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Abstract. This paper introduces means to specify system randomness
within UML statecharts, and to verify probabilistic temporal proper-
ties over such enhanced statecharts which we call probabilistic UML
statecharts. To achieve this, we develop a general recipe to extend a
statechart semantics with discrete probability distributions, resulting in
Markov decision processes as semantic models. We apply this recipe to
the requirements-level UML semantics of [8]. Properties of interest for
probabilistic statecharts are expressed in PCTL, a probabilistic variant
of CTL for processes that exhibit both non-determinism and probabili-
ties. Verification is performed using the model checker PrisM. A model
checking example shows the feasibility of the suggested approach.

Keywords: Markov decision processes, model checking, probabilities,
semantics, UML statecharts.

1 Introduction

The Unified Modelling Language (UML) is more and more pervading system de-
sign and engineering. Accordingly, it is not far fetched to predict that the coming
years shall see substantial efforts to extend the UML and the accompanying de-
sign methodology towards soft real-time, fault-tolerance, quality of service and
the like. First work in this direction has been undertaken, e. g., in [5QIT416].

One of the principal modelling paradigms needed to express such aspects is
the concept of probability, allowing one to quantitatively describe the random-
ness the system is exposed to, the randomness the system itself exhibits, or both.
For instance, probability is a useful means to describe varying workload, to quan-
tify uncertainty in the system timing, as well as to properly model randomised
distributed algorithms. Furthermore, probability is also an abstraction means,
e.g., it allows one to hide data dependencies by just representing the likelihood
of particular branches to be taken.

There are two facets of the probability concept that are worth to be distin-
guished. On the one hand, each reactive system is exposed to external stimuli
that exhibit some kind of randomness. We call this environmental randomness.
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On the other hand, the system behaviour itself may ask for a probabilistic de-
scription, either because the system embodies a randomised algorithm, or be-
cause probability is used for abstraction. We call this system randomness.

This paper addresses system randomness. It introduces probabilistic UML-
statecharts as a means to support the design of probabilistic systems. More
concretely, the paper extends statecharts by probabilistic elements: a transition
is allowed to lead to one of several states depending on a probability distri-
bution; each probability distribution is guarded by a trigger, inspired by [20].
The interference of probabilities, priorities and nondeterminism raises some sub-
tle semantic issues. We attack these issues in a way that allows one still to
employ an arbitrary priority scheme to resolve or reduce nondeterminism. The
semantics is formally defined as a mapping on (strictly) alternating probabilistic
transition systems [10)], a subset of Markov decision processes (MDP) [19]. To
allow verification of probabilistic temporal properties over probabilistic UML-
statecharts, properties are expressed in the probabilistic branching-time tempo-
ral logic PCTL [T], the prime logic for property specification and verification
of models that exhibit both probabilities and nondeterminism. These properties
can be checked using the model checker Prism [I5].

Care is taken to achieve a conservative extension of standard UML state-
charts. Among the various published semantics for statecharts, we take as a rep-
resentative the requirements-level semantics of Eshuis and Wieringa [8], which
is based on the semantics by Damm et al. [6] which in turn formalises the State-
mate semantics of statecharts [I3]. A requirements-level model focuses on the
design; an implementation-level model describes the implementation of a de-
sign. Requirements-level semantics mostly use the perfect technology assump-
tion, which abstracts from limitations (in speed and memory) imposed by an
implementation [1§]. The chosen semantics combines the Statemate semantics
with communication and classification. We have chosen it because it is simple
and close to the most used semantics for UML. A detailed justification of this
semantics and comparisons to Statemate semantics as well as implementation-
level semantics can be found in [8]. The setup of our probabilistic extension,
however, is independent of the UML basis we take. This means that other for-
mal statechart semantics can equally well be enhanced with a similar probabilis-
tic extension, as long as certain principal conditions are respected. We give an
account of these conditions in Sect. [l

We omit some minor features of the semantics, that could be added easily but
would clutter up the exposition. These features include actions on initial transi-
tions and entry and exit actions. We also leave out real-time aspects. To facilitate
model-checking of the underlying model, we confine ourselves to bounded integer
variables and employ a closed world assumption.

In summary, this paper makes the following contributions. (i) It introduces
a generic recipe to conservatively extend a statechart dialect with probabilistic
features. (ii) It details this recipe for the requirement-level semantics of [8], and
identifies subtle interferences between the imposed priority scheme, and the order
of resolving nondeterminism and probabilistic choice. (iii) It proposes to use the
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probabilistic logic PCTL to specify properties over statecharts and shows how
model checking of probabilistic statecharts can be performed effectively.

Organisation of the paper. Sect. [ and [ introduce syntax and semantics of
probabilistic statecharts. In Sect. Hl, we show that this semantics conservatively
extends the non-probabilistic statechart semantics. Sect. Bl presents a logic for
P-statecharts and Sect. [6] demonstrates model checking with a larger example.
Sect. [ discusses our approach in the broader context of statechart semantics
and of probabilistic models.

2 Probabilistic UML Statecharts

This section introduces probabilistic UML-statecharts (P-statecharts, for short),
together with some drawing conventions. We first fix some notations. We assume
familiarity with basic measure and probability theory [21].

Notation. The powerset of a set A is denoted by IP(A4). A probability space is
denoted (2, A, P) where {2 is the set of possible outcomes of the probabilistic
experiments, A C IP({2) is a o-algebra of measurable sets and P : A — [0,1] is a
probability measure. For discrete probability spaces, we sometimes write ({2, P)
instead of (£2,1P(£2), P).

Collection of statecharts. A system consists of a finite collection of communi-
cating statecharts. In the following, we assume a given finite collection of P-
statecharts, denoted by {PSC4,..., PSC,}.

Syntazx. A single P-statechart PSC; consists of the following elements:

— A finite set Nodes; of nodes with a tree structure, described by a function
children; : Nodes; — IP(Nodes;). (If &' € children;(z), then x is the parent
of 2’. Of course, children; has to fulfil several constraints to make it describe
a tree structure. For simplicity, these are omitted here.) Descendants are
children or children of children, etc. The root is denoted root;.

The function type; : Nodes; — {BASIC, AND, OR} assigns to every node its
type. Nodes that are leaves of the tree have type BASIC; children of AND
nodes have type OR; type;(root;) = OR; other nodes have type OR or AND.
The partial function default; : Nodes; —o— Nodes; identifies for each OR
node one of its children as the default (or initial) node.

— A finite set Fvents of events. (Note that the set of events is identical for
all P-statecharts in the collection.) We will use the symbol L to denote “no
event required”; 1 ¢ Fvents.

— A finite set Vars; of variables together with an initial valuation Vg ; : Vars; —
7ZZ, which assigns initial values to the variables. (We only allow bounded
integer variables.)

— A set Guards; of guard expressions. Guard expressions are boolean combi-
nations of the atoms j.isin(z), for j € {1,...,n} and x € Nodes; (with the
intuitive meaning “the P-statechart PSC; is in node z”), and comparisons
like expr < expr and expr > expr, for arithmetic expressions made up from
the variables and integer constants.
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— A set Actions; of actions. Actions are v := expr, which denotes an assignment
to v € Vars;, and send j.e (for j € {1,...,n} and e € Events) with the
intuitive meaning “send event e to the P-statechart PSC;”.

— A finite set PEdges, of P-edges. A P-edge is a tuple (X, e, g, P) where X C
Nodes; is a non-empty set of source state nodes, e € FEvents U {Ll}, g €
Guards; is a guard, and P is a probability measure in the discrete probability
space (IP(Actions;) x (IP(Nodes;) \ {&}), P). We assume that there is a
bijective index function ¢ : {1,...,|PEdges;|} — PFEdges; to simplify the
identification of P-edges.

Note that Guards; and Actions; are defined in terms of the other components. We
will therefore denote a P-statechart simply by (Nodes;, Events, Vars;, PEdges;).

The above definition differs from the usual statecharts syntaxes (e. g., [§]) in
the way edges are refined into P-edges. A P-edge (X, e, g, P) can be considered
as a hyperedge with source node set X, and possibly multiple targets (A,Y),
each target having a certain probability P(A,Y"). Note that a target is an action
set A together with a non-empty set Y of successor nodes. Once the P-edge is
triggered by event e and guard g holds in node X, a target (A,Y) is selected
with probability P(A,Y).

Drawing a P-Statechart. We adopt the following drawing conventions. The root
node is not drawn. Nodes that are not children of an AND-node are drawn as
rectangles with rounded corners. A parent node encloses its children. Children
of an AND-node partition the node by dashed lines. Each OR-node encloses a
black dot and indicates its default node by an arrow directed from the dot to
the default node. A trivial P-edge (where probability 1 is assigned to a unique

action set/node set) with event e, guard g and action set A is denoted as an

arrow % A P-edge possessing a non-trivial probability space consists of two

parts: first an arrow with event and guard ﬂ that points to a symbol @ (a

so-called P-pseudonode), then several arrows emanating from the P-pseudonode,

each with a probability and an action set p/—A>. This notation is inspired by C-
pseudonodes (©), used for case selection purposes e.g., in [12]. If the event on
a P-edge is 1, we may omit it. Further, if the guard is true, we may omit it.
Similarly an empty set of actions may be omitted.

Ezxample 1. Figure [1l depicts a P-statechart which shows the behaviour when
playing with an unreliable, but fair coin: the event “flip” may or may not be
ignored. If the system reacts, it outputs “heads” or “tails”, each with 50 %
chance. If the output is heads, the system stops playing. It is unspecified how
(un)reliable the system is.

3 P-Statechart Semantics

This section discusses the semantics of P-Statechart, which is an adaptation
of the nonprobabilistic semantics in [8]. The semantics is defined in two phases.
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@/2 / heads Won
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playing
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Fig. 1. Example P-statechart. The labels printed in italics (ignore etc.) are not part of
the diagram, but are included to facilitate referencing the edges near the labels.

First, it is defined what will be a step. This encompasses the resolution of nonde-
terminism, probabilistic choice and priorities within a single P-statechart. Sub-
sequently, these steps are used as the buiding blocks in a mapping of a collection
of P-statecharts onto a Markov decision process.

Closed-world assumption. Opposed to [8] we assume a closed system model in
the sense that we do not consider the system to be subject to inputs from the
environment. This “closed-world assumption” simplifies model checking. The
“open-world” semantics of [8] provides for input from the environment of the
statecharts, and therefore, their state transitions consist of several phases, clut-
tering up the semantics. However, if one wants to consider specific environmental
inputs, one can easily add another component that generates the desired events.

Intuitive semantics for a single P-statechart. The intuitive behaviour of a P-
statechart can be described as follows. The statechart is always in some state
(which consists of one or several nodes). A P-edge is taken if the P-statechart
is in the source node(s), the event of the edge happens and its guard holds.
Then, the system chooses one of the possible results (probabilistically and non-
deterministically); it leaves the source nodes, executes the chosen action and
enters the chosen target nodes of the P-edge. More than one edge may be taken
simultaneously, even within a single statechart.

3.1 Step Construction

This section describes how a step is constructed for a single P-statechart PSC;.

Configurations and states. A configuration C; of P-statechart PSC; is a set of
nodes that fulfils the conditions:

— root; € Cj.
— If an OR-node is in C;, then exactly one of its children is in C;.
— If an AND-node is in C}, then all its children are in C;.

The set of all configurations of PSC; is denoted Conf;. A state of PSC; is a
triple (Cy, I;,V;) where C; is a configuration, I; C FEvents is a set of events (to
which the statechart still has to react), and V; : Vars; — Z is a valuation of
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the variables. The set of all valuations of PSC; is denoted Val;. The validity of
guard ¢ in a state depends on the configurations Cf, ..., C, and the valuations
Vi,.ooy Voo We write (Ch..n, Vi) E g iff g holds in the state of the collection
of P-statecharts.

Edges. An edge is a triple (j, A,Y"), where j identifies a P-edge, A C Actions; is
a set of actions and Y C Nodes; is a set of target nodes. The set Edges; is defined
as: {(4,A4,Y) |3X,e, g, P : 1(j) = (X,e,g, P) € PEdges; N P({(A,Y)}) > 0}.

Scope. The scope of an edge (j,A,Y) is the smallest (in the parent—child-
hierarchy) ORr-node that contains both the source nodes ¢(j).X and the target
nodes Y. Since this node only depends on source and target nodes, we refer to
it as scope(1(j).X,Y). (The scope is the smallest node that is not affected when
the edge is executed.)

Steps. A step is a set of edges that are taken together as a reaction to events.
The edges in a step for P-statechart PSC; depend on its current state (C;, I;, V).
A step has to obey several constraints, which are in close correspondance to [g]:

Enabledness. All edges in the step must be enabled. A P-edge (X, e, g, P) is
enabled if the current configuration C; contains its source state nodes X, the
event e is in the current input set I; and the guard g holds: (C1. », V1. .n) F g.
An edge is enabled if its corresponding P-edge is enabled.

Consistency. All edges in the step must be pairwise consistent. This means
that they are either identical or that their scopes are different children of
some AND-node or their descendants (in the latter case, the scopes are called
orthogonal in [§]). If two edges are not consistent, they are called inconsistent.

Priority. We assume a given priority scheme (a partial order on the edges) that
resolves some of the inconsistencies: If an enabled edge e is not in the step,
then there must be an edge in the step that is inconsistent with e and does
not have lower priority than e.

Maximality. A step must be maximal. This means that adding any edge leads
to a violation of the above conditiond?.

We now give an algorithm to construct a step of a single statechart which —
by construction — satisfies the conditions above. The algorithm employs a specific
order with respect to the resolution of nondeterminism and probabilities. Assume
that the current state is (C;, I;, V).

1. Calculate the set of enabled P-edges: for j € {1,...,|PEdges;|},
JEEnP(Cy, I;,V;) iff o(4).X C Cin((j).e € LU{LPA(Cy.. n,Vhi..n) EL(j).g
! It may happen that no P-edge, and consequently no edge, is enabled. Because of the

closed world assumption, this is a deadlock.
2 If there is no unique maximum, the system is nondeterministic.
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C: Printing G: Printer
on printer 2 works

F: Preferred
printer works

B: Printing
on printer 1

start

D: Printer 2 E: Printer 1
unavailable unavailable

Fig. 2. Example of priority depending on target state

2. Draw samples from the probability spaces of the enabled P-edges, reducing
the set EnP(C;, I;, V;) to a set En(C;, I;,V;) of enabled edges.

3. Calculate Steps(En(C;, I;, V;)), where Steps(E) (for E C Edges;) contains
all maximal, prioritized, consistent sets of edges C E.

4. Choose nondeterministically an element of Steps(En(C;, I;, V;)).

Task 2 can be formalised as follows: For every state (C;, I, V;), we define a
discrete probability space PR ¢, 1, v;) over IP(Edges,). Its probability measure
is the lift of the following probability weight to sets of sets: for any selection of
Aj and Y; (for j € EnP(C;, 1;, V),

P({(j,A;,Y;) | j € EnP(C;, I;,V;)}) = [T )PaY;)
JEENP(C;,I;,V;)

and P(FE) = 0 otherwise. Note that if EnP(Cy,1;,V;) = &, then P is the trivial
probability weight such that P(@) = 1.

Tasks 3 and 4 can be achieved by applying the original algorithm for nextstep
(see [8]) to the calculated set En(C;, I;,V;). It is a nondeterministic algorithm
that calculates a maximal, prioritized, consistent step, given a set of enabled
edges. As a consequence, the above algorithm (consisting of Tasks 1-4) leads to
a step that is enabled, consistent, prioritized and maximal.

It is worth to highlight that (after calculating the enabled possibilities in
Task 1), we first choose probabilistically (in Task 2) according to the probabilities
given by the P-edges. Only after that, in Tasks 3 and 4, we resolve the nondeter-
minism between the remaining possibilities. This order — first resolve probabil-
ism, then nondeterminism — is essential, as shown by the following two examples,
and can only be reversed by sacrificing the expressivity of P-statecharts, e.g.,
by disallowing arrows to cross node boundaries from a P-pseudonode to a target
node.

Priority depends on probabilistic choices. In the mostly used priority schemes,
priority depends on the scope. For example, in the UML priority scheme, smaller
(in the parent—child-hierarchy) scopes have higher priority, according to [12]. The
P-statechart in Fig. Bldescribes a fragment of a system with two printers, of which
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Fig. 3. Example of consistency depending on target state

the preferred printer (printer 1) is available only with probability %, and the other
(printer 2) is available in % of the cases. The probabilities are independent. If a
print request is started, the system directs it to the best available printer. The
edge leading from A: Ready to print to C: Printing on printer 2 (denoted A — C)
with scope G: Printer works has higher priority than A — D and A — E (with
scopes root), but A — C has lower priority than the edge A — B (with scope F:
Preferred printer works), because F: Preferred printer works is a descendant of G:
Printer works. So, if in configuration {A, F, G, root} event start happens, the step
produced by the above algorithm is:

— {A — B} with probability P({A - B,A — C})+ P({A —- B,A = D}) = %,
as edge A — B has priority over all other edges.

— {A — C} with probability P({A - E,A - C}) =1.3 =3 as A - Chas
priority over A — E.

— Either {A — D} or {A — E} with probability P({A — E,A — D}) = % . i =
é. The choice between these two steps is purely nondeterministic.

As the edges that belong to one P-edge have different scopes, it is impossible
to resolve the priorities prior to resolving the probabilistic choice. Although this
is exemplified using the priority scheme of [12], a similar P-statechart can be
drawn for the Statemate priority scheme (which also depends on the scope).

The priority scheme of [22] does not depend on the scope, but only on the
source nodes. For such a priority scheme, the above phenomenon is not a prob-
lem; but the next example is independent from priorities.

Consistency depends on probabilistic choices. The P-statechart in Fig. Bl shows
a system which reacts to an event e in two independent components, of which
one causes an error with probability i. The edge A — Error is inconsistent with
B — D, as the scopes root and G are not (descendants of) different children
of an AND-node (orthogonal). So, if in configuration {A, B, F, G, H, root} event e
happens, the step produced by the above algorithm is:

— {C,D,F, G, H, root} with probability P(A — C) = %
— Either {A,D,F, G, H, root} or {Error, root} with probability P(A — Error) =

i; most priority schemes only allow one of the two cases.
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Thus, the probability of taking edge B — D as a reaction to event e depends on
the resolution of the probabilistic choice in the parallel node F. It is impossible
to resolve the nondeterminism first, as there may or may not be inconsistent
edges.

In summary, the influence of the target state in the construction of a step,
as present in both the consistency definition and the priority scheme, forces us
to resolve probabilism prior to establishing consistency and priority.

3.2 Step Execution

After having settled how steps are selected within a single P-statechart, we
now consider their joint execution in the collection {PSC,...,PSC,}. The
execution of a step is the same as in [8], as probabilistic aspects are not involved
anymore. On the level of a single statechart, executing a step consists of two
parts: updating the variables and events occurring in the actions and determining
the new state. As the actions of one P-statechart may influence the sets of events
of other P-statecharts, we describe the step execution of the complete collection
of P-statecharts.

Default completion. The default completion C’ of some set of nodes C' is the
smallest superset of C' such that C’ is a configuration. If C’ contains an OR-
node z but C contains none of its descendants, C’ contains its default node
default;(x).

Ezecuting a step. Given configurations (C1,...,Cy), steps (T1,...,T,), and val-
uations (V1,...,V,,), we define for P-statechart PSC; the new state (C}, I/, V/)
by:

— C! is the default completion of the union of |J Y and
(4,AY)€ET;

{r € C; |V(j,A,Y) €T,z is not a descendant of scope((5).X,Y)}.

—Il=U{e|3(,AY)e T, :send i.e € A}
1

- V! =Vil{v:i=expr | v :=expr € A, (j,A,Y) € T;}], the same valuation as
before except for the assignments in any action of the step. If these assign-
ments are inconsistent, V; is undefined.

We denote this as: Execute(Ch. ny 11,0y Vi..m) = ((C1, 1L, VY, oo (CLLTL V).

nn

3.3 Markov Decision Process Semantics

Recall that in the step construction algorithm we resolve probabilistic choices
prior to resolving non-determinism. A semantic model — that contains both non-
determinism and discrete probabilities — preferably obeys the same order. Bundle
probabilistic transition systems (BPTS) [7] is one of the rare models for which
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this is indeed the case. Although this model would be appropriate as semantical
model, we prefer to use the (more standard) model of Markov decision processes
(MDP) [19]. This slightly complicates the semantics, but has the nice property
that it facilitates model checking of probabilistic properties.

We now embed the step semantics described above in a global semantics,
mapping a collection of P-statecharts onto a finite Markov decision process. To
allow the interpretation of temporal logic formulas later on, we equip an MDP
with a state-labelling that assigns a set of atomic propositions to states. We
assume a given fixed set AP of atomic propositions.

Markov decision processes. An MDP is a quadruple (S, Distr, L, sg) where:
— S is a finite, non-empty set of states.
— Distr assigns to each state a finite, non-empty set of distributions on S.
— L:S — IP(AP) assigns to each state a set of atomic propositions.
— Sp € S is the initial state.

In state s, the atomic propositions in L(s) hold. Informally speaking, an MDP
exhibits the following behaviour. Whenever the system is in state s, a probabil-
ity distribution p € Distr(s) is chosen nondeterministically. Then, the system
chooses probabilistically the next state according to the selected distribution pu.

Paths in an MDP. A path is an infinite sequence of states (sg, s1, . ..) such that
S0 is the initial state and the probability that s;y; is reached from s; is > 0, for
each i. A path represents a possible behaviour of an MDP.

MDP semantics of a collection of P-statecharts. In an MDP, first a non-deter-
ministic choice is made (among the available distributions) after which a next
state is selected probabilistically. This order is reversed for the construction of
a step of a P-statechart. To overcome this difference, we add auxiliary states to
the MDP. Recall that (original) states consist of, per P-statechart, a configu-
ration, a set of events, and a valuation, written (C,I,V). Auxiliary states will
correspond to the outcome of Task 2 of the step construction algorithm and con-
sist of, per P-statechart, a configuration, a set of enabled edges and a valuation,
written (C, E, V). Each auxiliary state will be labelled with the distinguished
atomic proposition A. It offers a non-deterministic choice of trivial distributions
(assigning probability 1 to a single state) only, such that each successor state is
an original state (not labelled A). Original states, in turn, do only possess sin-
gleton sets of probability distributions (hence there is no non-determinism), and
all states with positive probability will be states labelled A. This type of MDPs
is also known as (strictly) alternating probabilistic transition systems [10].
n

Let the set AP = {A}U | {i.isin(x) | z € Nodes; }. For a finite collection of
i=1
P-statecharts (indexed from 1 to n), the MDP (S, Distr, L, s¢) is defined by:
— 5 =0U A where

O = X (Conf,xIP(Events) x Val;) and A = X (Conf,xIP(Edges;)x Val;).

n n
i=1 =1
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Fig. 4. MDP semantics of the P-statechart of Fig.[d]

— Distr((s1,...,8,)) =

o {(sh,...,sh) =TIy pi(sh)}, if (s1,...,sn) € O, where y; is the distri-
bution corresponding to PR,, = (IP(Edges;), P), defined by u,;(C;, E’,
Vi) = P({E"}) for E' C Edges; and j;(s) = 0 for other stated?,

. {M; | 3T; € Steps(E;) : s = Ezecute(Cy. ., T ., Vl,,,n)} otherwise. !
denotes the trivial distribution that assigns probability 1 to state s.

(s ) = iL:Jl{z.zsm(x) |z e C;}  if(s1,...,8,) €O

{2} otherwise

—s0=((C51,9,V0,1),--,(Cf n, D, Vo.n)) € O, where Cj ; is the default com-
pletion of {root;} and Vp; is the initial valuation in the ith P-statechart.

where s; = (C;, I;, Vi) if (s1,...,8,) € O and s; = (C;, E;, V;) otherwise.

Ezxzample 2. To illustrate how P-statecharts are mapped onto MDPs, we consider
the “unreliable, but fair coin” P-statechart from Fig. [l We compose this P-
statechart with an event generator, which generates “flip” events at random. (If
we don’t add a component which generates “flip” events, the only reachable state
of the system would be the initial state, due to the closed world assumption.)
The MDP semantics of this collection of two P-statecharts is illustrated in Fig. @
Here, original states of the form (C, I, @) (where I is a set of events) are shown
by circles with the sets C' and I inscribed. Auxiliary states of the form (C, E, @)
(where F is a set of edges) are shown by boxes with the sets C' and E inscribed.
The names used for edges are shown in italics in Fig. [T} the nodes and edges of
the event generator are omitted.

3 If no edges are enabled in P-statechart ¢, this will lead to wi(Cy, 2, V5) = 1.



366 David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen

4 Comparison to Non-probabilistic Semantics

In this section, we compare our P-statechart semantics to the semantics of the
corresponding non-probabilistic statechart. For the sake of simplicity, we adapt
the semantics of [8] to our notation and abstract from some minor aspects of
their semantics (the very same aspects mentioned in Sect. [I).

A (traditional) statechart is a tuple (Nodes, Events, Vars, Edges) where
Edges C TP(Nodes) x (Events U {L}) x Guards x IP(Actions) x IP(Nodes) is
a set of edges, and the other components are as for a P-statechart. A step is —
like before — an enabled, consistent, prioritized and maximal set of edges. The
execution of steps in a finite collection of statecharts leads to a new state of the
statecharts similar to the procedure described in Sect. The semantics of a
collection of statecharts is a Kripke structure (instead of an MDP). A Kripke
structure KS is a quadruple (S,T, L, sg), where S, L and sq are defined as for
MDPs and T'C S x S is the (non-probabilistic) transition relation.

Projections. To facilitate the comparison, we define three projections: one that
abstracts from the probabilistic choices in a P-statechart (called «1), and one
that abstracts from the probabilistic choices in an MDP (called «s). The pro-
jections replace probabilities by nondeterminism. Let a4 (PSC;) = SC; where
SC; is obtained from PSC; by replacing the set of P-edges PFEdges; by the
set of edges Edges; and by adding some variables to handle the interplay be-
tween probabilities and priorities correctly: For every nontrivial P-edge where
edges have different priorities, we add one variable to make a nondeterministic
choice between the possible continuations of the P-edge. So, Edges’; has the form
{X,e,gN...;,AU{..},})Y)|3d:3P:(d) = (X,e,g,P)A(d, A Y) € Edges,},
where the ... stand for checks of and assignments to new variables, where nec-
essary. We also add an extra state Init to initialize the variables. Later on, we
will use a third projection 7 to remove the additional variables and Init again.
Further, ay ({PSC4,...,PSC,}) = {an(PSCY),...,a1(PSC,)}.

Ezample 3. Figure[ illustrates a;: it contains a possible translation of Fig. 2lto
a statechart. As both P-edges in the P-statechart have edges of different priority,
o adds two variables.

The projection ay is defined by: ao (S, Distr, L, sg) = (S', T, L s, o), where:

- 5 ={{(C1,1,V1),...,(Cp,I,,Vy)) € S| I; C Events}
— T ={(s,s") | I € Distr(s) : (35 € S : pu(8) > 0A Iy’ € Distr(3) : p/(s') >
0)}

State set S’ contains all non-auxiliary states, and (s, s") € T whenever s can move
to s’ via some auxiliary state § in the original MDP with positive probability.

Theorem 1. The following diagram commutes:

{PSCy,...,PSC,} —*— {SC,...,5C,}

semll wosemzl

MDP 2 KS
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/vl:=2,v2:=2

/vl =1,v2:=2 /vl =2,v2:=1

C: Printing G: Printer . R
Pint F: Prefered

printer works on printer 1

start [v2 = 1] start [v1 = 1]

A: Want
to print
start [vl = 2]
D: Printer 2 E: Printer 1
unavailable unavailable

Fig. 5. A translation of Fig. P to a statechart

start [v2 = 2]

where semy denotes our MDP-semantics and sems denotes the KS-semantics

of (8.

Proof. The proof is straightforward (but tedious) by checking the components
of the resulting Kripke structures. The central idea is sketched below: The sets
of steps in both semantics correspond to each other.

Assume given a state s; = (C;, I;, V;) of one P-statechart (according to semy)
and a step 7; with positive probability. We have to prove that there is a corre-
sponding step 77 in a corresponding state s; of sema(a1(95)).

The state s} is (Cy, I;, V/) i, where V/ extends V; with suitable values for the
new variables, such that the guards added to the edges in T; by a; become true.
The edges in T} are extensions of the edges in T; by assignments to the new
variables. We have some freedom of choice in these assignments, as 7; does not
prescribe anything. (This is the point where nondeterminism replaces probabil-
ism.) If one considers a path, one can choose the target that enables the next
step in the path. The set T} is a step: it contains only edges enabled in s} and it
is consistent, prioritized and maximal because T; is a step.

The other parts of the proof are easy.

Corollary 1. The P-statechart semantics is a conservative extension of the stat-
echart semantics of [8].

5 Property Specification for P-Statecharts

As a property specification language for P-statecharts we propose to use the
probabilistic branching time logic PCTL, which extends CTL with probabilistic
features. PCTL was originally interpreted over fully probabilistic systems, i.e.,

4 States are not subjected to probabilities, that’s why s; and s, are so similar.
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systems that do not exhibit any non-determinism [11]. We use the interpretation
of PCTL over MDPs defined by Baier and Kwiatkowska [1,15]@, similar to pCTL
and pCTL* [3]. PCTL allows one to express properties such as (¥) “the proba-
bility that a system crashes within 13 steps without ever visiting certain states
is at most 10757, In order to decide these properties, the non-determinism is re-
solved by means of schedulers (also known as adversaries or policies). Temporal
formulas are then interpreted with respect to all schedulers or some schedulers.
Here, we restrict ourselves to the fragment of PCTL for which actual model-
checking tool-support is available; i.e., we only consider path properties inter-
preted for all fair schedulers. Formulas of the form “There is a fair scheduler
such that ...” can be checked via duality. The model-checking algorithm thus
returns “true” for property (%), iff (¥) holds for all fair schedulers that resolve
the non-determinism. For simplicity, we do not consider next-formulas.

Syntazx and informal semantics. The syntax of PCTL is given by the following
grammar, where a denotes an atomic proposition, p € [0, 1] denotes a probability
and 1 is a placeholder for a comparison operator <, <, =, >, >:

@, n=true|false [a|v<k|v=k|@AY|-p|PapleUSE ¥ | Poyle U ]

The meaning of true, comparisons, conjunction and negation is standard. Recall
from Sect. B3] that atomic propositions are A and i.isin(x), which holds in
states where P-statechart i is in node x. Formula P—,[¢ USF 4] holds in a state
if the probability of the set of paths that reach a i-state in at most k steps
while passing only through y-states is O p. Property ¥, e.g., is expressed as
Pcio-5[7 US' crash] where ¢ describes the states that should be avoided.
Paple U ] has the same meaning, but does not put a bound on the number
of steps needed to reach the i-state. The temporal operator & can be defined
e.g., as P, [OSFp] = Poyltrue USF ). (A formal interpretation on MDPs is
omitted here, and can be found in [IJ).

Schedulers and fair schedulers. The above explanation is ambiguous if non-
determinism is present, because the probability will (in general) depend on the
resolution of non-determinism. Non-determinism is resolved by schedulers. A
scheduler selects, for each initial fragment of a path through the MDP, one of
the possible (non-deterministic) continuations. It does not resolve probabilistic
choices. Several types of schedulers do exist, see [I]. Here, we consider fair sched-
ulers. A fair scheduler only selects fair paths. A path 7 is fair if, for each state s
that appears infinitely often in 7, each of the possible non-deterministic continua-
tions in s also appears infinitely often. Thus, for instance, P<;g-s[—~¢ U S13 crash)
is valid if for all fair schedulers the probability to reach a crash-state within 13
steps (without visiting a ¢-state) is at most 1075. From now on, we assume all
PCTL-formulas to be interpreted over all fair schedulers.

Example 4. For the P-statechart in Fig. [, we express the following properties:
® Baier and Kwiatkowska sometimes call the logic PBTL.
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— “The probability that eventually the game will be over is 17:
P_1[C —l.isin(playing)]

— “In less than 50 % of the cases, the game will be won within at most 20
steps”:
Po.5[OS? Lisin(won)]

PCTL interpreted over P-statecharts. In our setting, a formula is interpreted
over a finite collection of P-statecharts {PSCY,..., PSC,} and one of its states
(s1,...,8n) where s; = (C;, I;,V;). Formally, the semantics is defined via the
MDP semantics, i.e., {PSC1,..., PSC,} F ¢ iff the corresponding MDP satis-
fies . Here  denotes a syntactic translation needed to “hop along” the auxiliary
(A-labelled) MDP states. It is defined by induction over the structure of formu-
las. For elementary PCTL-formulas, such as atomic propositions and variable
constraints, this translation is simply the identity, e.g., true = true. For the
remaining operators we have:

PNy =9pAY
Paple USF ] = Poyl(p v ) US 9]
Pople U ] =Popl(e Vv &) U )]

6 Example: Hawks and Doves

This section applies P-statecharts and PCTL to the specification and verification
of the behaviour of a small example taken from theoretical biology. Conflicts
between animals are often analysed using simulation techniques. We consider
the following variant of the hawk—dove-game [4[I7]. In a population of animals,
individuals combat for some advantage (such as food, dominance, or mates), their
success being measured in points. Individuals may fight using several strategies.
In particular, we consider

Hawk strategy: Hawk-like individuals will fight with great effort, until they win
the contest (45 points) or are severely injured (—3 points).

Dove strategy: Dove-like individuals will fight with limited effort, until they win
the contest (45 points) or give up after some fight (—1 point). When facing
a hawk, they immediately give up (£0 points).

We consider a small scenario with three individuals and an arbiter. In every
round, the arbiter chooses nondeterministically a pair of individuals; they will
be opponents in the next contest. The two individuals select probabilistically
the hawk or dove strategy. The arbiter decides who wins. Figures[@ and [7] show
the P-statechart for one individual and the arbiter, respectively. The players all
start off with 17 points and the individual scores may float in the interval [0, 55]
(otherwise they stop). Applying the MDP semantics of Sect. [ together with
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lose / points := points — 1

give up
start [ points in [0,55] ] (~ fighting

/ points := 17

win / points := points + 5

lose / points := points — 3 ]

Fig. 6. Statechart of a contestant in the hawk—dove-game

Y2 /i1.win, i3.lose Y2 /i1.win, i2.lose

Y2 /i1.lose, i3.win Y2 /i1.lose, i2.win
[(i1.hawk and i3.hawk) [(i1.hawk and i2.hawk)
or (i1.dove and i3.dove)] or (i1.dove and i2.dove)]

[ready] / i1.start, i3.start [ready] / i1.start, i2.start
fighting [i1.hawk and i3.dove] idle [i1.hawk and i2.dove] fighting
(|1 ,|3) /i1.win, i3.giveup /i1.win, i2.giveup (|1 ,|2)
[i1.dove and i3.hawk] N [i1.dove and i2.hawk]

/i1.giveup, i3.win /i1.giveup, i2.win

[ready] /
i2.start, i3.start

fighting
(i2,i3)

Fig. 7. Statechart of the arbiter in the hawk-dove-game. We have omitted some P-edge
labels from and to node fighting(i2,i3), which are analogous the other fighting nodes.

some further optimisations (leaving out trivial intermediary states, encoding the
configuration efficiently) leads to a system of 3,147,947 reachable states. The size
of the state space is mainly dominated by the integer variables storing the scores.
Different scenarios were checked with the model checker PrRisM [15] where each
scenario consisted of different types of animals. These types were generated by
taking different values for p, the probability to behave like a dove. Formulas are
checked for the initial state. The three considered scenarios are the following.

One daring and two careful players. This is a scenario with two individuals (¢;
and ¢y) for which p = 0.75 and one individual (d) with p = 0.5. The probability
that any individual dies (its points drop below 0) turns out to be very small,
with the daring individual running a higher risk of being killed, since

P<ro-7[(—dead(c1) A ~dead(d)) U dead(cz)] is refuted
(and likewise with ¢; and ¢y reversed), but

P<io-7[(—dead(c1) A ~dead(cz)) U dead(d)] holds.
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The actual probability of d dying first is at most (depending on the sched-
uler) 7.206 - 10~7, while the probability of the careful one dying first is at most
5.923 - 1078 (each). On the other hand, the daring individual is likely to outper-
form the others on accumulating a certain number of points, say 37. This follows
from verifying:

Pos|(points,, < 37 A points; < 37) U points,, > 37] which is valid, and
P<o.rs[(points., < 37 A points,, < 37) U points; > 37) which is refuted.

Three aggressive players. In this scenario each animal (dy, do, d3) plays hawk
with probability 0.9 (i.e., p = 0.1). The probability that some of the individuals
dies is relatively high, e.g.,

P<o.o1[(—dead(dr) A —dead(d2)) U dead(ds)] is refuted

(and likewise for the permutations of the d;). So, there are schedulers which will
lead to d3 dying first with more than 1% chance. The probability that one of the
individuals gets more than 37 points within 100 steps is always less than 0.75,
as

Peo.75[OSI (pointsy, > 37)]  holds.

Three careful players. In the opposite situation (the three individuals play dove
with probability 0.9), the individuals (c1, ca, c3) are less likely to die and more
likely to get a reward fast. The probability that any of the individuals dies is
rather low as, e. g.,

P<iro-10[(—dead(ci) A —~dead(c2)) U dead(cz)] holds.

So, for any scheduler, the probability of cs dying first never exceeds 10710, The
probability that one of the individuals gets more than 37 points within 100 steps
turns out to be greater than 0.8, since

Peog[OSIO (points, > 37)] is refuted.

Conclusion. As a general conclusion of the experiments we may state that it is
good for a population as a whole if the animals are careful; but an individual
may be at an advantage if it is more daring than the others.

7 Discussion and Conclusion

This section discusses our approach in the broader context of statechart seman-
tics and of probabilistic models.

Contribution. This paper has developed a recipe to conservatively extend a
statechart dialect with probabilistic features. We have applied this recipe to
the requirement-level UML semantics of [8], mapping the probabilistic extension
onto Markov decision processes as semantic models. Further, we have shown
how to use the probabilistic logic PCTL to specify properties over probabilistic
statecharts and how model checking of probabilistic statecharts can be performed
effectively.
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Adaptation to other statechart semantics. Various semantics have been published
for statecharts, [2] lays out the spectrum of the many possibilities in defining a
semantics. The extension to P-statecharts described in this paper can be applied
to a wide range of other semantic definitions. The main idea of our extension is:

1. Syntactically, probabilities are trigger-guarded, i. e., reactions to triggers may
depend on the result of a probabilistic experiment, whereas the triggers
themselves are not subjected to probabilities. This restricts our approach
to describing system randomness, opposed to environmental randomness.

2. Semantically, we reduce the P-statechart probabilistically to a (traditional)
statechart, and this is done just before a step. The step is constructed and
executed in the traditional statechart setting, and the step’s result is inter-
preted in the P-statechart again. Such a reduction is possible as long as the
effects of probabilistic experiments are encapsulated in the steps.

In principle it is possible to define a (traditional) statechart semantics which —
if interpreted in the probabilistic extension — would break the encapsulation of
probabilities within a step. For instance, one could imagine a semantics where
a state variable depends on the enabledness of specific outgoing edges (which
could only be decided after resolving the probabilism). However, such a feature
appears to be rarely used, the overview given in [2] does not mention any feature
like this.

Possible simplifications. Sect. has mentioned BPTS as the most natural
model for a P-statechart semantics. Thus, we could have simplified the semantics
if there were a BPTS model checker available.

On the other hand, observe that the examples in Sect.B.1ldepend on the fact
that some P-edge allows a probabilistic choice between target nodes with dif-
ferent parents. For most priority schemes, and for consistency, not the actually
entered nodes are relevant, but their parents. If we disallow probabilistic choices
between target nodes with different parents, we could resolve nondeterminism
and probabilism in a different order and simplify several points: Theorem [ can
be formulated and proved simpler. It becomes feasible to give a direct semantics
in terms of MDPs (i. e., without intermediary states), which is closer to the intu-
ition behind P-statecharts. However, it is no more possible to express behaviours
like the examples in Sect. [3.11

Lessons learnt. 1t is easy to formulate an intuitive extension of statecharts with
probabilities. However, when we started formalising and detailing it, a delicate
balance had to be found with the other features of statecharts. Our first version
of Theorem [ for example, didn’t work properly in the case that some edge has
a higher priority than another edge which belongs to the same P-edge.

We have tried to formulate the extension as powerful as possible. This also
revealed the problems of extending statecharts more clearly. For some applica-
tions, a simpler extension, or a simpler variant of basic statecharts is enough. In
that case, one should ask whether the result is worth the effort.
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Future work. Apart from exploring the specification and verification approach
to system randomness on larger case studies, we are intending to investigate
the very same approach in the context of environmental randomness. This asks
for modelling and verification support for probabilistic and timing aspects of
external stimuli a reactive system is exposed to.
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