Real-Time Operating Systems:
Problems and Novel Solutions

Giorgio Buttazzo

University of Pavia
buttazzo@unipv.it

Abstract. This work presents some methodologies for enhancing predictability
in real-time computing systems, where explicit timing constraints have to be
enforced on application processes. In order to provide an off-line guarantee of
the critical timing constraints, deterministic and analyzable algorithms are re-
quired in all kernel mechanisms, especially involving scheduling, inter-task
communication, synchronization and interrupt handling. This paper illustrates
some problems that may arise in real-time concurrent applications and some
solutions that can be adopted in the kernel to overcome those problems. In par-
ticular, task scheduling algorithms and resource management policies will be
considered in detail, as they have great influence on system behavior. Finally, a
novel approach will be introduced for handling transient overloads and execu-
tion overruns in soft real-time systems working in dynamic environments.
These techniques provide efficient support to real-time multimedia systems.

1 Introduction

Often, people say that real-time systems must react fast to external events. Such a
definition, however, is not precise, because processing speed does not provide any
information on the actual capability of the system to react timely to events. In fact,
the effect of controller actions in a system can only be evaluated when considering
the dynamic characteristics of the controlled environment.

A more precise definition would say that a real-time system is a system in which
performance depends not only on the correctness of the single controller actions, but
also on the time at which actions are produced [24]. The main difference between a
real-time task and a non real-time task is that a real-time task must complete within a
given deadline. In other words, a deadline is the maximum time allowed for a com-
putational process to finish its execution. In real-time applications, a result produced
after its deadline is not only late, but can be dangerous. Depending on the conse-
quences caused by a missed deadline, real-time activities can be classified in hard
and soft tasks [23]. A real-time task is said to be hard if missing a deadline may have
catastrophic consequences in the controlled system. A real-time task is said to be soft
if missing a deadline causes a performance degradation, but does not jeopardize cor-
rect system behavior. An operating system able to manage hard tasks is called a hard
real-time system [4][25].

In general, hard real-time systems have to handle both hard and soft activities. In a
control application, typical hard tasks include sensory data acquisition, detection of
critical conditions, motor actuation, and action planning. Typical soft tasks include

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 37-51,2002.
© Springer-Verlag Berlin Heidelberg 2002

38 Giorgio Buttazzo

user command interpretation, keyboard input, message visualization, system status
representation, and graphical activities. The great interest in real-time systems is
motivated by the growing diffusion they have in our society in several application
fields, including chemical and nuclear power plants, flight control systems, traffic
monitoring systems, telecommunication systems, automotive devices, industrial
automation, military systems, space missions, and robotic systems.

Despite this large application domain, most of today’s real-time control systems
are still designed using ad hoc techniques and heuristic approaches. Very often, con-
trol applications with stringent time constraints are implemented by writing large
portions of code in assembly language, programming timers, writing low-level driv-
ers for device handling, and manipulating task and interrupt priorities. Although the
code produced by these techniques can be optimized to run very efficiently, this
approach has several disadvantages. First of all, the implementation of large and
complex applications in assembly language is much more difficult and time con-
suming than using high-level programming. Moreover, the efficiency of the code
strongly depends on the programmer’s ability. In addition, assembly code optimiza-
tion makes a program more difficult to comprehend, complicating software mainte-
nance. Finally, without the support of specific tools and methodologies for code and
schedulability analysis, the verification of time constraints becomes practically im-
possible.

The major consequence of this state of affairs is that control software produced by
empirical techniques can be highly unpredictable. If all critical time constraints can-
not be verified a priori and the operating system does not include specific features for
handling real-time tasks, the system apparently works well for a period of time, but
may collapse in certain rare, but possible, situations. The consequences of a failure
can sometimes be catastrophic and may injure people or cause serious damage to the
environment. A trustworthy guarantee of system behavior under all possible operat-
ing conditions can only be achieved by adopting appropriate design methodologies
and kernel mechanisms specifically developed for handling explicit timing con-
straints.

1.1 Achieving Predictability

The most important property of a real-time system is not high speed, but predictabil-
ity. In a predictable system we should be able to determine in advance whether all the
computational activities can be completed within their timing constraints. The deter-
ministic behavior of a system typically depends on several factors, ranging from the
hardware architecture to the operating system, up to the programming language used
to write the application.

Architectural features that have major influence on task execution include inter-
rupts, DMA, cache and pre-fetching mechanisms. Although such features improve
the average performance of the processor, they introduce a non deterministic behav-
ior in process execution, prolonging the worst-case response times. Other factors that
significantly affect task execution are due to the internal mechanisms used in the
operating system, such as the scheduling algorithm, the synchronization mechanisms,
the memory management policy, and the method used to handle I/O devices. The
programming language has also an important impact on predictability, through the

Real-Time Operating Systems: Problems and Novel Solutions 39

constructs it provides to handle the timing requirements specified for computational
activities.

2 Periodic Task Handling

Periodic activities represent the major computational load in a real-time control sys-
tem. For example activities such as actuator regulation, signal acquisition, filtering,
sensory data processing, action planning, and monitoring, need to be executed with a
frequency derived from the application requirements.

A periodic task is characterized by an infinite sequence of instances, or jobs. Each
job is characterized by a request time and a deadline. The request time r(k) of the k-th
job of a task represents the time at which the task becomes ready for execution for
the k-th time. The interval of time between two consecutive request times is equal to
the task period. The absolute deadline of the k-th job, denoted with d(k), represents
the time within which the job has to complete its execution, and r(k) < d(k) O r(k+1).

2.1 Timeline Scheduling

Timeline Scheduling (TS), also known as a cyclic executive, is one of the most used
approaches to handle periodic tasks in defense military systems and traffic control
systems. The method consists in dividing the temporal axis into slices of equal
length, in which one or more tasks can be allocated for execution, in such a way to
respect the frequencies derived from the application requirements. A timer synchro-
nizes the activation of the tasks at the beginning of each time slice. In order to illus-
trate this method, consider the following example, in which three tasks, A, B and C,
need to be executed with a frequency of 40, 20 and 10 Hz, respectively. By analyzing
the task periods, it is easy to verify that the optimal length for the time slice is 25 ms,
which is the Greatest Common Divisor of the periods. Hence, to meet the required
frequencies, task A needs to be executed every time slice, task B every two slices,
and task C every four slices. A possible scheduling solution for this task set is illus-
trated in Figure 1.

] task A
task B

task C

Major Cycle

Minor Cycle

0 25 50 75 100 125 150

Fig. 1. Example of timeline scheduling

The duration of the time slice is also called a Minor Cycle, whereas the minimum
period after which the schedule repeats itself is called a Major Cycle. In general, the
major cycle is equal to the least common multiple of all the periods (in the example it
is equal to 100 ms).

40 Giorgio Buttazzo

In order to guarantee a priori that a schedule is feasible on a particular processor, it
is sufficient to know the task worst-case execution times and verify that the sum of
the executions within each time slice is less than or equal to the minor cycle. In the
example shown in Figure 1, if C,, C, and C, denote the execution times of the tasks,
it is sufficient to verify that

C,+C, 0 25ms

C,+C. 0 25ms

The major relevant advantage of timeline scheduling is its simplicity. The method
can be implemented by programming a timer to interrupt with a period equal to the
minor cycle and by writing a main program that calls the tasks in the order given in
the major cycle, inserting a time synchronization point at the beginning of each minor
cycle. Since the task sequence is not decided by a scheduling algorithm in the kernel,
but it is triggered by the calls made by the main program, there are no context
switches, so the runtime overhead is very low. Moreover, the sequence of tasks in the
schedule is always the same, can be easily visualized, and it is not affected by jitter
(i.e., task start times and response times are not subject to large variations).

In spite of these advantages, timeline scheduling has some problems. For example,
it is very fragile during overload conditions. If a task does not terminate at the minor
cycle boundary, we can either let it continue or abort it. In both cases, however, the
system may enter in a risky situation. In fact, if we leave the failing task in execution,
it can cause a domino effect on the other tasks, breaking the entire schedule (timeline
break). On the other hand, if the failing task is aborted, the system may be left in an
inconsistent state, jeopardizing correct system behavior.

Another big problem of the timeline scheduling technique is its sensitivity to ap-
plication changes. If updating a task requires an increase of its computation time or
its activation frequency, the entire scheduling sequence may need to be reconstructed
from scratch. Considering the previous example, if task B is updated to B’ and the
code change is such that C, + C,. > 25 ms, then we have to divide B’ in two or more
pieces to be allocated in the available intervals of the timeline. Changing the task
frequencies may cause even more radical changes in the schedule. For example, if the
frequency of task B changes from 20 Hz to 25 Hz, the previous schedule is not valid
any more, because the new Minor Cycle is equal to 10 ms and the new Major Cycle
is equal to 200 ms.

Finally, another limitation of the timeline scheduling is that it is difficult to handle
aperiodic activities efficiently without changing the task sequence.

The problems outlined above can be solved by using priority based scheduling al-
gorithms.

2.2 Rate Monotonic (RM)

The Rate-Monotonic (RM) algorithm assigns each task a priority directly propor-
tional to its activation frequency, so that tasks with shorter period have higher prior-
ity. Since a period is usually kept constant for a task, the RM algorithm implements a
static priority assignment, in the sense that task priorities are decided at task creation
and remain unchanged for the entire application run. RM is typically preemptive,
although it can also be used in a non-preemptive mode.

Real-Time Operating Systems: Problems and Novel Solutions 41

In 1973, Liu and Layland [17] showed that RM is optimal among all static sched-
uling algorithms, in the sense that if a task set is not schedulable by RM, then the task
set cannot be feasibly scheduled by any other fixed priority assignment. Another
important result proved by the same authors is that a set L = {[], ..., []} of n periodic
tasks is schedulable by RM if

! Sn o)

1 i

where C, and T, represent the worst-case computation time and the period of task [},
respectively. The quantity

v=1 &
izt T,

1

represents the processor utilization factor and denotes the fraction of time used by
the processor to execute the entire task set. Table 1 shows the values of n(2" /1) for
n from 1 to 10. As can be seen, the factor decreases with n and, for large n, it tends to
the following limit value:

lim n(2"" 01) = 2 0 0.69

Table 1. Maximum processor utilization for the Rate Monotonic algorithm

n n(2" [71)
1 1.000
2 0.828
3 0.780
4 0.757
5 0.743
6 0.735
7 0.729
8 0.724
9 0.721
10 0.718

We note that the Liu and Layland test only gives a sufficient condition for guaran-
teeing a feasible schedule under the RM algorithm. Hence, a task set can be schedul-
able by RM even though the utilization condition is not satisfied. Nevertheless, we
can certainly state that a periodic task set cannot be feasibly scheduled by any algo-
rithm if U > 1. A statistical study carried out by Lehoczky, Sha, and Ding [14] on
randomly generated task sets showed that the utilization bound of the RM algorithm
has an average value of 0.88, and becomes 1 for periodic tasks with harmonic period
relations.

In spite of the limitation on the schedulability bound, which in most cases prevents
the full processor utilization, the RM algorithm is widely used in real-time applica-
tions, manly for its simplicity. At the same time, being a static scheduling algorithm,
it can be easily implemented on top of commercial operating systems, using a set of

42 Giorgio Buttazzo

fixed priority levels. Moreover, in overload conditions, the highest priority tasks are
less prone to missing their deadlines. For all these reasons, the Software Engineering
Institute of Pittsburgh has prepared a sort of user guide for the design and analysis of
real-time systems based on the RM algorithm [11].

Since the RM algorithm is optimal among all fixed priority assignments, the
schedulability bound can only be improved through a dynamic priority assignment.

2.3 Earliest Deadline First (EDF)

The Earliest Deadline First (EDF) algorithm consists in selecting (among the ready
tasks) the task with the earliest absolute deadline. The EDF algorithm is typically
preemptive, in the sense that, a newly arrived task can preempt the running task if its
absolute deadline is shorter.

If the operating system does not support explicit timing constraints, EDF (as RM)
can be implemented on a priority-based kernel, where priorities are dynamically
assigned to tasks. A task will receive the highest priority if its deadline is the earliest
among those of the ready tasks, whereas it will receive the lowest priority if its dead-
line is the latest one. A task gets a priority which is inversely proportional to its ab-
solute deadline.

The EDF algorithm is more general than RM, since it can be used to schedule both
periodic and aperiodic task sets, because the selection of a task is based on the value
of its absolute deadline, which can be defined for both types of tasks. Typically, a
periodic task that completed its execution is suspended by the kernel until its next
release, coincident with the end of the current period. Dertouzos [8] showed that EDF
is optimal among all on line algorithms, while Liu and Layland [17] proved that a set
[={0, 3, ..., [} of n periodic tasks is schedulable by EDF if and only if

" S
.i=l Ti

It is worth noting that the EDF schedulability condition is necessary and sufficient to
guarantee a feasible schedule. This mean that, if it is not satisfied, no algorithm is
able to produce a feasible schedule for that task set.

The dynamic priority assignment allows EDF to exploit the full processor, reaching
up to 100% of the available processing time. When the task set has a processor utili-
zation factor less than one, the residual fraction of time can be efficiently used to
handle aperiodic requests activated by external events. In addition, compared with
RM, EDF generates a lower number of context switches, thus causing less runtime
overhead. On the other hand, RM is simpler to implement on a fixed priority kernel
and is more predictable in overload situations, because higher priority tasks are less
viable to miss their deadlines.

2.4 Tasks with Deadlines Less Than Periods

Using RM or EDF, a periodic task can be executed at any time during its period. The
only guarantee provided by the schedulability test is that each task will be able to
complete its execution before the next release time. In some real-time applications,

Real-Time Operating Systems: Problems and Novel Solutions 43

however, there is the need for some periodic task to complete within an interval less
than its period.

The Deadline Monotonic (DM) algorithm, proposed by Leung and Whitehead

[16], extends RM to handle tasks with a relative deadline less than or equal to their
period. According to DM, at each instant the processor is assigned to the task with
the shortest relative deadline. In priority-based kernels, this is equivalent to assigning
each task a priority P, // I/D, inversely proportional to its relative deadline.
With D, fixed for each task, DM is classified as a static scheduling algorithm. In the
recent years, several authors [2][10][14] independently proposed a necessary and
sufficient test to verify the schedulability of a periodic task set. For example, the
method proposed by Audsley et al. [2] consists in computing the worst-case response
time R, of each periodic task. It is derived by summing its computation time and the
interference caused by tasks with higher priority:

IR #
R =C + ' 3-vGCi
NE R

where hp(i) denotes the set of tasks having priority higher than task i and %# denotes
the ceiling of a rational number, i.e., the smaller integer greater than or equal to x.
The equation above can be solved by an iterative approach, starting with R = C, and
terminating when R = R"". If R" > D, for some task, then the task set cannot be
feasibly scheduled by DM.

Under EDF, the schedulability analysis for periodic task sets with deadlines less
than periods is based on the processor demand criterion, proposed by Baruah, How-
ell, and Rosier [3]. According to this method, a task set is schedulable by EDF if and
only if, in every interval of length L (starting at time 0), the overall computational
demand is no greater than the available processing time, that is, if and only if

" dL+T, 11D,V
L>0 | ——yC, 0L
R &

This test is feasible, because L can only be checked for values equal to task deadlines
no larger than the least common multiple of the periods.

3 Aperiodic Task Handling

Although in a real-time system most acquisition and control tasks are periodic, there
exist computational activities that must be executed only at the occurrence of external
events (typically signalled through interrupts), which may arrive at irregular times.
When the system must handle aperiodic requests of computation, we have to balance
two conflicting interests: on the one hand, we would like to serve an event as soon as
possible to improve system responsiveness; on the other hand, we do not want to
jeopardize the schedulability of periodic tasks.

If aperiodic activities are less critical than periodic tasks, then the objective of a
scheduling algorithm should be to minimize their response time, while guaranteeing

44 Giorgio Buttazzo

that all periodic tasks (although being delayed by the aperiodic service) complete
their executions within their deadlines. If some aperiodic task has a hard deadline, we
should try to guarantee its timely completion off-line. Such a guarantee can only be
done by assuming that aperiodic requests, although arriving at irregular intervals, do
not exceed a maximum given frequency, that is, they are separated by a minimum
interarrival time. An aperiodic task characterized by a minimum interarrival time is
called a sporadic task.

Let us consider an example in which an aperiodic job J, of 3 units of time must be
scheduled by RM along with two periodic tasks, having computation times C, = 1, C,
=3 and periods T, = 4, T, = 6, respectively. As shown in Figure 2, if the aperiodic
request is serviced immediately (that is, with a priority higher than that assigned to
periodic tasks), then task [} will miss its deadline.

_ T T ! >

oo | e

0 4 deatillipeg 12
/mlSS
Plem e
0 6 12
Ta
r_h T T T T T T T >
0 2 4 6 8 10 12

Fig. 2. Immediate service of an aperiodic task. Periodic tasks are scheduled by RM

The simplest technique for managing aperiodic activities while preserving the guar-
antee for periodic tasks is to schedule them in background. This means that an aperi-
odic task executes only when the processor is not busy with periodic tasks. The dis-
advantage of this solution is that, if the computational load due to periodic tasks is
high, the residual time left for aperiodic execution can be insufficient for satisfying
their deadlines.

Considering the same task set as before, Figure 3 illustrates how job J, is handled
by a background service.

The response time of aperiodic tasks can be improved by handling them through a
periodic server dedicated to their execution. As any other periodic task, a server is
characterized by a period 7, and an execution time C, called the server capacity (or
budget).

In general, the server is scheduled using the algorithm adopted for periodic tasks
and, once activated, it starts serving the pending aperiodic requests within the limit of
its current capacity. The order of service of the aperiodic requests is independent of
the scheduling algorithm used for the periodic tasks, and it can be a function of the
arrival time, computation time or deadline.

During the last years, several aperiodic service algorithms have been proposed in
the real-time literature, differing in performance and complexity. Among the fixed
priority algorithms we mention the Polling Server and the Deferrable Server
[13][27], the Sporadic Server [20], and the Slack Stealer [15]. Among those servers

Real-Time Operating Systems: Problems and Novel Solutions 45

using dynamic priorities (which are more efficient on the average) we recall the Dy-
namic Sporadic Server [9][21], the Total Bandwidth Server [22], the Tunable Band-
width Server 5], and the Constant Bandwidth Server [1].

0 4 8 12

&
\

0 6 12

Ja
T T T T T - T T T F—>
0 2 4 6 8 10 12

Fig. 3. Background service of an aperiodic task. Periodic tasks are scheduled by RM

In order to clarify the idea behind an aperiodic server, Figure 4 illustrates the
schedule produced, under EDF, by a Dynamic Deferrable Server with capacity C, =
1 and period T, = 4. We note that, when the absolute deadline of the server is equal to
the one of a periodic task, priority is given to the server in order to enhance aperiodic
responsiveness. We also observe that the same task set would not be schedulable
under a fixed priority system.

0 4 8 12
: l_-__ | —_‘_.
——
0 6 12
L h] .
[I I I I I I o
0 2 4 6 8 10 12

@]
\j

T T
0 2 4 6 10 12

[e]

Fig. 4. Aperiodic service performed by a Dynamic Deferrable Server. Periodic tasks, including
the server, are scheduled by EDF. C, is the remaining budget available for J

Although the response time achieved by a server is less than that achieved through
the background service, it is not the minimum possible. The minimum response time
can be obtained with an optimal server (TB*) which assigns each aperiodic request
the earliest possible deadline which still produces a feasible EDF schedule [5]. The
schedule generated by the optimal TB* algorithm is illustrated in Figure 5, where the
minimum response time for job J is equal to 5 units of time (obtained by assigning
the job a deadline d, = 7).

46 Giorgio Buttazzo

As for all the efficient solutions, the better performance is achieved at the price of
a larger runtime overhead (due to the complexity of computing the minimum dead-
line). However, adopting a variant of the algorithm, called the Tunable Bandwidth
Server [5], overhead cost and performance can be balanced in order to select the best
service method for a given real-time system. An overview of the most common
aperidic service algorithms (both under fixed and dynamic priorities) can be found in

[4].

|
|

0 6 12

J. T —
[! I ! ! ! ! ! ! =
0 2 4 6 8 10 12

Fig. 5. Optimal aperiodic service under EDF

4 Protocols for Accessing Shared Resources

When two or more tasks interact through shared resources (e.g., shared memory
buffers), the direct use of classical synchronization mechanisms, such as semaphores
or monitors, can cause a phenomenon known as priority inversion: a high priority
task can be blocked by a low priority task for an unbounded interval of time. Such a
blocking condition can create serious problems in safety critical real-time systems,
since it can cause deadlines to be missed.

For example, consider three tasks, [}, [} and [}, having decreasing priority (L} is the
task with highest priority), and assume that [} and [} share a data structure protected
by a binary semaphore S. As shown in Figure 6, suppose that at time t, task [] enters
its critical section, holding semaphore S. During the execution of [], at time t,, as-
sume [] becomes ready and preempts [].

[normal execution

U] critical section

o h
Uz _
ty t th t3 ty ts tg t7

Fig. 6. Example of priority inversion

Real-Time Operating Systems: Problems and Novel Solutions 47

At time t,, when [tries to access the shared resource, it is blocked on semaphore S,
since the resource is used by []. Since [} is the highest priority task, we would expect
it to be blocked for an interval no longer than the time needed by [} to complete its
critical section. Unfortunately, however, the maximum blocking time for [| can be-
come much larger. In fact, task [], while holding the resource, can be preempted by
medium priority tasks (like []), which will prolong the blocking interval of [] for their
entire execution!

The situation illustrated in Figure 6 can be avoided by simply preventing preemp-
tion inside critical sections. This solution, however, is appropriate only for very short
critical sections, because it could cause unnecessary delays for high priority tasks.
For example, a low priority task inside a long critical section would prevent the exe-
cution of a high priority task, even though they do not share any resource.

A more efficient solution is to regulate the access to shared resource through the
use of specific concurrency control protocols, designed to limit the priority inversion
phenomenon.

4.1 Priority Inheritance Protocol

An elegant solution to the priority inversion phenomenon caused by mutual exclusion
is offered by the Priority Inheritance Protocol (PIP) [19]. Here, the problem is
solved by dynamically modifying the priorities of tasks that cause a blocking condi-
tion. In particular, when a task [] blocks on a shared resource, it transmits its priority
to the task [that is holding the resource. In this way, [] will execute its critical sec-
tion with the priority of task []. In general, [inherits the highest priority among the
tasks it blocks. Moreover, priority inheritance is transitive, thus if task [] blocks [,
which in turn blocks [], then [| will inherit the priority of [] through [].

Figure 7 illustrates how the schedule shown in Figure 6 is changed when resources
are accessed using the Priority Inheritance Protocol. Until time t, the system evolu-
tion is the same as the one shown in Figure 6. At time t,, the high priority task []
blocks after attempting to enter the resource held by [} (direct blocking). In this case,
however, the protocol imposes that [] inherits the maximum priority among the tasks
blocked on that resource, thus it continues the execution of its critical section at the
priority of []. Under these conditions, at time t,, task L] is not able to preempt L],
hence it blocks until the resource is released (push-through blocking).

In other words, although [] has a nominal priority greater than [, it cannot exe-
cute, because [inherited the priority of []. At time t,, [] exits its critical section,
releases the semaphore and recovers its nominal priority. As a consequence, [| can
proceed until its completion, which occurs at time t,. Only then [] can start executing.

The Priority Inheritance Protocol has the following property [19]:

Given a task [] if n is the number of tasks with lower priority sharing
a resource with a task with priority higher or equal to [Jand m is the
number of semaphores that could block [] then [Tcan be blocked for at
most the duration of min(n,m) critical sections.

Although the Priority Inheritance Protocol limits the priority inversion phenomenon,
the maximum blocking time for high priority tasks can still be significant, due to

48 Giorgio Buttazzo

possible chained blocking conditions. Moreover, deadlock can occur if semaphores
are not properly used in nested critical sections.

[normal execution

| | critical section

push-through blocking
e

direct blocking

s | |
to t; th t3 tg ts te t7

Fig. 7. Schedule produced using Priority Inheritance on the task set of Figure 6

The Priority Inheritance Protocol has the following property [19]:

Given a task [] if n is the number of tasks with lower priority sharing
a resource with a task with priority higher or equal to [Jand m is the
number of semaphores that could block [] then [Jcan be blocked for at
most the duration of min(n,m) critical sections.

Although the Priority Inheritance Protocol limits the priority inversion phenomenon,
the maximum blocking time for high priority tasks can still be significant, due to
possible chained blocking conditions. Moreover, deadlock can occur if semaphores
are not properly used in nested critical sections.

4.2 Priority Ceiling Protocol

The Priority Ceiling Protocol (PCP) [19] provides a better solution for the priority
inversion phenomenon, also avoiding chained blocking and deadlock conditions.

The basic idea behind this protocol is to ensure that, whenever a task [Jenters a
critical section, its priority is the highest among those that can be inherited from all
the lower priority tasks that are currently suspended in a critical section. If this con-
dition is not satisfied, [1is blocked and the task that is blocking [inherits [s priority.

This idea is implemented by assigning each semaphore a priority ceiling equal to
the highest priority of the tasks using that semaphore. Then, a task [1is allowed to
enter a critical section only if its priority is strictly greater than all priority ceilings of
the semaphores held by the other tasks. As for the Priority Inheritance Protocol, the
inheritance mechanism is transitive.

The Priority Ceiling Protocol, besides avoiding chained blocking and deadlocks,
has the property that each task can be blocked for at most the duration of a single
critical section.

Real-Time Operating Systems: Problems and Novel Solutions 49

4.3 Schedulability Analysis

The importance of the protocols for accessing shared resources in a real-time system
derives from the fact that they can bound the maximum blocking time experienced by
a task. This is essential for analyzing the schedulability of a set of real-time tasks
interacting through shared buffers or any other non-preemptable resource, e.g., a
communication port or bus.

To verify the schedulability of task [] using the processor utilization approach, we
need to consider the utilization factor of task [, the interference caused by the higher
priority tasks and the blocking time caused by lower priority tasks. If B, is the maxi-
mum blocking time that can be experienced by task [], then the sum of the utilization
factors due to these three causes cannot exceed the least upper bound of the schedul-
ing algorithm, that is:

. B. ,
i=loan Sy Sog B i)
7—;‘ k hp(i) Tk Tz

where hp(i) denotes the set of tasks with priority higher than []. The same test is valid
for both the protocols described above, the only difference being the amount of
blocking that each task may experience.

S New Applications and Trends

In the last years, real-time system technology has been applied to several application
domains, where computational activities have less stringent timing constraints and
occasional deadline misses are typically tolerated. Examples of such systems include
monitoring, multimedia systems, flight simulators and, in general, virtual reality
games. In such applications, missing a deadline does not cause catastrophic effects on
the system, but just a performance degradation. Hence, instead of requiring an abso-
lute guarantee for the feasibility of the schedule, such systems demand an acceptable
Quality of Service (QoS). It is worth observing that, since some timing constraints
need to be handled anyway (although not critical), a non real-time operating system,
such a Linux or Windows, is not appropriate: First of all, such systems do not pro-
vide temporal isolation among tasks, thus a sporadic peak load on a task may nega-
tively affect the execution of other tasks in the system. Furthermore, the lack of
concurrency control mechanisms which prevent priority inversion makes these sys-
tems unsuitable for guaranteeing a desired QoS level.

On the other hand, a hard real-time approach is also not well suited for supporting
such applications, because resources would be wasted due to static allocation mecha-
nisms and pessimistic design assumptions. Moreover, in many multimedia applica-
tions, tasks are characterized by highly variable execution times (consider, for in-
stance, an mpeg player), thus providing precise estimations on task computation
times is practically impossible, unless one uses overly pessimistic figures.

In order to provide efficient as well as predictable support for this type of real-
time applications, several new approaches and scheduling methodologies have been
proposed. They increase the flexibility and the adaptability of a system to on-line
variations. For example, temporal protection mechanisms have been proposed to
isolate task overruns and reduce reciprocal task interference [1][26]. Statistical analy-

50 Giorgio Buttazzo

sis techniques have been introduced to provide a probabilistic guarantee aimed at
improving system efficiency [1].

Other techniques have been devised to handle transient and permanent overload
conditions in a controlled fashion, thus increasing the average computational load in
the system. One method absorbs the overload by regularly aborting some jobs of a
periodic task, without exceeding a maximum limit specified by the user through a
QoS parameter describing the minimum number of jobs between two consecutive
abortions [7][12]. Another technique handles overloads through a suitable variation
of periods, managed to decreased the processor utilization up to a desired level [6].

6 Conclusions

This paper surveyed some kernel methodologies aimed at enhancing the efficiency
and the predictability of real-time control applications. In particular, the paper pre-
sented some scheduling algorithms and analysis techniques for periodic and aperi-
odic task sets. Two concurrency control protocols have been described to access
shared resources in mutual exclusion while avoiding the priority inversion phenome-
non. Each technique has the property to be analyzable, so that an off-line guarantee
can be provided for feasibility of the schedule within the timing constraints imposed
by the application.

For soft real-time systems, such as multimedia systems or simulators, the hard
real-time approach can be too rigid and inefficient, especially when the application
tasks have highly variable computation times. In these cases, novel methodologies
have been introduced to improve average resource exploitation. They are also able to
guarantee a desired QoS level and control performance degradation during overload
conditions.

In addition to research efforts aimed at providing solutions to more complex
problems, a concrete increase in the reliability of future real-time systems can only be
achieved if the mature methodologies are actually integrated in next generation oper-
ating systems and languages, defining new standards for the development of real-
time applications. At the same time, programmers and software engineers need to be
educated to the appropriate use of the available technologies.

References

1. Abeni, L., and G. Buttazzo: “Integrating Multimedia Applications in Hard Real-Time Sys-
tems”, Proceedings of the /EEE Real-Time Systems Symposium, Madrid, Spain, December
1998.

2. Audsley, N. C., A. Burns, M. Richardson, and A. Wellings: “Hard Real-Time Scheduling:
The Deadline Monotonic Approach”, IEEE Workshop on Real-Time Operating Systems,
1992.

3. Baruah, S. K., R. R. Howell, and L. E. Rosier: “Algorithms and Complexity Concerning
the Preemptive Scheduling of Periodic Real-Time Tasks on One Processor,” Real-Time
Systems, 2, 1990.

4. Buttazzo, G. C.: HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Al-
gorithms and Applications, Kluwer Academic Publishers, Boston, 1997.

5. Buttazzo, G. C. and F. Sensini: “Optimal Deadline Assignment for Scheduling Soft Aperi-
odic Tasks in Hard Real-Time Environments”, 3rd IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS), Como, Italy, September 1997.

6.

7

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Real-Time Operating Systems: Problems and Novel Solutions 51

Buttazzo, G. C., G. Lipari, and L. Abeni: “Elastic Task Model for Adaptive Rate Control”,
Proceedings of the IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

. Buttazzo, G. C., and M. Caccamo: “Minimizing Aperiodic Response Times in a Firm Real-

Time Environment”, IEEE Transactions on Software Engineering, Vol. 25, No. 1, pp. 22-
32, January/February 1999.

Dertouzos, M. L.: “Control Robotics: the Procedural Control of Physical Processes”, In-
formation Processing 74, North-Holland Publishing Company, 1974.

Ghazalie, T. M. and T. P. Baker: “Aperiodic Servers In A Deadline Scheduling Environ-
ment”. The Journal of Real-Time Systems, 1995.

M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” The Com-
puter Journal, 29(5), pp. 390-395, 1986.

Klein, M.H., et al.: A Practitioners’ Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer Academic Publishers,
1993.

Koren, G., and D. Shasha: “Skip-Over: Algorithms and Complexity for Overloaded Sys-
tems that Allow Skips”, IEEE Real-Time System Symposium, December 1995.

Lehoczky, J. P, L. Sha, and J. K. Strosnider: “Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments”, IEEE Real-Time Systems Symposium, pp. 261-270, San Jose,
CA, December 1987.

Lehoczky, J. P., L. Sha, and Y. Ding: “The Rate-Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behaviour”, IEEE Real-Time Systems Symposium, pp.
166-171, 1989.

Lehoczky, J. P., and S. Ramos-Thuel: “An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems”, IEEE Real-Time Systems Sympo-
sium, 1992.

Leung, J., and J. Whitehead: “On the Complexity of Fixed Priority Scheduling of Periodic
Real-Time Tasks”, Performance Evaluation, 2(4), pp. 237-250, 1982.

Liu, C. L., and J. W. Layland: “Scheduling Algoritms for Multiprogramming in a Hard-
Real-Time Environment”, Journal of ACM, Vol. 20, No. 1, January 1973.

Rajkumar, R.: Synchronous Programming of Reactive Systems, Kluwer Academic Pub-
lishing, 1991.

Sha, L., R. Rajkumar, and J. P. Lehoczky: “Priority Inheritance Protocols: An Approach to
Real-Time Synchronization”, IEEE Transactions on Computers, Vol. 39, No. 9, September
1990.

Sprunt, B., L. Sha, and J. Lehoczky: “Aperiodic Task Scheduling for Hard Real-Time
System”, Journal of Real-Time Systems, 1, pp. 27-60, June 1989.

Spuri, M., and G. C. Buttazzo: “Efficient Aperiodic Service under Earliest Deadline
Scheduling”, 15th IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, 1994.
Spuri, M., and G. C. Buttazzo: “Scheduling Aperiodic Tasks in Dynamic Priority Sys-
tems”, Journal of Real-Time Systems, Vol. 10, No. 2, pp. 1-32, 1996.

Stankovic, J., and K. Ramamritham: Tutorial on Hard Real-Time Systems, IEEE Computer
Society Press, 1988.

Stankovic, J.: “A Serious Problem for Next-Generation Systems”, IEEE Computer, pp. 10-
19, October 1988.

Stankovic, J., M. Spuri, M. Di Natale, G. Buttazzo: “Implications of Classical Scheduling
Results for Real-Time Systems”, IEEE Computer, Vol. 28, No. 6, pp. 16-25, June 1995.
Stoica, 1., H-Abdel-Wahab, K. Jeffay, S. Baruah, J.E. Gehrke, and G. C. Plaxton: “A Pro-
portional Share Resource Allocation Algorithm for Real-Time Timeshared Systems”, IEEE
Real-Time Systems Symposium, Dec. 1996

Strosnider, J. K., J. P. Lehoczky and L. Sha: “The Deferrable Server Algorithm for En-
hanced Aperiodic Responsiveness in Hard Real-Time Environments”, IEEE Transactions
on Computers, Vol. 44, No. 1, pp. 73-91, January 1995.

	Introduction
	Achieving Predictability

	Periodic Task Handling
	Timeline Scheduling
	Rate Monotonic (RM)
	Earliest Deadline First (EDF)
	Tasks with Deadlines Less Than Periods

	Aperiodic Task Handling
	Protocols for Accessing Shared Resources
	Priority Inheritance Protocol
	Priority Ceiling Protocol
	Schedulability Analysis

	New Applications and Trends
	Conclusions
	References

