @ = Qf U (Q — Qy), such
that, for every run p of A, discrete(p(s®)) € Qy iff p is faulty. In other words,
once a fault occurs, A moves to)y and never exits this set of discrete states,
and while no fault occurs, A moves inside @) — Q. It is easy to transform any
automaton to an automaton satisfying the above condition, possibly by having
to duplicate some discrete states and transitions (the transformed automaton
will have at most twice as many discrete states as the original automaton). An
example of such a transformation is shown in Figure 6l The motivation for the
transformation is to reduce the fault detection problem into a state estimation

216 Stavros Tripakis

.F"_bng_f_lz"_j.
_.Qf<g\b~QL.Q o LO—>—>_J
a /cv a —C>OT
before after

Fig. 6. Transforming an automaton.

problem: a fault has been detected once the diagnoser is certain that the plant
is in some state with discrete part in Q.
We are now ready to define the diagnoser. Recall that R4 is the set of reach-
able states of A. The state-space W of the diagnoser is defined to be W = 274,
The decision function fy of the diagnoser is defined as follows:

[yes, if Vs € W, discrete(s) € Qy
fa(W) = { not-yet, otherwise. (1)

Recall that, for a given event a € ¥, E(a) denotes the set of transitions of A
labeled by a. Given a set of events X’ C X let Runs(A, X') be the set of finite
runs of A containing only events in Y’. Then, the transition functions of the
diagnoser are defined as follows:

fe(W,a) ={e(s) | s € W,e € E(a)} (2)
ft(W,0) = {p(s) | s € W, p € Runs(A, X,,), time(p) = d}. (3)

It can be seen that f; defined as above satisfies the semi-group property.
The initial state of the diagnoser is defined to be

WO = {p(s°) | p € Runs(4, X,,), time(p) = 0}, (4)

that is, W9 contains all states reached in zero delay from the initial state of the
automaton, by performing only unobservable actions.
The following lemma states that a diagnoser acts as a state estimator for A.

Lemma 10. For every finite run p of A, if s = p(s°) and m = P(p, X,), then
s € 71(WY). Conversely, for every finite run 7 of the diagnoser, for all s € m(W?),
there exists a finite run p of A, such that s = p(s°) and P(p, 2,) = 7.

Proposition 11. If A is a A-diagnosable timed automaton, then the tuple
(W, WO f.. fi, fa) defined above is a valid diagnoser for A.

Proof Let p be a finite run of A and let 7 = P(p, X,).
Assume first that p is non-faulty. From the assumption about the structure
of A, it must be that for all s € p(s?), we have discrete(s) € Q. Also, p(s°) # 0,

Fault Diagnosis for Timed Automata 217

since p is a run of A. Let s € p(s°). By Lemma[I0, s € 7(W?). Thus, by the
definition of fy, fq(m(W?)) = not-yet. This proves the first condition for validity.

Now, assume that p is A-faulty. By Lemma s = p(s?) € 7(W°) and,
since p is faulty, discrete(s) € Q. Now, pick some s’ € m(W?). By Lemma [I0]
there exists a finite run p’ of A, such that s’ = p/(s°) and P(p/, X,) = 7. Since
A is A-diagnosable, p’ has to be faulty. Therefore, discrete(s’) € Q. That is,
for all s € m(W?°), we have discrete(s’) € Q. Thus, by the definition of f,,
fa(m(W?)) = yes, which proves the second condition for validity.

As for the third condition, recall that, once A enters the set Q) ¢, it never exits.
Thus, if W is a state of the diagnoser such that for all s € W, discrete(s) € Qy,
then, at any future state W/, the same will hold, thus, the decision of the diag-
noser will not change. O

4.2 Diagnoser Implementation and Run-Time Considerations

In this section, we show how diagnoser states can be represented using finitary
data structures and how the decision and transition functions can be effectively
computed on these structures. In fact, we will use technology not much dif-
ferent from that used in timed-automata model-checkers such as Kronos [9] or
Uppaal [1].

A state of the diagnoser will be a list [(g1,¢1), ..., (qk, Ck)], where ¢; € @
and (; is a polyhedron on X, the set of clocks of A. Such a polyhedron can be
effectively represented using well-known data structures called difference bound
matrices (DBMs) [13]. Set-theoretic operations on such polyhedra, such as union,
intersection, test for emptiness, and so on, can be conducted on the corresponding
DBMs. The initial state s” of A can be represented by the list [(go, A, ¢ x = 0)].

The decision function of the diagnoser can be easily computed by scanning
the list: if the list contains some pair (g;, ¢;) such that ¢; ¢ Qy, then the function
returns not-yet, otherwise it returns yes.

The event transition function fe(W,a) can be computed as follows. If W =
[(g1,¢1), -, (Gr, Cr)] is the current list, start with a new empty list W', and for
each (g;, ;) € W, for each e € FE(a) such that source(e) = ¢, if {; Nguard(e) # 0,
then (dest(e), ¢’) is added to r’, where ¢’ is the polyhedron

((Elx creset(e) . ()N (N\ z= 0)) N I(dest(e)),

TEreset(e)

which contains all v[reset(e) := 0] € I(dest(e)), such that v € {; Nguard(e). Since
the number of pairs in W is finite, and there is a finite number of transitions e,
the number of pairs in W’ is also finite.

The time transition function f;(W,J) can be computed for any delay ¢ which
is a rational mumberﬁ7 using a reachability procedure. There are two differences

3 In practice, the granularity of § will be restricted by the numerical accuracy of the
machine.

218 Stavros Tripakis

between the standard reachability procedure for timed automata, and the one
for computing f;(W,d). For f;(W,§), reachability is restricted only to unobserv-
able transitions of A. Standard reachability can be easily modified to meet this
condition: simply select only transitions labeled with unobservable events. Also,
standard reachability computes the set of states reachable at any time, whereas
reachability for f;(WW,d) computes the set of states reachable in exactly § time
units. This condition can be satisfied as follows.

First, we compute the set of states reachable from W in at most 6 time units.
Call this set W<s. W<s can be represented as a finite list of DBMs, and can be
computed by extending W with a new clock z initially set to 0 and exploring
only the states satisfying z < §. Once W<, is computed, we take the intersection
W<s N (z = §): this set contains all states reachable from W in exactly ¢ time
units. Finally, the clock z is eliminated by existential quantification, and the
final result is obtained:

Fi(W,6) =3z . (WS(; N(z = 5)). (5)
set W to W° ; /* initialize diagnoser state */
set timer « to 0 ; /* set an incrementing timer */

loop
if (fa(W) = yes) then
announce fault ;
end if ;
await (event interrupt) or (z = TO) ; /* await event or timer interrupt */
if (event a interrupt) then

set W to fe(ft(W,z),a) ; /* update state by time and discrete step */
else
set W to f(W,TO) ; /* update state by time step */
end if ;
set timer z to 0 ; /* reset timer for new time interrupt */
end loop.

Fig. 7. Diagnoser implementation loop.

Figure [7] shows how the implementation of a diagnoser would look like, in
pseudo-code. After initializing its state and setting a timer to 0, the diagnoser
enters an infinite loop. Inside the loop, the diagnoser checks whether a fault has
occurred and if so it announces it. Then, it waits until an (observable) event
is received, or the timer times-out (this happens after TO time units, where
TO is a parameter), updates its state accordingly, and repeats the loop. Such
an implementation requires an execution platform which provides some kind of
event interrupts, time-outs and clock reading.

4 The memory required for such an implementation is generally unbounded, since the
set of reachable states of the diagnoser is generally unbounded. This is not surprising,

Fault Diagnosis for Timed Automata 219

A diagnoser implemented like the one shown in Figure [will function cor-
rectly, provided the loop can be executed sufficiently fast. In practice, this means
that the maximum time to compute the transition function should not be greater
than the minimum delay between two observable events. This requirement is sim-
ilar to the synchrony hypothesis, which implies the correct execution of programs
written in synchronous languages such as Esterel [2] or Lustre [14].

5 Related Work and Discussion

Fault diagnosis has been studied by different communities and in different con-
texts, e.g., see [2002T241[7J6], and citations therein. We restrict our discussion to
work closely related to timed systems.

[11/32] study fault-diagnosis on a discrete-time model, called timed discrete-
event systems (TDES). In TDES, time passing is modeled by a special (observ-
able) event “tick” and the problem of diagnosis can be easily reduced to the
untimed case and solved using untimed techniques. Discretization of time is also
used in [23], to reduce the problem into a finite-state diagnosis problem.

[16] use a timed automaton model without clocks, but where time intervals
are associated with discrete states. They propose template monitoring as a tech-
nique for distributed fault diagnosis, where templates are sets of constraints on
the occurrence times of events.

Fault diagnosis is closely related to observation and state estimation prob-
lems. Such problems are considered in the context of hybrid automata in [6/17].
These methods rely on an observable part of (or function of) the plant’s con-
tinuous variables. Based on the observable continuous variables (and possibly
discrete observations as well), the dynamics of the unobservable variables must
be determined. This approach cannot be used to solve our problem, because we
assume that no clock of the timed automaton is directly observable. Instead, the
diagnoser must infer the values of clocks based only on the events it observes.
This is a reasonable assumption, since the plant model is often an abstraction
of a physical process, which has no clocks anyway.

Fault-diagnosis is also related to the controller-synthesis problem, introduced
for discrete-event systems in [I9]. The problem has been studied for timed and
hybrid models as well (e.g., see [BIUIOJT2/HIRIB0J25]). Some of these works are
restricted to a discrete-time framework, for example [I0/I8]. The rest make a
major assumption, namely, that the state of the plant (including the values of
all clocks) is fully observable. This is unrealistic, except for the case where the
plant is deterministic and all its events are observablef.

[30] discusses how partial observability of plant states can be taken into
account, by assuming the existence of a function vis(-) from the state space of

since the set of states of a timed automaton is also generally infinite. Thus, even if
the diagnoser was represented as a timed automaton, an unbounded memory would
be generally needed to implement clocks.

In this case, the controller can replicate the clocks of the plant and reset them
whenever it sees the corresponding observable event.

5

220 Stavros Tripakis

the plant to a domain of possible observations: when the plant is at state s,
the controller observes vis(s). Then, [30] shows how to synthesize memoryless
controllers in the above framework. The controllers are memoryless in the sense
that their decision depends only on the current observation and not past ones.
This is why the algorithm is incomplete: it might fail to synthesize a controller,
even though one exists. Another drawback is that the function wvis(-) is not
always easy to come up with, for example, when starting with an observation
framework based on events, as we do here.

Acknowledgements

I would like to thank Eugene Asarin, Oded Maler and Peter Niebert.

References

1. Uppaal web-site: www.docs.uu.se/docs/rtmv/uppaal/.

Esterel web-site: www.esterel.org.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

4. Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Department of Computer Science, Stanford University, 1991.

5. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control. Elsevier,
1998.

6. A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-Vincentelli. De-
sign of observers for hybrid systems. In Hybrid Systems: Computation and Control,
2002. To appear.

7. P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large active
systems. Artificial Intelligence, 110, 1999.

8. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proc. of the 18th IEEE Real-Time Systems Symposium, San
Francisco, CA, pages 232-243. IEEE, December 1997.

9. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
a model-checking tool for real-time systems. In Proc. of the 10th Conference on
Computer-Aided Verification, CAV’98. LNCS 1427, Springer-Verlag, 1998.

10. B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-event
systems. IEEFE Transactions on Automatic Control, 39(2), 1994.

11. Yi-Liang Chen and Gregory Provan. Modeling and diagnosis of timed discrete
event systems — a factory automation example. In ACC, 1997.

12. D.D. Cofer and V.K. Garg. On controlling timed discrete event systems. In Hybrid
Systems I1I: Verification and Control. LNCS 1066, Springer-Verlag, 1996.

13. D.L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, Lec-
ture Notes in Computer Science 407, pages 197-212. Springer—Verlag, 1989.

14. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9), September 1991.

15. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193-244, 1994.

o

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

Fault Diagnosis for Timed Automata 221

L.E. Holloway and S. Chand. Time templates for discrete event fault monitoring in
manufacturing systems. In Proc. of the 1994 American Control Conference, 1994.
S. Narasimhan and G. Biswas. An approach to model-based diagnosis of hybrid
systems. In Hybrid Systems: Computation and Control, 2002. To appear.

J. Raisch and S. O’Young. A DES approach to control of hybrid dynamical systems.
In Hybrid Systems I11I: Verification and Control. LNCS 1066, Springer-Verlag, 1996.
P. Ramadge and W. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control Optim., 25(1), January 1987.

Amit Kumar Ray and R. B. Misra. Real-time fault diagnosis - using occupancy
grids and neural network techniques. In Industrial and Engineering Applications of
Artificial Intelligence and Ezpert Systems, IEA/AIE. LNCS 604, Springer-Verlag,
1992.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete event systems. IEEE Transactions on Automatic Control,
40(9), September 1995.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Failure diagnosis using discrete event models. IEEE Transactions on Control Sys-
tems Technology, 4(2), March 1996.

J. Sztipanovits, R. Carnes, and A. Misra. Finite state temporal automata modeling
for fault diagnosis. In 9th ATAA Conference on Computing in Aerospace, 1993.

J. Sztipanovits and A. Misra. Diagnosis of discrete event systems using ordered
binary decision diagrams. In 7th Intl. Workshop on Principles of Diagnosis, 1996.
C. Tomlin, J. Lygeros, and S. Sastry. Synthesizing controllers for nonlinear hybrid
systems. In Hybrid Systems: Computation and Control. LNCS 1386, Springer-
Verlag, 1998.

S. Tripakis. The formal analysis of timed systems in practice. PhD thesis, Univer-
sité Joseph Fourrier de Grenoble, 1998.

S. Tripakis. Verifying progress in timed systems. In ARTS’99, LNCS 1601, 1999.

S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting bisim-
ulations. Formal Methods in System Design, 18(1):25—68, January 2001.

J.N. Tsitsiklis. On the control of discrete event dynamical systems. Mathematics
of Control, Signals and Systems, 2(2), 1989.

H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. of
IEEE Conference on Decision and Control, 1997.

H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In Proc. of the 80th IEEE Conference on Decision and Control, 1991.

S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in finite-state
automata and timed discrete-event systems. In 38th IEEE Conference on Decision
and Control, 1999.

	Introduction
	Timed Automata with Faults and Unobservable Events
	Diagnosability
	The Notion of Diagnosability for Timed Automata
	Checking Diagnosability
	Finding the Maximum Delay for Fault Detection

	Diagnosers
	Constructing a Diagnoser
	Diagnoser Implementation and Run-Time Considerations

	Related Work and Discussion
	References

