Constructing Test Automata
from Graphical Real-Time Requirements

Henning Dierks' and Marc Lettrari?

! University of Oldenburg, Department of Computer Science,
P.O.Box 2503, 26111 Oldenburg, Germany
dierks@informatik.uni-oldenburg.de
2 OFFIS, Escherweg 2, D-26121 Oldenburg, Germany
lettrari@informatik.uni-oldenburg.de

Abstract. A semantics for a graphical specification language of real-
time properties (Constraint Diagrams) is presented. The new semantics
is given in terms of Timed Automata. A model in terms of Timed Au-
tomata satisfies the property given by a Constraint Diagram if the model
in parallel composition with the semantics of the Constraint Diagram
can reach a certain state. This kind of question can be checked by all
model-checkers for Timed Automata. A prototype of a tool is presented
that automatically translates an appropriate Constraint Diagram into
the input language of the tool Uppaal.

1 Introduction

Whenever continuous time is necessary to model a real-time system, Timed
Automata [AD9I0IAD94] are usually applied. The advantage of this model is the
existence of decision procedures which have been successfully implemented by
model-checking tools like Uppaal [LPW97] and Kronos [Yov97]. In principle, it
is decidable whether a system of Timed Automata satisfies a formula given in
TCTL (timed computation tree logic, [ACDI0/HNSY94]). However, reachability
properties can be verified more efficiently.

One of the main obstacles to verify formally a real-time system is to specify
the desired properties correctly. In the case of reachability this task is not diffi-
cult. However, many properties of interest are not simple reachability questions.
Then the user has the choice between these possibilities:

— To express the property in TCTL formulas or

— to build a test automaton that serves as a wrapper for the property, i.e. the
test automaton reaches a certain state if and only if the property is (is not
resp.) satisfied.

The disadvantage of the first method is that it is error-prone in the sense of
a mismatch between the property expressed by the formula and the property
in mind of the specifier. The disadvantage of the second method is that the
construction of a test automaton is also error-prone.

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 433 2002.
© Springer-Verlag Berlin Heidelberg 2002

434 Henning Dierks and Marc Lettrari

In this paper we propose the following approach. So-called “Constraint Di-
agrams” (CDs for short) have been proposed in [Die96/Kle00] as a graphical
specification language for real-time properties. We present a test automaton se-
mantics for CDs that is equivalent (in an appropriate sense) to the semantics
given by [Die96/KIe00] in terms of Duration Calculus [ZHR9IHZ97]. All details
about this equivalence including the proof can be found in {LetOO]H. The reasons
for choosing CDs are

— the graphical oriented syntax (in assumption/commitment style) which em-
ploys sequences of phases to specify the behaviour and
— the formal semantics which is tailored to meet the human intuition.

The decision to construct test automata from CDs is driven by the demand
for wide range of applicability. This is guaranteed by test automata because
reachability tests are implemented in all available tools for Timed Automata.
The test automaton 7' that is the semantics of a Constraint Diagram C has
a particular state ¢peq. A model M in terms of Timed Automata satisfies the
property expressed by C if and only if gpqq is not reachable for M || T.

Related Work: A similar graphical language for requirements’ capture are Sym-
bolic Timing Diagrams [Sch01] (STD) and its real-time extension RTSTD [F.197].
One of the main differences between CDs and (RT)STDs is that the latter do
not allow commitments in the past.

Constructing test automata is not a new idea (e.g. [HLR93|) and has also been
applied to Timed Automata [ABLISILPW9S|. The latter approaches construct
test automata from formulas in temporal logics to overcome the lack of full
TCTL in Uppaal. As discussed above these approaches still have the risk of a
mismatch between the property in mind and the property written as formula.
Our approach tries to minimise this risk by choosing CDs which are designed to
be more readable and accessible for non-experts in temporal logics.

Structure: The paper is organised as follows: In Sect. [2] we introduce a running
example, the well-known case study “Generalised Railroad Crossing”. Proper-
ties of this case study are specified by CDs in Sect. [} in order to explain the
syntax and semantics briefly. In Sect. @] we present the main contribution of this
paper, namely the test automaton semantics for a subset of CDs. The prototypic
implementation of a tool is explained in Sect. [}l Before we conclude we apply
our result again to the running example in Sect.[d. Note that this paper concen-
trates on the description of the test automaton semantics and its application.
Another issue is to establish the correspondence between this new semantics
and the Duration Calculus semantics given in [KIe00]. This problem requires
a relation between the semantical basis of Timed Automata (ie. timed traces)
and the semantical basis of Duration Calculus (ie. function with domain Rs.
In [Die99IDFMVIRa] such a relation can be found. On the basis of this relation
equivalence proofs were worked out in [Lef((] and cannot be presented here due
to space limitations.

! Appendix[A] contains brief introductions to both DC and the DC semantics for CDs.

Constructing Test Automata from Graphical Real-Time Requirements 435

2 The Generalised Railroad Crossing

Our approach is illustrated by a case study. The problem of specifying a gener-
alised railroad crossing (GRC) and verifying its properties was posed in [HL94]
and suggested as a benchmark problem in comparing the suitability of differ-
ent formal methods in [HM96], where many solutions are given. In [DD97] both
the behaviour of the system and its properties were specified by CDs and an
implementation was given in terms of PLC-Automata [Die99]. The question
whether the implementation meets the specification was answered by semantical
arguments on the basis of the temporal logic Duration Calculus [HZ97/ZHRI1].
With the approach presented in this paper, the verification of CDs can be done
automatically.
The description of the GRC in [HL94] is:

The system to be developed operates a gate at a railroad crossing. The
railroad crossing I lies in a region of interest R, i.e. I C R. A set of trains
travels through R on multiple tracks in both directions. A sensor system
determines when each train enters and exits region R. To describe the
system formally, we define a gate function g(t) € [0,90], where g(¢t) =0
means the gate is down and ¢(¢) = 90 means the gate is up. We define
a set \; of occupancy intervals, where each occupancy interval is a time
interval during which one or more trains are in I. The ith occupancy
interval is represented as \; = [r;,1;], where 7; is the time of the ith
entry of a train into the crossing when no other train is in the crossing
and v; is the first time since 7; that no train is in the crossing (i.e.,
the train that entered at 7; has exited as have trains that entered the
crossing after 7;).

Given two constants & and &, the problem is to develop a system to
operate the crossing gate that satisfies the following two properties:
Safety Property: ¢t € U;\; = g(t) = 0 (The gate is down during all
occupancy intervals.)

Utility Property: ¢ € [, — &, v + &) = g(t) = 90 (The gate is up
when no train is in the crossing.)

3 Constraint Diagrams

Constraint Diagrams (CDs for short) have been introduced in [Die96] as a graph-
ical description language for real-time requirements. The motivation stems from
the graphical notion of timing diagrams that are often used to specify proper-
ties of hardware designs. The idea of CDs is a representation of intervals in an
assumption/commitment style. In Fig. [[lan example of a simple CD is given.
This CD can be read as follows: It constrains the behaviour of two Boolean
variables called S and A. For all (prefixes of infinite) computations that satisfy
the assumptions the commitments have to be fulfilled. The assumptions are the
unboxed entities in Fig. [[1 They specify that there is an interval with a length
of 10 time units where the Boolean variable S is false. The commitments are

436 Henning Dierks and Marc Lettrari

Fig. 1. Specification of a watchdog.

the boxed entities which require the Boolean variable A to be true after the =5
interval within 1 time unit. Hence, the CD in Fig. [specifies that whenever we
observe an interval of length 10 where =S holds, then the variable A (“alarm”)
should become true within at most one time unit.

The benefit of CDs are both the accessibility and the readability for non-
experts in comparison to formulas given in temporal logic. The following exam-
ples of CDs specify the behaviour of trains in the case study GRC. The track
under consideration in this case study (i.e. region R) can be empty (“E” for
empty), at least one train is approaching the crossing and no train is crossing
(i.e. no train is in I) (“A” for approaching), or at least one train is crossing (Cr
for “crossing”). The CDs in Fig. P specify the following properties of the track:

a) Initially the track is empty;

b) if the track is empty, a train may approach; approaching trains need at least
€1 time units to reach the crossing;

c¢) if A holds, a train may cross (Cr).

)
track f------------ S
)
B
track f--------- —t- - - oo
[El’oo[
)
A
track f--------- - - tommoomo o

Fig. 2. Specification of track behaviour.

The first CD of Fig.] consists of two intervals with no assumptions at all
which is indicated by the dashed lines. The commitment is that during the first

Constructing Test Automata from Graphical Real-Time Requirements 437

s ~1
. = |7
X t
[c,d]
[a,]
J i~
!
X; }

Fig. 3. General syntax of CDs.

interval the track has to be empty. The semantics of this CD basically requires
the following: “Each finite prefix of an observation of the track which can be split
into two intervals, can be split into two intervals with an empty track during the
first interval.”

The second CD of Fig.] assumes four intervals with the assumption that the
track is in F during the second period. The commitment requires state A during
the third interval if the track leaves state E. This has to hold for at least £; time
units if the track leaves state E. Note that the semantics of CDs always require
just a prefiz of the commitmentsd. In the case of the second CD this would also
allow the track to remain F forever.

The last CD of Fig. Rlrequires all A phases to be succeeded by Cr phases.

We discuss the CD of Fig.[3 to explain more generally syntax and semantics of
CDs. Note that the CDs presented above contain some notational abbreviations
which are explained later in this chapter. Figure [3] presents the general syntax
of CDs.

A CD consists of a number of lines where each line symbolises the behaviour
of a finitely typed variable. Each line is split into some phases@. Each phase
carries two annotations:

2 The idea of accepting also prefixes of commitments does not seem to be natural
at first sight. However, without those prefixes the semantics of CD would not meet
the intuitive meaning of the drawings. Consider the watchdog in Fig. [l again. If a
prefix of a computation with length 11 is observed where —.S was true within the
interval [0.5, 10.5], then we would not expected that this computation violates the CD
because the alarm still might happen in time, namely within]11, 11.5]. Hence, as long
as a computation 7 can be extended in such a way that the extended computation
satisfies the commitments of a CD, then 7 satisfies the CD.
If the duration of a phase is not specified, it is possible that the duration is 0. This
fits to the Timed Automaton model where several transitions may happen at the
same time point. This is sometimes called “two-dimensional time”. If this is not
desired, it is possible for all CDs presented in this paper to specify explictly that the
duration of a phase is greater than 0 (cf. Subsect. [L5]).

438 Henning Dierks and Marc Lettrari

— The unboxed annotation is a state assertion speaking about the variable of
that line. This assertion represents the assumption for that phase. E.g. we
assume that X; satisfies initially %.

— The boxed annotation is a state assertion speaking about the variable of
that line. This assertion represents the commitment for that phase. E.g. we
require that X; satisfies initially 7.

Moreover, arrows between borders of phases are allowed which carry also two
annotations:

— The unboxed annotation is an interval that represents the assumed time
distance between the given events. E.g. we assume that the initial phase of
X; holds longer than the initial phase of X;. The time difference is in [a, b].

— The boxed annotation is an interval that represents the required time dis-
tance between the given events. E.g. we require that the second phase of X;
ends earlier than the beginning of the last phase of X;. The time difference
has to be in [e, f].

The meaning of the CD is: For all computations and for all ¢ € R>¢ holds:
Whenever the computation behaves within period [0,¢] in a way such that the
variables evolve as given by the 7} assertions and the unboxed intervals, then it
is possible to find a partition of [0, ¢] such that a prefix of the commitments (7}
and the boxed intervals) is satisfied. An introduction of the formal semantics
employing Duration Calculus can be found in App. [Al

Several abbreviations have been introduced for notational convenience. Those
we need in this paper are the following: If a state assertion 7}, is equivalent to true,
then 7}, is omitted and a dashed line is drawn instead of a solid line. If a state
assertion 7} is equivalent to true, it can be omitted. If an interval annotation of
an arrow is [0, oo, it can be omitted. Intervals of the form [r, r| are abbreviated
by r. If an arrow restricts the beginning and the end of the same phase, the
arrow itself is not drawn and the interval annotations are given as additional
annotations of the phase. E.g. the =S phase in Fig. [[lis assumed to last 10 time
units. The arrow starting at the beginning and ending at the end of the =S
phase is not drawn. The time interval [10, 10] is written as 10 and annotated to
the phase instead of the arrow.

4 Test Automaton Semantics for Constraint Diagrams

Due to the expressiveness of Constraint Diagrams we cannot expect to be able
to assign a test automaton semantics for all cpdl Hence, we look for interesting
subsets of CDs for which a test automaton semantics can be assigned. In [Lefli()]
several subsets of CDs have been identified for which a test automaton semantics
can be given.

4 Appendix [C] presents an example for which no test automaton semantics can be
found that uses only finitely many clocks.

Constructing Test Automata from Graphical Real-Time Requirements 439

4.1 Requirements for the Model

The test automaton semantics 7 (C) for a CD C is constructed such that a model
M in terms of Timed Automata satisfies the property expressed by C if and only
if state gpaq of T(C) is not reachable for M || 7(Cffl. However, this holds only if
the model M satisfies the following requirements:

— Initially M sets all information, i.e. at time 0 a synchronisation with the test
automaton happens that signals the initial values.

— All changes of the relevant variables for the CD have to be signalled to the
test automaton via synchronisation. Due to the construction of the latter it
is allowed to execute stutter synchronisations, i.e. to signal the same values
subsequently.

By this it is clear what it means that a system satisfies a given state assertion
m over a variable X: If the last synchronisation of M for variable X signals a
change of the value of X to the value o, then the system satisfies currently 7 iff
o satisfies 7 (in symbols: o =).

4.2 Future Commitments

The following kind of CDs requires the system to ensure a sequence of C; phases
after the occurrence of a sequence of A; phases. In other words: When the system
is engaged in a computation that satisfies the assertions Ay, As, ..., A, in this
order, then the system should continue the computation such that it will also
satisfy the commitments C7, Cs, ..., Cp, in this order. The corresponding CD
is given below.

where n,m > 1, A, # true, C; # true for all 1 <i <m, A, and C; are disjoint
(A, = —C7), and all neighbouring commitments are disjoint (C; = —C; 1
with 1 < i < m). We call the set of all CDs of this kind C'D;.

The ideas of the construction of this test automaton are simple. We expect
the system to keep the test automaton informed about all relevant changes of the
variable X. The test automaton has a certain state gp,q that is only reachable
when the system violates the property specified by the CD C € CD;. That
means, the question whether C is satisfied boils down to the question whether
Gbad is not reachable. The construction of 7(C) is designed in a way that the

5 In the literature are several variants of both Timed Automata and parallel composi-
tion of them. In this paper we use basically the model of [AD94] and their notion of
parallel composition. That means that a o-labelled transition can only be executed
iff each automaton in the system that uses label o executes a o-labelled transition.

440 Henning Dierks and Marc Lettrari

test automaton never blocks a synchronisation since it can always switch into a
special state ggo0q to stop looking for a violation of the property. In the case of
CD; a violating computation has to satisfy the assumptions Ay, ..., 4, in that
order. Then it has to change the value of X such that A, is not satisfied anymore.
Then the value should satisfy C;. If not, C is already violated. Otherwise, it can
only be violated by a change of X to a value that satisfies neither C nor Cs. If
the value changes to C5 the system has to satisfy C5 further on or C'3 and so on.

Let C € CD; be a CD that speaks about the variable X with type X. A test
automaton 7 (C) for C is formally defined as follows: (We assume that ¢ ¢ X' is
a fresh synchronisation label.)

T(C) = (S, X, £, €, TV, Sy) with
S= {QO7Qn+17 .- -aQn+m7Qbad>ngod} U {Qi,g|]— <i<n,o ': Az}

X = {z}
L=XU{e}

IV(q) =true forall g € S
So = {qo}

—

E={(q0,0,2=0,0,q10) | 0 = A1}
u{ Utrue@ngod)|quaQ7éQbad;U€Z}
Gioyo true,0,qi o) |1 <i<n,o,0 | A}
Gior0 s true,0,giv1,0) | 1 <i<mn,o A0 = A}
Gior&strue,0,git1,0) | 1 <i<n,oE A AAip1}

(q
(
(
(
(Gn,o, 0’ true,0,qgni1) | 0 |E An, o’ E C1}
(
(
(
(
(

T o= W N

EN|

Qnova trueQQbad)|0—):AnaU %A \/Cl}
Gnii, 0, true,0,guyi) | 1 <i<m,o E C;}

Qnti, 0y true, 0, qniiv1) | 1 <i<m,o | Cii1}
Gntis 0y true, 0, qpaq) | 1 < i <m,o = C; V Cigq}
Qbad, 0, true, 0, qpaq) | 0 € X}

© 0o

U
U
U
U

=)

—~
=~~~ —~ —~ —~ —~
—_ D D D D D DD O —

{
{
{
{
{
{
{
{
{

—~
—_
—_

The state space includes an initial state qg, states g; , for each assumption A;
and each o |= A;, states ¢y, for each commitment phase C;, and special states
Gbad a0d Ggooq- The idea of gpeq is that this state is reachable iff the given CD is
not satisfied. State ggo0q is always reachable from all states with all synchroni-
sations. That ensures that the test automata cannot block any behaviour of the
system under consideration. Hence, all traces that are admissible without the
test automaton remain admissible.

We need only one clock = and the set of synchronisation labels is given by
the type X of the variable X together with the fresh label €. Moreover, the test
automaton does not need invariants. The transitions are defined as follows: Ini-
tially we expect that A; holds when the system starts its computation (). In
() we add transitions from all states to ¢go0q to avoid blocking. In (B]) we handle
stuttering steps of assumption phases. In cases where a synchronisation happens

Constructing Test Automata from Graphical Real-Time Requirements 441

The correctness of this test automaton is
quite obvious. All paths to reach state qpad
have to ensure that after an A-phase an F-
phase was observed. Moreover, if a compu-
tation produces such a wrong state change,
then the test automaton is able to observe
this: First, it may stay in {q1,£,91,4,¢1,0r }-
Then it guesses correctly when the A-phase
starts that is succeeded by an E-phase. In
this case it changes to ¢2,.4. When the E-
phase starts it changes into qpad-

lCr E

(e

Fig. 4. Test automaton for Fig. 2lc).

which allows us to proceed in the assumptions we can apply transitions in ({@). If
the last synchronisation belongs to both the current and the following assump-
tion, then (B) allows us to proceed spontaneously in the assumptions. When all
assumptions are given we apply (B) if a synchronisation is given that satisfies the
first commitment. If a synchronisation is given that neither belongs to the last
assumption nor to the first commitment, then we have seen a counterexample
for the CD and enter qpoq (@). In () we allow stuttering steps in commitments
whereas (@) allows us to proceed in the commitments provided that an appropri-
ate synchronisation happens. If during a commitment a synchronisation occurs
that neither belongs to the current nor to the following commitment, then we
have seen a counterexample (I0). Finally, (IT]) introduces idle transitions for
9bad -

The automaton 7 (C) is basically a nondeterministic finite automaton that
accepts a regular language, because CDs in C'D; have no time requirements.
Hence, an equivalent minimal deterministic automaton could be constructed.
We refrain from that here, since introducing time assumptions and time com-
mitments is easier with the given structure.

The CD in Fig[2 c) is in CD; with A; = true, A = A, and C; = Cr. The
type of the variable X = track is {E, A, Cr}. The corresponding test automaton
is given in Fig. [Note that for sake of readability we omitted state ggo0q and
all transitions to this state.

4.3 Past Commitments

The following kind of CDs requires the system to ensure a sequence of C; phases
before the occurrence of a sequence of A; phases.

A Ay
Fo--- -

XF”+””’+'”'”'

442 Henning Dierks and Marc Lettrari

All paths reaching state @paqa en-
sure that an A;-As-sequence hap-
pens without a preceeding C7-Cs-
sequence. Therefore all computations
reaching ¢peq violate the CD. More-
over, if a computation violates the
CD the test automaton may guess
correctly how long it has to stay in
the states {qo,q1,¢2}. Note that the
only nondeterministic choices are in
go and ¢1 for Aj-signals. If the as-

sumptions of the CD have to be met
A2 :) it changes into state gs which is pos-

sible because the preceeding phases

are not a C1-Cz-sequence. Hence, all

violating computation can reach gpaq-

not(C1 or Al)

not(C1 or C2 or Al)

not(C1)

Fig. 5. Test automaton for a CD C € CD..

where n,m > 1, C; # true for all 1 < i < m, and Ay, C1,...,C,, are pairwise
disjoint. We call the set of all CDs of this kind CDs.

The additional requirements for the commitments C; allow us to construct a
test automaton for these CDs as follows: The test automaton can deterministi-
cally check whether all commitments have occurred before the first assumption
Ay is visible. After the recognition of A; the automaton searches nondeterminis-
tically for the successive assumptions. If it is successful after an incorrect past a
counterexample for the property was found. A formal description of the seman-
tics of diagrams in C'Ds is given in App. Bl The automaton 7 (C) with m =n = 2
is shown in Fig. Bl where we assume for simplicity that A; and As are singletons.

4.4 Mixed Assumptions and Commitments

In [Cef00] it is shown that it is possible to assign a test automaton for the
following patterns of CDs:

A1 n+1 n+k

X4¢ e S N —t - - A

with the following assumptions:

—n,m, k>0,

replacing the Aq,...,A, phases by a dashed line would yield a CD in C' Do,

— replacing the A,+1,...,A,+r phases by a dashed line would yield a CD in
CD;, and

— An — _|An+1.

Constructing Test Automata from Graphical Real-Time Requirements 443

4.5 Time Requirements
The time requirements which are allowed in our approach are

— time assumptions for assumption phases A; and

— time commitment for commitment phases C}.
Due to the construction of 7(C) for a CD C in a form of the previous sections it
is simple to add those time requirements. Instead of a formal treatment we will
discuss the following example:

loavs 4 LBl
broexl [ba, el ’]b3763[‘ ’[b4,00[‘

The CD without time requirements belongs to C'D; with A; = true, Ay =
AV B, A3 = A, C; = C, and Cy = B. The test automaton semantics of this
example is given in Fig. Bl This test automaton is a convincing example that it
is non-trivial to construct correct test automata by hand. It is far too easy to
introduce a misleading edge or typo such that a verification would lead to wrong
conclusions. Thus, tool support is needed.

Figure [l omits state ggo0q again; the horizontal lines indicate the following:
The first horizontal line annotated with = := 0 indicates that all crossing edges
carry this annotation. Similarly the second horizontal line with b, < z < e
and x := 0 as annotations. Due to the construction of this test automaton a
computation that leads into state qp.q has to ensure a phase where AV B holds
(states ¢2,4, g2.p) for a duration in [by,eq[. After that it can reach state g3 4
where it has to remain for a duration in [bg, e5]. If the system signals a change of
the variable X to B before by time units have elapsed, then the assumptions of
the CD are not fulfilled. In this case the omitted transition to ggo0q is applicable.
If B happens after by, and before e; time units, the assumptions are fulfilled, but
the system does not satisfy the property since C' was required. If the system
fails to change X before ey time units are elapsed, the test automaton may also
change to qpeq with an e-transition. If the expected transition to C' happens in
time, the test automaton may change to ¢4 to check the remaining commitments.

When the test automaton changes to g4 it knows that all assumptions of the
CD have occurred. It has to find all commitments now. The required change to
C has also occurred. The CD requires that C holds for a duration in]bs, e3[and
then the system has to change to B and remain there for at least by time units.
Hence, in state ¢4 a change to A is wrong, a change to B too early is wrong, and
keeping the state for es time units is wrong. If B arrives in time the system has
met the commitment Cy and now has to check whether Cs is satisfied, too. The
only way to violate this commitment is the arrival of A or C too early.

4.6 More Variables

In Constraint Diagrams it is allowed to constrain the behaviour of several vari-
ables (cf. Fig.). The approach described in the previous sections can be gen-
eralised for several variables as long as commitments are given for only one

444 Henning Dierks and Marc Lettrari

x:=0

bl<=x<el

x:=0 ,/

b2<=x<=€2
=

b3<x<e3
x:=0)

Fig. 6. Test automaton with time requirements.

Variable. We construct basically the test automaton for the Constraint Dia-
gram that we get by omitting all variables without commitments. This is de-
scribed above. The remaining assumptions about all other variables are checked
by auxiliary automata which are synchronised appropriately with the main test
automaton. Each of those automata has to reach a certain state which is only
possible if all corresponding assumptions for the variable were seen.

5 Implementation

A prototypic implementation of the presented test automaton semantics was
developed for the model-checker Uppaal [LPW97]. The tool Moby/CD allows
the graphical development of Constraint Diagrams. The constructed CDs are
translated into a textual representation which serves as the input language for
the test automaton compiler. Applied to a textual description cd of a CD C
the compiler generates three output files cd.ta, cd.v and cd.q. The file cd.ta
contains the generated test automata and an additional timed automaton which

5 If commitments for two or more variables are independent, this is no restriction,
because the CD can be split into an equivalent conjunction of CDs which meet the
restriction. Otherwise, there is no test automaton semantics possible in the general
case (cf. the CD given in App. [C).

Constructing Test Automata from Graphical Real-Time Requirements 445

we denote demultiplezer. This automaton serves as an interface to the test au-
tomata and interacts with the considered system via a simple protocol. The need
for this additional automaton is given by the restricted synchronisation mecha-
nisms in Uppaal. In contrast to the definition of [AD94] there are no direct ways
to synchronise more than two automaton simultaneously. The workaround for
this problem is as follows: Whenever there are changes of system variables ref-
erenced in C the system signals this via a certain synchronisation CHANGE_SYNC
to the demultiplexer. Then the demultiplexer controls the values of all relevant
system variables and sends to each test automaton synchronisations which indi-
cate the actual values of the variables. Using such an interface decouples the test
automata from the target system and allows an easy application because intro-
ducing the synchronisation CHANGE_SYNC can be done easily for many systems.

The file cd.v contains declarations of variables and clocks for the generated
test automata. The files cd. ta, cd.v and the description of the considered system
in terms of timed automata must be merged beforehand in order to build the
complete system for the model checker. The other necessary input is a suitable
reachability question (is gpeq reachable) which is contained in cd. g. If the Uppaal
model checker negates this question the considered system fulfils the property
described in C. Otherwise Uppaal generates a trace which is a counterexample
to the property in C.

The sizes of the test automata produced from a CD are as follows: For each
line of the CD we introduce a clock and an automaton (slightly optimised) with
at most 2n + 3 states where n is the number of phases in the line. For each
arrow we need an additional clock. The demultiplexer consists of two states plus
a state for each line of the CD.

6 GRC Revisited

Consider the CDs in Fig. @] again. It is obvious that b) and c) belong to the set
of CDs for which a test automaton semantics was assigned. Constraint Diagram
a) restricts the initial phase of the system, but it does belong neither to C'D; nor
to C' D4 nor to any of the extensions. In [Let00] some particular patternsﬁ of CDs
were considered and a test automaton semantics for these patterns was defined.
Fortunately, Fig.[2 a) belongs to this set of patterns such that we have defined a
test automaton semantics for all the CDs given in Sect. 3 Hence, given a Timed
Automaton model of the track we would be able to verify with our approach
whether this model satisfies the assumptions about the track.

When we consider an implementation of a controller for the GRC we are
interested whether the controller satisfies the properties Safety and Utility
given in Sect. Bl Due to the assumption that trains need at least £; time units
to approach the crossing (Fig. 21 b)) it is safe when the controller satisfies the

" These patterns stem from a sublanguage of Duration Calculus [ZHRIIJHZ97] called
“Implementables” [Rav95|. This sublanguage consists of frequently used specification
patterns for real-time systems.

446 Henning Dierks and Marc Lettrari

following property. It requires the gate to become closed whenever the track is
not empty for £; time units:

E -F
track | ----- 4 —————f - 1
[51, OO[0
gate fp-----------o-n e - 1

This CD belongs to CD; with time extension and the extension for several
variables. Hence, a test automaton can be constructed for Safety. Similarly, a
CD can be found to specify a property of both gate and track to ensure Utility:

E
track f--------- S H 1
&2 0
closed
gate t ------------ —t - to-- - 1

It requires the gate to open when the track is empty for more than &, time
units. In [DD97] it is shown why these properties in conjunction with the as-
sumptions about the track behaviour meet Safety and Utility.

7 Related Work Revisited

In this we discuss the similar approaches [ABLISILPW9S| in more detail.
[LPWO98]: In this paper two kinds of formulas are introduced for which test
automata are produced. The authors comment the expressiveness as follows:

“We also noticed that though the logic is so simple, it characterizes
the class of logical properties verified in all previous case studies where
Uppaal is applied [...].”

The formulas are either invariants (syntax: Inv(f)) where f is a boolean for-
mula over atomic propositions or bounded response formulas (syntax: f1 ~<r
f2) where T is a natural number§ Both kinds are expressible by CDs. An in-
variant Inv(f) is equivalent to

8 Note that [LPW98| allowed boolean formulas over atomic propositions and clock
constraints. The clock constraints can be replaced by auxiliary atomic propositions.

Constructing Test Automata from Graphical Real-Time Requirements 447

This CD belongs to the set of patterns mentioned in the previous section. Thus,
it has a test automaton semantics. The meaning is that the system has to fulfill
f initially and false afterwards. Hence, f must hold forever.

The bounded response formula f; ~><7 fa requires the system to ensure the
property fs within at most 7T time units when the property f; becomes true.
This is stronger than the classical until-operator where f; has to hold until f;
becomes true. The bounded response can be expressed by the following CD that
belongs to C'D; (with extensions):

[ABLIR|: The approach in this paper is more general and difficult to compare
to our approach. The reason is that in [ABLIS] a logic called SBLL (safety and
bounded liveness) is introduced for which a translation into a test automaton is
presented. Instead of discussing the details of SBLL we discuss a SBLL formula
in [ABLO8]:

inv([send;!] s in W([recva!](s < 4) A [recvs!](s < 4))) (12)

This describes a requirement for the CSMA /CD protocol. The informal meaning
is that whenever node 1 sends a message then nodes 2 and 3 receive the message
within less than 4 time units. Note that SBLL formulas speak about synchro-
nisation labels whereas CDs speak about the states and variables. Assuming
appropriate variables s1, 72,73 we can represent this property by

448 Henning Dierks and Marc Lettrari

S1 f--------- t

g p------------ to e

Note that CDs allow to represent this property by a single CD but the given
representation is equivalent and uses commitments only for a single observable.
Hence, there is a test automaton semantics available (cf. Sect. [£8). It depends
on the individual skills, experiences and education which representation is more
accessible: The formula (I2) or the CDs above.

8 Conclusion

Constraint Diagrams have been designed as a graphical language for the re-
quirements capture of real-time system. From the CD’s point of view the main
contribution of this paper is the new applicability of this specification language
as temporal logic for automatic formal verification. From the Timed Automata
point of view the main contribution of this paper is the new availability of a
graphical temporal logic in assumption/commitment-style for which test au-
tomata can be constructed automatically.

Acknowledgements

The authors thank E.-R. Olderog and the members of the “semantics group” in
Oldenburg for fruitful discussions on the subject of this paper.

References

ABL9S. L. Aceto, A. Burgueno, and K. Larsen. Model Checking via Reachability
Testing for Timed Automata. In Steffen [Ste98], pages 263-280.

ACD90. R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time

Systems. In Fifth Annual IEEE Symp. on Logic in Computer Science,
pages 414-425. IEEE Press, 1990.

AD90. R. Alur and D.L. Dill. Automata for modeling real-time systems. In M.S.
Paterson, editor, ICALP 90: Automata, Languages, and Programming,
volume 443 of LNCS, pages 322—-335. Springer, 1990.

ADY4. R. Alur and D.L. Dill. A theory of timed automata. T'CS, 126:183-235,
1994.
DD97. H. Dierks and C. Dietz. Graphical Specification and Reasoning: Case

Study “Generalized Railroad Crossing”. In J. Fitzgerald, C.B. Jones,
and P. Lucas, editors, FME’97, volume 1313 of LNCS, pages 2039, Graz,
Austria, September 1997. Springer.

Constructing Test Automata from Graphical Real-Time Requirements 449

DFMV98a.

DFMV98b.

Die96.

Die99.

FJo7.

HL94.

HLR93.

HM96.

HNSY94.

HZ97.

Kle00.

Let00.

LPW97.

LPW98.

Mos85.

Rav95.

Sch01.

Ste98.

H. Dierks, A. Fehnker, A. Mader, and F.W. Vaandrager. Operational
and Logical Semantics for Polling Real-Time Systems. In A.P. Ravn
and H. Rischel, editors, FTRTFT’98, volume 1486 of LNCS, pages
29-40, Lyngby, Denmark, September 1998. Springer. short version of
[DFMVI8b).

H. Dierks, A. Fehnker, A. Mader, and F.W. Vaandrager. Operational and
Logical Semantics for Polling Real-Time Systems. Technical Report CSI-
R9813, Computer Science Institute Nijmegen, Faculty of Mathematics
and Informatics, Catholic University of Nijmegen, April 1998. full paper
of [DEMV98a].

C. Dietz. Graphical Formalization of Real-Time Requirements. In B. Jon-
sson and J. Parrow, editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 1135 of LNCS, pages 366-385, Uppsala, Swe-
den, September 1996. Springer.

H. Dierks. Specification and Verification of Polling Real-Time Systems.
PhD thesis, University of Oldenburg, July 1999.

K. Feyerabend and B. Josko. A Visual Formalism for Real-Time Require-
ments Specifications. In M. Bertran and T. Rus, editors, ARTS’97, vol-
ume 1231 of LNCS, pages 156—-168, Mallorca, Spain, May 1997. Springer.
C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing. In IEEE
Real-Time Systems Symposium, 1994.

N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In M. Nivat, C. Rattray, T. Rus,
and G. Scollo, editors, Third Int. Conf. on Algebraic Methodology and
Software Technology, AMAST’93, Workshops in Computing. Springer,
June 1993.

C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time
Computing, volume 5 of Trends in Software. Wiley, 1996.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model
Checking for Real-Time Systems. Information and Computation,
111:193-244, 1994.

M.R. Hansen and Zhou Chaochen. Duration Calculus: Logical Founda-
tions. Formal Aspects of Computing, 9:283-330, 1997.

C. Kleuker. Constraint Diagrams. PhD thesis, University of Oldenburg,
December 2000.

M. Lettrari. Eine Testautomatensemantik fiir Constraint Diagrams und
ihre Anwendung. Master’s thesis, University of Oldenburg, Department
of Computer Science, Oldenburg, Germany, April 2000.

K.G. Larsen, P. Petterson, and Wang Yi. Uppaal in a nutshell. Software
Tools for Technology Transfer, 1(142):134-152, December 1997.

M. Lindahl, P. Pettersson, and Wang Yi. Formal Design and Analysis of
a Gear Controller. In Steffen [Ste98], pages 281-297.

B. Moszkowski. A Temporal Logic for Multilevel Reasoning about Hard-
ware. IEEE Computer, 18(2):10-19, 1985.

A.P. Ravn. Design of Embedded Real-Time Computing Systems. Tech-
nical Report 1995-170, Technical University of Denmark, 1995.

R. Schlér. Symbolic Timing Diagrams: A Visual Formalism for Model
Verification. PhD thesis, University of Oldenburg, Department of Com-
puter Science, Oldenburg, Germany, 2001.

B. Steffen, editor. Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 1384 of LNCS. Springer, 1998.

450 Henning Dierks and Marc Lettrari

Yov97. S. Yovine. Kronos: a verification tool for real-time systems. Software
Tools for Technology Transfer, 1(142):123-133, December 1997.
Zho93. Zhou Chaochen. Duration Calculi: An overview. In D. Bjgrner, M. Broy,

and I.V. Pottosin, editors, Formal Methods in Programming and Their
Application, volume 735 of LNCS, pages 256—266. Springer, 1993.

ZHRO1. Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations.
IPL, 40/5:269-276, 1991.

A Duration Calculus Semantics for CDs

In this appendix first we introduce briefly Duration Calculus , a formalism in
which the semantics of CDs is given in [Kle00]. After this we explain briefly
the ideas of the semantics of CDs in Duration Calculus. A full treatment of the
semantics can be found in [KIe00].

Duration Calculus [ZHRI1IZho93[HZ97] (DC for short) is a real-time inter-
val temporal logic extending earlier work on discrete interval temporal logic of
[Mos85]. A formal description of a real-time system using DC starts by choosing a
number of time-dependent state variables (called “observables”) obs of a certain
type. An interpretation I assigns to each observable a function obs; : Time — D
where Time is the time domain, here the non-negative reals, and D is the type
of obs. If D is finite, these functions obs; are required to be finitely variable,
which means that any interval [b,e] C Time can be divided into finitely many
subintervals such that obs; is constant on the open subintervals.

State assertions P are obtained by applying propositional connectives to
elementary assertions of the form obs = v (v for short if obs is clear) for a v € D.
For a given interpretation I state assertions denote functions P; : Time —
{0,1}.

Duration terms are of type real and their values depend on a given time
interval [b,e]. The simplest duration term is the symbol ¢ denoting the length
e — b of [b,e]. For each state assertion P there is a duration term | P measur-
ing the duration of P, i.e. the accumulated time P holds in the given interval.
Semantically, [P denotes [, Pr(t)dt on the interval [b, e].

Duration formulas are built from arithmetical relations applied to duration
terms, the special symbols true and false, and other terms of type real, and they
are closed under propositional connectives and quantification over rigid variables.
Their truth values depend on a given interval. We use F' for a typical duration
formula. true and false evaluate to true resp. false on every given interval. Further
basic duration formulas are:

Relation over Durations: For example, [P = k expresses that the duration
of the state assertion P in [b, €] is k.

Chop: The composite duration formula Fy; Fy (read as Fy chop F3) holds in

[b, €] if this interval can be divided into an initial subinterval [b, m] where Fy
holds and a final subinterval [m, e] where F3 holds.

Constructing Test Automata from Graphical Real-Time Requirements 451

Besides this basic syntax various abbreviations are used:

point interval: [] =¢=0
everywhere: [P]1 < [P ={ A £>0
somewhere: OF £ true; F; true
always: OF L Oo-F

A duration formula F' holds in an interpretation I if F' evaluates to true in [
and every interval of the form [0,¢] with ¢ € Time. If convenient, we use F to
describe a set of interpretations namely all interpretations in which F' holds.

Semantically, Constraint Diagrams denote an implication between assump-
tions and commitments of the form

Ver, ... ex. (Assm(er,...,ex) = Fb1,...,6;. Commley,... €x,01,...,0;))

for real variables €;,0; with ¢ < k,j <[, k,l € N. Assumptions as well as com-
mitments characterising lines are conjunctions of sequence formulae like

([le/\gzel);~'~;([Pn—|/\€:€n)

for state assertions P; and real variables ¢;,7 < n,n € N. Difference formulae
characterising arrows have the form

n m
Zei - Z(%- € Intv
i=1 j=1

for real variables €;,6;, 1 < n,j < m,n,m € N and an interval Intv. They are
also needed in length requirements between lengths of phases in assumptions
and commitments to assure that they concern the same subintervals.

Consider the CD for the watchdog (Fig. [[)). The DC semantics is equivalent
to this formula:

Vey,e9 i =€1; ([STAL=10);¢ = e
=—361,02,03: L > €1 + €3+ 1
= £ =201; ([A] AL =82); £ = 63N
61— (e1 +€2) €[0,1]

Detailed definitions and discussions of the semantics are found in [Kle00].

452 Henning Dierks and Marc Lettrari
B Test Automaton Semantics for C D,

Formally we define the test automaton 7 (C) for a CD C € C'Ds in this way:

T(C) = (S, X, L,E,TV, Sy) with
S = {(Jm Gbad, ngodaqseen»qu ey Qm} V) {Qm+i,a|1 é 1 S n,o ': Az}

X = {z}
L=XU{e}

IV(q) =true for all g € S
So ={qo}

The transitions £ are defined in Figure [

& ={(q,0,true, 0, qg00d) | ¢ € S, q¢ # qraa,0 € X} (13)
U{(qi,o, true,0,qi+1) |0 <i<m,o = Cit1} (14)
U {(qo, 0, true, 0, qo) | o = C1} (15)
U{(qi,o,true,0,¢) | 1 <i<m,o = C;} (16)
U{(gi,o,true,0,q1) | 1 <i<m,o = Ci} (17)
U{(qgi,o,true,0,q0) | 1 <i<m,o fr CrUC; UCiy1} (18)
U {(qi,0,true,0, gmi1,0) |0 < i <m,o = A1} (19)
U {(gm,0,true,0,q0) | o = C1 UCr U A1} (20)
U {(gm,o,true, D, gseen) | 0 = A1} (21)
U {(gseen, o, true, 0, gseen) | o = A1} (22)
U {(gseen, o, true, 0, q1) | o = C1} (23)
U {(@seen, o, true, 0, qo) | o = A1 vV C1} (24)
U{(@mtio, 0’ true, 0, gmiio) | 1 <i<n,0,0 | A} (25)
U{(@mtio, 0 true, 0, gmiii1.0) | 1 <i<m,o = Ao’ = A} (26)
U {(gm+i,o, &, true, 0, gm+it1,0) | 1 <i<n,o0 = A A Aita} (27)
U {(gmtn,o, &, true, 0, qaa) | o |E An} (28)
U {(qbad, o, true, 0, graq) | o € X'} (29)

Fig. 7. Definition of £.

The idea of the state space is that qq, . . ., ¢ represent the number of fulfilled
commitments at the moment. Hence, if we are not in state ¢,,, and the assumption
can be match, then a counterexample was found. If we are in state ¢, and the
first assumption is fulfilled, we switch into the special state ggeen in order to
avoid the detection of a wrong counterexample. All other states have a similar
meaning as in the semantics for C'D;.

Constructing Test Automata from Graphical Real-Time Requirements 453

([3): Transitions to ggeoq are always possible to avoid blocking. (14): In state
¢; the next commitment was observed, thus the successor state is ¢;+1. ([H):
Idling is possible for gy as long the first commitment was not seen. (I6)—(19):
Transitions for ¢; (1 < i < m). If C; holds, it idles ([IG)); if C; holds, the first
commitment was seen and ¢; is the successor state (I7); if C;y1 holds, (I4) is
applicable to proceed in the sequence of the commitments; in all other cases a
change to qo is allowed (I8); if the first assumption is observed it may change
to the assumption states (I9). Transitions for g, are similar except for the
case of A; where it changes into gseen, in order to avoid wrong counterexamples
(BI). Transitions for gsee, hold the state as long as A; is true (22) and changes
otherwise to gy or ¢ respectively 23)),24). @5)—E1D): Similar to @)—E). @8):
If all assumptions were seen a counterexample was found. ([28): Idling of sink
states.

C A CD without TA Semantics

For the following CD it is not possible to find a test automaton semantics,
because it would need infinitely many clocks:

The meaning of this CD is that whenever we observe a change from A to
—A at time t4 the system has to produce a change from B to =B at time
tp € [ta,ta+1] and a change from C to —~C at time tp + 1. In order to detect a
counterexample the test automaton has to verify that all possible instances of tp
do not satisfy the commitment. However, the decision whether an instance of ¢
satisfies the commitments depends on the future. Therefore the test automaton
has to remember all possible candidates for ¢g, i.e. all time points when the
system changes from B to —B. However, this is not possible with a static number
of clocks because it is possible that more changes happen as clocks are available.

	Introduction
	The Generalised Railroad Crossing
	Constraint Diagrams
	Test Automaton Semantics for Constraint Diagrams
	Requirements for the Model
	Future Commitments
	Past Commitments
	Mixed Assumptions and Commitments
	Time Requirements
	More Variables

	Implementation
	GRC Revisited
	Related Work Revisited
	Conclusion
	References
	A Duration Calculus Semantics for CDs
	B Test Automaton Semantics for CD_2
	C A CD without TA Semantics

