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Abstract. Following the recent successes of bounded model-checking,
we reconsider the problem of constructing models of discrete-time Dura-
tion Calculus formulae. While this problem is known to be non-elemen-
tary when arbitrary length models are considered [Han94], it turns out
to be only NP-complete when constrained to bounded length.
As a corollary we obtain that model construction is in NP for the for-
mulae actually encountered in case studies using Duration Calculus, as
these have a certain small-model property.
First experiments with a prototype implementation of the procedures
demonstrate a competitive performance.
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1 Introduction

Duration Calculus, as introduced in [ZHR91] and thoroughly analyzed in [HZ97]
and [Frä97], is a logic for reasoning about embedded real-time systems at a high
level of abstraction from operational detail. While the abstractness of the vocab-
ulary of Duration Calculus is desirable for system specification and analysis, it
proved to be a burden for automatic verification support. Checking dense-time
models against Duration Calculus requires certain behavioral properties of the
model, like number of state changes being finitely bounded over any finite time
interval [Frä97,Frä02], unless the use of temporal operators or of negation is se-
riously restricted, as in [ZZYL94,BLR95,Lak96]. Otherwise, the model property
turns out to be undecidable [HZ97,Frä97,Frä02].

Discrete-time Duration Calculus, i.e. Duration Calculus interpreted over the
natural numbers as a time domain instead of IR≥0, has more favorable decid-
ability properties, as first pointed out in [ZHS93] and more deeply analyzed by
Hansen in [Han94]. Following this discovery, there have been various experiments
towards building automatic verification support for discrete-time Duration Cal-
culus, e.g. [SS94a,SS94b,Pan00]. However, none of these systems has come to be
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routinely used for checking non-trivial formulae. We believe that the primary rea-
son is that the computational complexity of those systems, be it either Sestoft’s
and Skakkebæk’s method [SS94a,SS94b] or Pandya’s MONA-based procedure
for a very rich Duration Calculus [Pan00], is extremely high.

While extreme, namely non-elementary, complexity is in general unavoidable
as deciding or model-checking Duration Calculus is worst-case non-elementary
[HZ97,Frä02], this need not be the typical case, as the MONA experience shows
[BKR96]. In fact, the author’s findings, when doing a prototype implementation
of a Duration Calculus checker in 1996, were that considerably more efficient
ad-hoc constructions for typical specification formulae were easy to find:

“However, the non-elementary complexity of the decision procedure need not
be an obstacle to practical applications, as deep nesting of chop and negation
which leads to the blow-up in complexity is hardly ever encountered in prac-
tice, except within iterated application of some derived standard operators. In
most cases, more efficient decision procedures than obtained through unfolding
their definitions can be easily devised for these derived operators. [...] While
such a special treatment of derived operators does not influence the worst-case
complexity, it does reduce complexity of checking formulae where deep nesting
of negation and chop only occurs through iterated application of derived oper-
ators. In a prototypic implementation of the decision procedure performed by
the author, enhanced treatment of timed leads-to and some other frequently
encountered derived operators resulted in a dramatic increase of performance
when applied to the gas-burner example [RRH93].”

[Frä97, p. 51]

In the current paper, we set out to give a formal justification for that obser-
vation. Following the recent successes of bounded model checking [BCZ99], we
investigate the complexity of bounded model construction for Duration Calcu-
lus, which turns out to be NP-complete. We then identify a class of formulae
having a small-model property and show that typical Duration Calculus speci-
fication formulae belong to this class, which proves that checking such formulae
is NP-easy.

The structure of this paper is as follows: we start by introducing Duration
Calculus in Section 2. Section 3 reviews effective construction of arbitrary-length
models of Duration Calculus formulae and its computational complexity. Section
4 defines the bounded model construction problem, provides effective construc-
tions for it, and shows it to be NP-complete. In Section 5, we turn to show-
ing that typical Duration Calculus formulae encountered in case studies have a
small-model property that renders them NP-easily checkable by bounded model
construction. Section 6, finally, provides some first performance figures obtained
from comparing a prototype implementation of the BMC procedure to Pandya’s
MONA-based DCValid tool [Pan00].

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that
is specially tailored towards reasoning about durational constraints on time-
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dependent Boolean-valued states. Since its introduction in [ZHR91], many vari-
ants of Duration Calculus have been defined [Zho93], some aiming at even in-
creased expressiveness [Ska94,ZL94,ZH96,Pan96,Pan00], others at investigation
of mechanizability aspects of durational calculi and therefore restricting the vo-
cabulary [ZHS93,SS94a,Han94,ZZYL94]. Aiming at a mechanizable design calcu-
lus, we follow the second line and present a slight subset of the Duration Calculus
defined in [ZHR91]. The particular restrictions of our logic follow those taken
in [Han94,Frä97]. Our subset allows full treatment of the gas burner case study
[RRH93], the primary case study of the ProCoS project. This indicates that
our subset offers an interesting vocabulary for specifying embedded real-time
controllers.

Syntax. The syntax of DC used in this paper is as follows.

〈formula〉 ::=
∫ 〈state assertion〉 ≥ 1 | ¬〈formula〉 |
(〈formula〉 ∧ 〈formula〉) |
(〈formula〉 � 〈formula〉)

〈state assertion〉 ::= 〈state variable〉 | ¬〈state assertion〉 |
(〈state assertion〉 ∧ 〈state assertion〉)

〈state variable〉 ::∈ Varname ,

where Varname is a countable set of state variable names.
While the meaning of the Boolean connectives used in DC formulae should

be obvious, the temporal connective � (pronounced “chop”), which is inherited
from Interval Temporal Logic [Mos85], may need some explanation. Formulae
are interpreted over, first, trajectories providing valuation of state variables that
varies over time and, second, over finite intervals of time, called “observation
intervals”. A formula φ � ψ is true of an observation interval iff the observation
interval can be split into a left and a right subinterval s.t. φ holds of the left
part and ψ of the right part. A duration formula

∫
P ≥ 1is true of an observation

interval iff the state assertion P , interpreted over the trajectory, is true for at
least one time instant in the observation interval. Fig. 1 provides an illustration
of the meaning of these formulae.

Despite its simple syntax, DC is very expressive, as can be seen from the
following abbreviations frequently used in formulae:

–
∫
P ≥ k

def=
∫
P ≥ 1 � . . . �

∫
P ≥ 1︸ ︷︷ ︸

k times

asserts that state assertion P holds for

at least k time units within the current observation interval,
–

∫
P < k

def= ¬∫
P ≥ k means that P holds for strictly less than k time units

in the current observation interval,
– � ≥ k

def=
∫
true ≥ k, where true is an arbitrary tautologous state assertion,

denotes the fact that the observation interval has length k or more1,
1 Note that � in � ∼ k is not a state variable, but a piece of concrete syntax that

denotes the length of the current observation interval.
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The formula
∫
y ≥ 1 holds on observation interval O1 = [0, 4], as the accu-

mulated duration of y being true over this interval exceeds 1. Analogously,∫
(x ∧ ¬y) ≥ 1 holds on observation interval O2 = [4, 6]. Therefore, the for-

mula (
∫
y ≥ 1) � (

∫
(x ∧ ¬y) ≥ 1) holds on the catenation O3 = [0, 6] of the

other two observation intervals.

Fig. 1. The meaning of
∫
P ≥ 1 and of the chop modality

– � < k
def= ¬� ≥ k confines the length of the observation interval to be strictly

less than k,
– as usual, the Boolean connectives can be expressed through

(φ ∨ ψ) def= ¬(¬φ ∧ ¬ψ) ,

(φ ⇒ ψ) def= (¬φ ∨ ψ) ,

(φ ⇐⇒ ψ) def= ((φ ⇒ ψ) ∧ (ψ ⇒ φ)) ,

true
def= (φ ∨ ¬φ) ,

false
def= ¬true .

– Furthermore, the temporal operators � and �, meaning ‘in some subinter-
val of the observation interval’ and ‘in each subinterval of the observation
interval’, can be defined as

�φ
def= (true � φ � true) ,

�φ
def= ¬�¬φ .

In the definition of �φ we omitted the inner parentheses as chop is associative.
As the formula (true � φ � true) is satisfied on an observation interval iff the
observation interval can be split into three adjacent subintervals, the leftmost
and the rightmost satisfying true, the middle one satisfying φ, �φ indeed means
‘in some subinterval of the observation interval φ holds’. �φ is simply its dual,
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meaning ‘in no subinterval of the observation interval ¬φ’, or equivalently ‘in
each subinterval of the observation interval φ’.

Semantics. Duration Calculus is interpreted over trajectories

traj ∈ Traj def= {traj : Time → Varname → IB}

that provide a time-dependent, Boolean-valued interpretation of state variables.
Unlike most expositions of DC, we will deal here with a discrete-time interpreta-
tion of DC, i.e. use Time def= IN. Satisfaction of a formula φ by a trajectory traj is
defined as a limit property over a chain of finite chunks from traj called observa-
tions, where an observation is a pair (traj , [a, b]) ∈ Obs def= Traj × TimeInterval
with TimeInterval being the set of finite closed intervals in Time.

Before we expand on that limit property, we will define when an observation
(traj , [a, b]) satisfies a formula φ, denoted traj , [a, b] |= φ. For an atomic duration
formula

∫
P ≥ 1, this is defined by

traj , [a, b] |= ∫
P ≥ 1 iff

b−1∑
t=a

χ ◦ [[P ]] ◦ traj (t) ≥ 1 ,

where [[P ]](σ) canonically lifts a Boolean-valued interpretation σ : Varname → IB
of state variables to an interpretation of the state assertion P , e.g. [[a∧¬c]](σ) =
σ(a) ∧ ¬σ(c), and χ maps truth values to {0, 1} according to the convention
χ(false) = 0 and χ(true) = 1. I.e.,

∫
P ≥ 1 holds on (traj , [a, b]) iff P holds in

at least one time instant in {a, . . . , b− 1}.
The interpretation of Boolean connectives is classical:

traj , [a, b] |= ¬φ iff traj , [a, b] �|= φ ,
traj , [a, b] |= (φ ∧ ψ) iff traj , [a, b] |= φ and traj , [a, b] |= ψ .

Satisfaction of a chop formula φ � ψ, finally, requires that the observation
interval can be split into two subintervals [a,m] and [m, b] s.t. φ resp. ψ hold on
the two subintervals:

traj , [a, b] |= (φ � ψ) iff ∃m ∈ Time ∩ [a, b] .
(

traj , [a,m] |= φ and
traj , [m, b] |= ψ

)
.

A trajectory traj satisfies a formula φ, denoted traj |= φ, iff any prefix-
observation of traj satisfies φ — formally, traj |= φ iff traj , [0, t] |= φ for each
t ∈ Time. Note that this is the original definition of satisfaction as used in
[ZHR91] and that a different notion, namely traj |= φ iff traj , [b, e] |= φ for each
b ≤ e ∈ Time, has been introduced in more recent expositions, e.g. [HZ97]. We
stick to the original definition as it yields a strictly more expressive logics, being
able to simulate the new definition through encoding φ by ¬(true � ¬φ) and,
furthermore, being able to express initialization properties not expressible with
the new semantics.
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For notational convenience, we denote the set of models of φ, i.e. the set of
trajectories satisfying φ, by M[[φ]]. As usual, we say that φ is valid iff M[[φ]] =
Traj .

Besides the infinite-trajectory semantics given above, it is also possible to
provide a finite-trace interpretation of DC: we say that a finite trace tr ∈
(Varname → IB)∗ satisfies φ, denoted tr |= φ, iff there is some trajectory
traj ∈ Traj and some observation interval [a, b] ∈ TimeInterval such that

∀t ∈ {0, . . . , len(tr) − 1} · traj (a+ t) = tr(t),
a+ len(tr) − 1 = b,

traj , [a, b] |= φ ,

where len(tr) denotes the length of the sequence tr . We then say that tr is a
finite model of φ. The set of finite models of φ is denoted Mfin[[φ]]. Due to the
definition, it is easy to see that the existence of finite models is closely coupled
to validity, which was previously defined via infinite models:

Lemma 1. A DC formula φ is valid (i.e., M[[φ]] = Traj ) iff ¬φ has no finite
model (i.e., Mfin[[¬φ]] = ∅).
Proof. By definition of validity, a DC formula φ is invalid iff there is some tra-
jectory traj ∈ Traj and some t ∈ IN such that traj , [0, t] |= ¬φ. As satisfaction
of DC formulae is invariant to translation of the observation interval (cf. any
of [ZHR91,Rav95,Frä97,HZ97]), this is the case iff there is traj ′ ∈ Traj and
b ≤ e ∈ Time with traj ′, [b, e, ] |= ¬φ. By definition of satisfaction by finite
traces, this is equivalent to ¬φ having a finite model. ��
It follows from the previous lemma that when aiming at decision procedures for
DC, the tool support may w.l.o.g. concentrate on constructing the finite models.

3 Unbounded Model Construction

We will now turn to the problem of effectively constructing for some arbitrary
formula φ some finite model of φ, if such exists, or deciding that none exists,
otherwise. This problem, in the remainder called the unbounded model construc-
tion problem as no bound on the length of the models is imposed, has been
extensively studied before. While unbounded model construction poses severe
decidability problems in a dense-time setting (i.e., Time = IR), as shown in
[ZHS93] and more deeply analyzed in [Frä97], it can be done through a straight-
forward mapping to star-free regular expressions in the discrete-time setting, as
first recognized by Hansen in 1994 [Han94]:

Lemma 2. Given a DC formula φ, a star-free regular expression accepting a
language that corresponds directly to the finite models of φ can be constructed
effectively (in linear time).

Hence, an automaton generating (a representation of) the finite models of φ
can be constructed effectively.



Take It NP-Easy: Bounded Model Construction for Duration Calculus 251

Proof. It is straightforward to map DC formulae to star-free regular expressions
describing their finite models [Han94]. An appropriate mapping R of formulae
φ with free(φ) ⊆ V , where V ⊆ Varname is arbitrarily chosen, to a star-free
regular expression over α def= V → IB is

R[[
∫
P ≥ 1]] def= α∗

(⋃
p∈P̃

p
)
α∗ ,

R[[¬φ]] def= R[[φ]] ,

R[[φ ∧ ψ]] def= R[[φ]] ∩R[[ψ]] ,

R[[φ � ψ]] def= R[[φ]] ·R[[ψ]] ,

where P̃ denotes the set of valuations in the alphabet α that satisfy P . It is
straightforward to prove by induction on the structure of the formula that tr |= φ

iff w ∈ LR[[φ]] for w def= 〈tr(0)|V , tr(1)|V , tr(2)|V , . . . , tr(len(tr) − 1)|V 〉. ��
Given a DC formula φ, the translation R[[φ]] yields a star-free regular ex-

pression of size at most 2|free(φ)| · |φ|. As checking emptiness of extended regular
expressions is non-elementary [MS73], this provides a non-elementary algorithm
for model construction of discrete-time DC. Furthermore, it is easy to see that
in general one cannot do better, as was also observed in [Han94]:

Theorem 1 (Non-elementariness of propositional DC). The problem of
deciding existence of a finite model to a DC formula is non-elementary.

Proof. The emptiness problem of extended regular expressions, which is non-
elementary according to [MS73], has a linear encoding in DC: let re be an
extended regular expression over an alphabet of the form α = V → IB, with
V ⊂ Varname being finite. For any a ∈ α let Pa be the state assertion

Pa
def=

∧
u∈V,

a(u)=true

u ∧
∧

v∈V,

a(v)=false

¬v .

We will encode words w = 〈w1, . . . , wn〉 ∈ α∗ by finite traces first satisfying Pw1 ,
then Pw2 , and so on. To achieve this, we use the mapping F of star-free regular
expressions to DC formula defined by

F [[a]] def=
∫
Pa ≥ 1 ∧ � < 2 ,

F [[re1 ∩ re2]]
def= F [[re1]] ∧ F [[re2]] ,

F [[re1 · re2]]
def= F [[re1]] � F [[re2]] ,

F [[re1]]
def= ¬F [[re1]] .

It is easy to show by structural induction that for any extended regular ex-
pression re the formula F [[re]] is satisfied by a finite model tr iff w ∈ Lre for
w

def= 〈tr(0)|V , tr(1)|V , tr(2)|V , . . . , tr(len(tr) − 1)|V 〉.
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As the mapping tr �→ 〈tr(0)|V , tr(1)|V , tr(2)|V , . . . , tr(len(tr) − 1)|V 〉 from
finite traces to α∗ is surjective, this implies that F [[re]] has a finite model iff
Lre �= ∅. Thus F provides a linear encoding of the emptiness problem of extended
regular expressions into the {�P �}-fragment of DC, which proves that deciding
existence of a finite model of a DC formula is non-elementary due to the non-
elementary complexity of language emptiness for extended regular expressions
[MS73]. ��

4 Bounded Model Construction

Given a natural number k and a DC formula φ, the bounded model construction
problem for k and φ (BMC(φ, k) for short) is to assign to φ a model of length k
iff such a model of φ exists.

It is obvious that this problem is computationally much simpler than the
unbounded model construction problem: one could, for example, generate all
strings w ∈ αk and test for membership w ∈ Lφ, which would yield an algorithm
that is exponential in k (as there are |α|k words to generate) and polynomial in
|α| · |φ| (as checking membership is in P for star-free regular languages) — which
however means that it is worst-case exponential in |φ| also, as |α| = 2|free(φ)| may
grow exponentially in |φ|. However, we will show in the sequel that the problem
is in fact much simpler, namely NP-complete in both k and |φ|.

We start by showing that bounded model construction for DC is NP-hard:

Lemma 3. For each k ≥ 1, BMC(φ, k) is NP-hard in |φ|.
Proof. The duration formula

∫
P ≥ 1 is satisfiable by a model of length k ≥ 1

iff the propositional formula P is satisfiable. As satisfiability of propositional
formulae is NP-complete, NP-hardness of BMC(·, k) follows. ��

For showing NP-easiness, we will provide a polynomial reduction to propo-
sitional logic.

4.1 Straightforward Encoding into Propositional Logic

We start with a straightforward reduction, which is fine for most practical pur-
poses, though not optimal if not augmented with further analysis, as we will
show.

As usual in propositional satisfiability-based bounded model checking, we
represent the values of the different state variables in the different time instants
by propositional variables. Therefore, we assume that we have a renaming scheme
on variables, which yields for any state variable x and any index k ∈ IN a
unique propositional variable name xk. We will use overloading to denote the
straightforward lifting of this mapping to state expressions. Hence, Pk denotes
the propositional formula obtained from mapping all state variables x, y, . . . in
the state assertion P to xk, yk, . . .. The reduction of BMC(φ, k) to propositional
logic is then obtained by the mapping
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BMCstraight[[φ, k]] = T k
0 [[φ]],

T j
i [[

∫
P ≥ 1]] =

j−1∨
l=i

Pl

T j
i [[φ ∧ ψ]] = T j

i [[φ]] ∧ T j
i [[ψ]]

T j
i [[¬φ]] = ¬T j

i [[φ]]

T j
i [[φ � ψ]] =

j∨
m=i

Tm
i [[φ]] ∧ T j

m[[ψ]]

where, as usual, the empty disjunction
∨i−1

k=i Pk equals false.
It is straightforward to show by induction on the structure of φ that the

models of BMCstraight[[φ, k]] are in one-to-one correspondence to φ’s models of
length k:

Lemma 4. For each valuation σ of propositional variables, the equivalence σ |=
BMCstraight[[φ, k]] iff trk

σ |= φ holds, where

trk
σ(t)(x) def=

{
σ(xt) iff 0 ≤ t < k
undefined otherwise

for each t ∈ IN and x ∈ free(φ).

As the mapping σ �→ trk
σ is a surjective mapping onto the traces of length k,

it follows that the reduction to propositional logic performed by BMCstraight,
together with satisfiability checking for propositional logic, solves the bounded
model construction problem:

Lemma 5. A DC formula φ has a model of length k ∈ IN iff BMCstraight[[φ, k]]
is satisfiable.

Unfortunately, BMCstraight[[φ, k]] yields a propositional formula of worst-case
size k(chopdepth(φ)+1)|φ|, where chopdepth(φ) denotes the maximum nesting-
depth of chop operators in φ. Consequently, BMCstraight[[φ, k]] can be of ex-
ponential size in chopdepth(φ) and thus also in |φ|. Hence, Lemma 5 shows
soundness and completeness of the construction, yet does not suffice to show
that bounded model construction for DC is NP-easy. Instead, it just proves that
bounded model construction for DC is at most singly exponential.

4.2 Improved Encoding into Propositional Logic

A closer inspection of the formulae generated by BMCstraight[[φ, k]] reveals that
nested chops will in fact generate the same propositional (sub-)formulae multiple
times. E.g., BMCstraight[[

∫
P ≥ 1 � (

∫
Q ≥ 1 � (

∫
R ≥ 1 �

∫
S ≥ 1)), k]] yields

a propositional formula which (k+1)k
2 times contains the particular subformula

T k
k [[

∫
S ≥ 1]]. This can be avoided by introducing auxiliary propositional variables

for “caching” the truth values of common subformulae.
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The simplest such scheme generates exactly (k+1)k
2 auxiliary variables per

subformula of φ. Each such variable encodes the truth value of the correspond-
ing subformula in one of the (k+1)k

2 possible subintervals of {0, . . . , k}. This
scheme resembles the linear-time translation of arbitrary propositional satisfia-
bility problems to CNF due to Tseitin [Tse68], where subformulae are replaced
by fresh propositional variables alongside with suitable definitions of these aux-
iliary variables.

To make this scheme operational, we assume that we have a mapping from DC
formulae and time intervals to propositional variables which assigns to any DC
formula φ and any index pair i, j ∈ IN of indices with i ≤ j a unique propositional
variable name [φ]i,j . We furthermore assume that these variable names [φ]i,j are
different from all propositional variable names xk assigned by the mapping of
state variables and indices to propositional variables. The propositional variable
[φ]i,j will be used to represent the truth value of (sub-)formula φ on observation
interval [i, j]. This can be achieved by associating to [φ]i,j an appropriate defining
term in propositional logic, as in

BMCpoly[[φ, k]] = tk[[φ]] ∧ [φ]0,k

tk[[
∫
P ≥ 1]] =

∧
i∈{0,...,k−1}
j∈{i+1,...,k}

(
[
∫
P ≥ 1]i,j ⇐⇒ (Pi ∨ [

∫
P ≥ 1]i+1,j)

)

∧
∧

i∈{0,...,k}
¬[

∫
P ≥ 1]i,i

tk[[φ ∧ ψ]] = tk[[φ]] ∧ tk[[ψ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

([φ ∧ ψ]i,j ⇐⇒ [φ]i,j ∧ [ψ]i,j)

tk[[¬φ]] = tk[[φ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

([¬φ]i,j ⇐⇒ ¬[φ]i,j)

tk[[φ � ψ]] = tk[[φ]] ∧ tk[[ψ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

(
[φ � ψ]i,j ⇐⇒∨j

m=i([φ]i,m ∧ [ψ]m,j)

)
.

This yields an encoding of BMC(φ, k) into propositional logic of size at most
O

(
k3 · |φ|).
Because of the auxiliary variables, the correspondence between models of

the propositional formula BMCpoly[[φ, k]] and models of φ of length k is slightly
weaker than for BMCstraight:

Lemma 6. For any valuation σ of propositional variables, σ |= BMCpoly[[φ, k]]
implies trk

σ |= φ.
Vice versa, tr |= φ for some finite trace tr implies that there is some valuation

σ with tr = tr len(tr)
σ and σ |= BMCpoly[[φ, len(tr)]].
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Again, it follows that the reduction to propositional logic performed by BMCpoly,
together with satisfiability checking for propositional logic, solves the bounded
model construction problem:

Lemma 7. A DC formula φ has a model of length k ∈ IN iff BMCpoly[[φ, k]] is
satisfiable.

However, as BMCpoly provides a polynomial encoding, this shows that bounded
model construction for DC is NP-easy:

Lemma 8. BMC(φ, k) is NP-easy in |φ| + k, i.e. there is a non-deterministic
algorithm of complexity polynomial in |φ| + k which solves the bounded model
construction problem BMC(φ, k).

Proof. For arbitrary DC formulae φ and k ∈ IN, the mapping BMCpoly[[φ, k]]
provides a propositional encoding of BMC(φ, k) of size O

(
k3 · |φ|), i.e. polyno-

mial in |φ| and k. NP-easiness of BMC(φ, k) thus follows from NP-easiness of
satisfiability of propositional formulae. ��
Together with Lemma 3 this yields

Theorem 2 (NP-completeness). BMC(φ, k) is NP-complete if unary nota-
tion is used for k, i.e. if the size of the problem BMC(φ, k) is considered to be
|φ| + k.

Note that this shows that bounded model construction is considerably cheaper
than unbounded model construction. However, given the non-elementariness re-
sult of Theorem 1, this also shows that the shortest countermodels to DC for-
mulae may in general be of non-elementary size.

4.3 Further Optimizations

It is easy to see that the translation by BMCpoly is still not optimal. For practical
purposes, some enhancements are in order which, while not further reducing the
complexity class, lead to more compact and more rapidly checkable propositional
formulae. The most important such optimization is to take into account whether
a subformula occurs in positive or in negative context and to replace the bi-
implications occurring in the definitions of the auxiliary variables in BMCpoly
by sufficient forms of one-sided implications. Therefore, instead of translating,
e.g., tk[[φ � ψ]] to

tk[[φ]] ∧ tk[[ψ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

(
[φ � ψ]i,j ⇐⇒∨j

m=i([φ]i,m ∧ [ψ]m,j)

)

we may translate positive occurrences (i.e., occurrences that appear under an
even number of negations in the overall formula) to

tk[[φ]] ∧ tk[[ψ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

(
[φ � ψ]i,j ⇒∨j

m=i([φ]i,m ∧ [ψ]m,j)

)
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and negative occurrences (i.e., occurrences appearing under an odd number of
negations) to

tk[[φ]] ∧ tk[[ψ]] ∧
∧

i∈{0,...,k}
j∈{i,...,k}

(
[φ � ψ]i,j ⇐∨j

m=i([φ]i,m ∧ [ψ]m,j)

)
.

Further optimizations can be used for reducing the number of auxiliary vari-
ables, in particular by common subexpression elimination and by, e.g., avoiding
introduction of a further auxiliary variable [¬φ]i,k in negations, instead using
¬[φ]i,k whenever the truth value of subformula ¬φ in the time interval {i, . . . , j}
is needed. In fact, all optimizations proposed for the generation of small CNFs
from propositional formulae (cf. [NW99,PG86]) can be adapted to bounded
model construction for DC formulae. However, all these optimizations, while
being inevitable for a reasonably efficient implementation, will not lead to a fur-
ther reduction of the worst-case complexity, as the NP-hardness result of Lemma
3 shows.

5 A Class of NP-Easy Formulae

The NP-easiness result of the previous section gives hope that bounded model
construction for DC is actually affordable. However, as the non-elementariness
result of Theorem 1 shows, the shortest models of DC formulae may have non-
elementary length s.t. the usefulness of debugging DC specifications by bounded
model construction may be doubtful. Fortunately, as we will show in this section,
it turns out that most DC formulae actually used in specifications have models of
length linear in the formula size, thus rendering BMC a very powerful technique.

We start by defining a certain kind of linear-size patterns that suffice for
describing the trace sets of these formulae:

Definition 1. Given n ∈ IN, we call a sequence 〈u0, u1, . . . , uk〉 with ui ∈
(Varname → IB)∗ for each i ≤ k an n-pattern iff

k∑
i=0

len(ui) ≤ n .

The trace set Lpat defined by an n-pattern pat = 〈u0, u1, . . . , uk〉 is the set de-
fined by the regular expression u0(α∗)u1(α∗)u2(α∗) . . . (α∗)uk over the (infinite)
alphabet α def= (V → IB), i.e.

Lpat
def= Lu0(α∗)u1(α∗)u2(α∗)...(α∗)uk

.

Given a constant c ∈ IN, a DC formula φ is said to give rise to c-linear patterns
iff there is a set Pat of c|φ|-patterns that defines the finite models of φ in that

Mfin[[φ]] =
⋃

pat∈Pat

Lpat .
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Note that in the definition of the trace set Lu0(α∗)u1(α∗)u2(α∗)...(α∗)uk
associated

to a pattern pat = 〈u0, u1, . . . , uk〉, unconstrained segments α∗ are interspersed
only inside the pattern, but not before u0 or after uk. Therefore, it is possible to
represent a single trace tr by a pattern, using the pattern pat = 〈tr〉 of length
1. Similarly, one can represent trace sets beginning or ending in a certain trace
by patterns of the forms pat = 〈tr , ε〉 or pat = 〈ε, tr〉, respectively.

The crucial point about formulae having c-linear patterns is that such for-
mulae have models of small size:

Lemma 9. If φ gives rise to c-linear patterns then φ has some model of length
at most c|φ|, or no model at all.

Proof. If φ gives rise to c-linear patterns then its finite models can be described
by a set Pat of c|φ|-patterns such that Mfin[[φ]] =

⋃
pat∈Pat Lpat . If Mfin[[φ]] �= ∅

then Pat �= ∅. As the conjecture is trivially satisfied if Mfin[[φ]] = ∅, we assume
in the remainder that Mfin[[φ]] �= ∅. Then let pat = 〈u0, u1, . . . , uk〉 ∈ Pat . As
Lpat = Lu0(α∗)u1(α∗)u2(α∗)...(α∗)uk

, it follows that u0 · u1 · . . . · uk ∈ Mfin[[φ]]. The
conjecture follows as len(u0 · u1 · . . . · uk) =

∑k
i=0 len(ui) ≤ c|φ| holds due to pat

being a c|φ|-pattern. ��
Combining above small-model property with the NP-easiness of bounded model
construction, we obtain an NP-easiness result for constructing models of formulae
which have c-linear patterns.

Theorem 3 (NP-easiness of model construction). If φ gives rise to c-
linear patterns then checking for existence of a finite model of φ and — if possible
— constructing a finite model of φ is NP-easy. I.e., for formulae giving rise to c-
linear patterns, there is a non-deterministic algorithm of complexity polynomial
in the size of the formula that decides existence of a finite model and, if such
exists, constructs such a model.

Proof. If φ gives rise to c-linear patterns then, according to Lemma 9, it has
a model of length at most c|φ|, if any. Hence, performing BMC(φ, k) for each
k ≤ c|φ| suffices for checking existence of a finite model and for constructing a
finite model of φ. Due to Theorem 2, this is NP-easy. ��

Corollary 1. Deciding validity of negations of c-linear formulae is in NP.

Proof. Follows immediately from Lemma 1 and Theorem 3. ��
Given this result, it is interesting to see that the so-called DC implementables,

a subset of DC proposed by Ravn for describing system designs [Rav95], are
actually negations of formulae giving rise to 1-linear patterns. In order to show
this we first prove suitable closure properties of formulae giving rise to n-linear
patterns:

Lemma 10. Given c ∈ IN, let φ and ψ be DC formulae giving rise to c-linear
patterns; let π be an arbitrary DC formula and P an arbitrary state assertion.
Then
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1. φ ∧ ψ gives rise to c-linear patterns;
2. φ ∨ ψ gives rise to c-linear patterns;
3. φ � ψ gives rise to c-linear patterns;
4.

∫
P ≥ 1 gives rise to 1-linear patterns;

5. true gives rise to 1-linear patterns;
6. l < k ∧ π gives rise to 1-linear patterns.

Proof. 1. Given an n-pattern pat1 and an m-pattern pat2, the intersection of
the trace sets defined by those two patterns can obviously be defined by a
set of (n+m)-patterns. It follows that Mfin[[φ∧ψ]] can be defined by a set of
c(|φ|+|ψ|)-patterns, as, by the premise of the lemma, Mfin[[φ]] can be defined
by c|φ|-patterns and Mfin[[ψ]] can be defined by c|ψ|-patterns. Hence, as any
(c|φ ∧ ψ| − 1)-pattern is also a c|φ ∧ ψ|-pattern, Mfin[[φ ∧ ψ]] can be defined
by a set of c|φ ∧ ψ|-patterns. I.e., φ ∧ ψ gives rise to c-linear patterns.

2. Straightforward, as the trace sets definable by sets of n-patterns are closed
under union.

3. Analogous to the proof of statement 1.
4. As was already observed in the proof of Lemma 2, the patterns (α∗)p(α∗),

where p ranges over the valuations that satisfy P , describe the finite models
of

∫
P ≥ 1. This is a set of 1-patterns.

5. Mfin[[true]] can be described by the 0-pattern 〈ε〉.
6. If W is the set of traces of length at most k that satisfy π then the set Pat =

{〈w〉 | w ∈ W} of patterns defines Mfin[[l < k ∧ π]]. All patterns in Pat are
by definition k-patterns and thus |l < k ∧ π|-patterns, as k < |l < k ∧ π| 2.

��
Given these closure properties, it is easy to see that the DC formulae encoun-

tered in major case studies, including the “prototype” of all duration formulae,
namely the safety requirement �(l < 30 ⇒ ∫

gas ∧ ¬flame < 6) of the ProCoS
gas burner [RRH93], are typically negations of formulae giving rise to 1-linear
patterns.

Corollary 2 (NP-easiness of typical specification patterns). The follow-
ing formulae are negations of DC formulae giving rise to 1-linear patterns:

1. the DC implementables, as defined in [Rav95],
2. the safety requirement �(l < 30 ⇒ ∫

gas ∧ ¬flame < 6) of the ProCoS gas
burner [RRH93]

The validity problem of these formulae (and their positive Boolean combinations)
thus is in NP.

Proof. 1. DC implementables are built from formulae of the three forms true,∫
P ≥ 1, and l < k∧π using chop and Boolean junctors, with use of negation

2 Note that we measure the length of formulae after expanding abbreviations such
that |l < k| = |¬(

∫
true ≥ 1 � . . . �

∫
true ≥ 1︸ ︷︷ ︸

k times

)| > k.



Take It NP-Easy: Bounded Model Construction for Duration Calculus 259

being limited to a single, outermost, negation. Hence, the fact that DC imple-
mentables give rise to 1-linear patterns follows from Lemma 10 by induction
on the structure of DC implementables.

2. According to Lemma 10, part 6, the formula ¬(l < 30 ⇒ ∫
gas ∧¬flame < 6)

gives rise to 1-linear patterns, as the abbreviations expand to l < 30 ∧
¬(

∫
gas∧¬flame < 6). The conjecture follows, as �φ is equivalent to ¬(true �

(¬φ) � true, the formula true gives rise to 1-linear patterns (Lemma 10,
part 5), and the formulae giving rise to 1-linear patterns are closed under
chop (Lemma 10, part 3).

It follows from Corollary 1 that the validity problem of these formulae is in NP.
��

This shows that validity checking is in fact cheap for typical DC-based spec-
ification formulae, thus giving a formal argument supporting the observation
made in [Frä97, p. 51] and cited in the introduction. Note that above result also
sheds some light on the relative expressiveness of DC implementables compared
to timed automata, as the latter have a PSPACE-complete emptiness problem
[AD94]3, while checking a set of DC implementables for validity is in NP accord-
ing to Corollary 2. This shows that DC implementables, while often considered
to be merely a different syntax for timed automata, are in fact subtly different.

6 Experimental Results

In order to evaluate the proposed method, we have developed a prototype im-
plementation in SWI-Prolog. It employs the compilation scheme BMCpoly with
the optimizations explained in Section 4.3 and generates propositional formulae
in conjunctive clause form (CNFs)4. As a backend for checking the resulting
satisfiability problems we used ZChaff in version zchaff.2001.2.175. As a refer-
ence we took Pandya’s DC-Valid tool [Pan00] in version 1.4β, which translates
DC into the monadic second order logic over strings M2L-Str and uses MONA
[BKR96] in version 1.4 as a verification backend. All experiments were performed
on a 500 MHz Pentium III M with 384 MByte RAM and 300 MByte swap space,
running under Linux. In the sequel, we do just report the runtimes of the ver-
ification backends (i.e. ZChaff and MONA), as a comparison of the translation
times needed by the front ends does not make much sense due to the vastly
different implementation basis (SWI-Prolog vs. C). However, it should be clear
that even an efficient implementation of BMC would presumably spend consid-
erably more time in the frontend than DCValid does, as the translation task is
substantially more involved.
3 While timed automata are usually interpreted over dense time, Alur’s and Dill’s

prove of PSPACE completeness of the emptiness problem does also cover the discrete-
time interpretation and applies even if the time constants are given in unary notation,
like we do in our syntax of DC.

4 In fact, the implementation generalizes BMCpoly by compiling formula tk[[φ]] ∧∨k

e=0[φ]0,e instead of BMCpoly, thus recognizing all models of length at most k.
5 http://www.ee.princeton.edu/˜chaff/zchaff.php
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Fig. 2. Verification time for �(� ≤ 30 ⇒ ∫
gas ∧ ¬flame ≤ n). Horizontal axis: n;

vertical axis: time spent in verification backend (in seconds).

The first group of experiments dealt with checking validity of formulae of the
shape �(� ≤ m ⇒ ∫

P ≤ n), where n < m. It is easy to see that an automaton
recognizing the models of such a formula needs mn − n(n−1)

2 states. Therefore,
one might expect state explosion when checking this very typical DC formula for
large m and n. We tried with moderate m = 30 and various small n by checking

φn
def= �(� ≤ 30 ⇒ ∫

gas ∧ ¬flame ≤ n)

for different n. The formula is invalid for all n < 30. The results are shown
in Fig. 2. DCValid failed for all n > 3 due to MONA running out of memory.
BMC(φn, k) has been performed with k = 31, which is the size for which a
model can be guaranteed, if there is one. The largest CNF generated by BMC
for this problem had 101616 clauses with 53774 Atoms; ZChaff’s memory usage
remained below 10 MByte.

Another group of experiments dealt with Boolean combinations of individ-
ually tractable specifications. We concentrated on the apparently easy case of
variable-disjoint conjuncts or disjuncts. Therefore, we simply replicated the for-
mula �(� ≤ 10 ⇒ ∫

s ≤ 3) under bound renaming. The DCValid/MONA-system
suffered from state explosion in both cases, running out of memory already with
3 conjuncts or disjuncts, while BMC remained stable (Fig. 3).

However, even though some of the CNFs stemming from above problems
are extremely large (multiple 100k clauses and clause lengths > 30 for some
clauses), they may be considered to be friendly instances for Boolean satisfiability
checkers as all of them are stemming from invalid formulae, thus yielding a
satisfiable SAT problem6. Hence we tried a problem that has both valid and
6 Note that the SAT checker is actually used for searching finite models of the negation

of the formula
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Fig. 3. Verification time for
∧n

i=1 �(� ≤ 10 ⇒ ∫
si ≤ 3) and

∨n

i=1 �(� ≤ 10 ⇒ ∫
si ≤ 3).

Horizontal axis: n; vertical axis: time spent in verification backend (in seconds). MONA
ran out of memory for n > 2. BMC was performed for 15 steps.

invalid instances. It is a scheduling problem for three processes. The processes are
modeled through state variables ri indicating when process i is running. Mutual
exclusion is enforced through a conjunction of DC formulae �

∫
ri ∧ rj = 0 for

all i �= j. Furthermore, the demand that all processes run exactly 2 time units7

within any n time unit window — n ∈ IN being the parameter of the problem —
has been formalized through a conjunction of formulae �(� = n ⇒ ∫

ri = 2) for
all i. This formula set is invalid for n ≥ 6, then yielding a prefix of a valid schedule
as counterexample, and valid, i.e. not schedulable, for n < 6. The findings were
that BMC outperformed DCValid on the invalid instances, yet was inferior to
DCValid on the valid instances (Fig. 4).

Similar findings have been obtained on other cases. Thus, it seems that BMC
and DCValid can in fact complement each other, BMC being fast on invalid
instances and thus being a powerful debugging aid, DCValid being faster on
valid instances and thus being suitable for certifying the final product.

7 Discussion

Within this paper, we have shown that ideas taken from bounded model check-
ing [BCZ99] may indeed prove useful for validity checking of Duration Calcu-
lus formulae. While previous approaches to DC decision procedures suffered
from extreme — in the worst case non-elementary — computational complexity,
bounded model construction is ‘only’ NP-complete (Theorem 2), yet sufficient
for practical DC specifications (Corollary 2).
7 A version using 3 time units runtime per process turned out to be intractable by

DCValid.
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Fig. 4. Verification time for the three-process schedulability problem. Horizontal axis:
n; vertical axis: time spent in verification backend (in seconds). BMC time drops sharply
when moving from the region where the formula is valid (n ≤ 5) to the invalid region
(n ≥ 6).

Related findings have been reported by Ayari and Basin in [AB00], where
the complexity of bounded model construction for monadic second order logic
has been investigated. While the complexity does not drop to NP in that case,
it does go down from non-elementary to PSPACE-complete for M2L-Str when
bounded model construction is performed instead of unbounded one. For WS1S,
the complexity remains non-elementary even in the bounded case [AB00]. How-
ever, as M2L-Str is sufficient for encoding DC with quantifiers, as performed
in [Pan00]8, it is planned to combine Ayari’s and Basin’s PSPACE-complete
bounded model construction for M2L-Str with our bounded model construction
for DC for being able to efficiently check quantified DC.
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