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Abstract. We describe a static analysis method on Java bytecode to
determine class initialization dependencies. This method can be used
for eager class loading and initialization. It catches many initialization
circularities that are missed by the standard lazy implementation. Except
for contrived examples, the computed initialization order gives the same
results as standard lazy initialization.

1 Introduction

Class initialization refers to the computation and assignment of initial values
specified by the programmer to the static fields of a class. It is not to be confused
with preparation, which refers to the assignment of default values to each static
field when the class is created—null to reference types, 0 to numeric types, etc.

Initialization is a notoriously thorny issue in Java semantics [3,5,10]. For
example, consider the legal Java fragment in Fig. 1. What are the initial values

class A {
static int a = B.b + 1;

}
class B {

static int b = A.a + 1;
}

Fig. 1.

of A.a and B.b? The answer to this question is not determined by the fragment.
They can be either A.a = 2 and B.b = 1 or vice versa, depending on the order
in which the classes are loaded.

The standard Java lazy class loading and initialization method can detect
such circular dependencies, but it does not treat them as errors, because in some
cases they are useful. For example, the program of Fig. 2 contains a common
Java idiom. The circularity in this example is a self-loop on the class Widget.
The class initializer of Widget calls the instance initializer of Widget, which in
turn accesses the static field nextSerialNumber. This is a “good” circularity.
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class Widget {
static int nextSerialNumber = 10000;
int serialNumber;
static Widget protoWidget = new Widget();

Widget() {
serialNumber = nextSerialNumber++;

}
}

Fig. 2.

int serialNumber;
static Widget protoWidget = new Widget();
static int nextSerialNumber = 10000;

Fig. 3.

However, if we were to permute the declarations as in Fig. 3, it would be erro-
neous, because nextSerialNumber is accessed before it is initialized. The value
of protoWidget.serialNumber will be 0, the default value of the static field
nextSerialNumber supplied during class preparation, instead of the intended
10000. Although it is illegal for a static initializer to access a static field of the
same class whose declaration occurs lexically later [9], the compiler check for this
error is typically limited to direct access only. Indirect access, such as through
the instance initializer in this example, escapes notice.

The guiding principle here is that static fields should be initialized before they
are used. The fragment of Fig. 1 above violates this principle no matter what the
initialization order, and any such circularity arising in practice is almost surely
a programming error. Ideally, the initialization process should respect initializa-
tion dependencies and catch such erroneous circularities wherever possible. But
because this principle is difficult to enforce without ruling out good circularities
such as Fig. 2, Java compilers do little to enforce it.

Even in the absence of circular dependencies, lazy initialization may fail to
initialize correctly. For example, in the fragment of Fig. 4, if A is loaded before B,

class A {
static int a = 2;
static int aa = B.b + 1;

}
class B {

static int b = A.a + 1;
}

Fig. 4.

then the fields are initialized correctly, but not if they are loaded in the opposite
order.
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Lazy loading and initialization, in which classes are loaded and initialized at
the time of their first active use, is the preferred strategy of the Java language
designers. Other strategies are allowed in principle, but the Java virtual machine
specification insists that any exceptions that would be thrown during loading
and initialization are to be thrown at the same time as under the standard lazy
implementation [9, p. 42]. Unfortunately, the runtime overhead imposed by this
restriction would reduce the performance advantage gained by using an eager
initialization strategy, besides being a pain to implement. Thus this restriction
effectively rules out other strategies for standard Java implementations.

Nevertheless, an eager approach to class loading and initialization may be
more appropriate for certain specialized applications. For example, in applica-
tions involving boot firmware, boot drivers for plug-in components, and embed-
ded systems, platform independence and security are issues of major concern.
The IEEE Open Firmware standard [7], based on Sun OpenBoot, specifies Forth
as the language of choice for firmware implementation for reasons of platform
independence. The Forth virtual machine is similar to the JVM in many ways,
except that instructions are untyped, there is no support for objects, and there is
no bytecode verification. But because security is a growing concern, and because
the Open Firmware device tree architecture is naturally object-oriented, Java
presents an attractive alternative.

Firmware runs in an extremely primitive environment with little or no oper-
ating system support or mediation. Boot device drivers run in privileged mode
and have full access to the entire system, including other devices. In addition,
embedded systems may be subject to real-time constraints. For these reasons, it
is desirable to avoid the runtime overhead of lazy class loading and initialization.

Besides the obvious runtime performance advantages, there are other benefits
to eager initialization:

– Errors are identified earlier.
– There is a clean description of class initialization semantics.
– Class initialization can be precompiled in JVM-to-native (just-in-time) com-

pilation.

In this paper we describe an algorithm for determining a class initialization
order that can be used for eager class loading and initialization. The algorithm
runs at the bytecode level and computes a conservative estimate of the true
dependency relation on static fields by static analysis of the call graph. Bad
circularities, which are almost surely programming errors, are caught, whereas
good circularities are allowed to pass. This distinction is defined formally in
Section 2.

The key insight that allows us to distinguish good circularities from bad is
that the instantiation of a class B in the static initializer of A does not auto-
matically create an initialization dependency A ⇒ B (“⇒” = “depends on” =
“should be initialized after”). The creation of a new instance of B by itself is not
the source of any dependencies. The only reason B might have to be initialized
first is if the constructor B.<init>, or some method called by it directly or indi-
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rectly, references a static field of B. We can discover such a dependency by static
analysis of the call graph.

This introduces a rather radical twist to the initialization process: during
class initialization, we might actually end up instantiating a class before it is
initialized, provided its constructor (or any method called directly or indirectly
by the constructor) does not reference any static fields of the class.

Another radical departure from conventional wisdom is that there is no in-
herent dependency of subclasses on superclasses. The JVM specification requires
that superclasses be initialized before their subclasses, but there is really no rea-
son for this unless the static initializer of the subclass references, directly or
indirectly, a static field of the superclass. Our static analysis will discover all
such potential references.

Our method flags the examples of Figs. 1 and 4 above as errors, but allows
Fig. 2 to pass. Currently our implementation allows Fig. 3 to pass, but it could
be extended without much difficulty to catch errors of this form as well.

We conjecture that circularities such as Figs. 1, 3, and 4 are rare, and that
when they do occur, they are almost surely unintended. Moreover, we conjecture
that in virtually all practical instances, any class initialization order respecting
the static dependencies computed by our algorithm will give the same initial
values as the standard lazy method.

We have tested our first conjecture experimentally by running our algorithm
on several publicly available Java class libraries (see Section 3), including the
entire COLT distribution from CERN [4] and a portion of the JDK version
1.4 from Sun [8]. In no case did it report a bad circularity. It is possible to
concoct pathological examples for which our algorithm erroneously reports a
bad circularity where in fact there is none, but these are so contrived that we
suspect they would be unlikely to arise in practice.

2 Algorithm

In this section we describe the implementation of our algorithm for determining
the class initialization order.

The order is defined in terms of a dependency relation ⇒ on classes. Roughly
speaking, A ⇒ B if it can be determined by static analysis that the execution of
the static initializer of A could potentially read or write a static field of B. Thus
if A ⇒ B, then B should be initialized before A. Note that this is independent of
whether the initialization of A can create an instance of B.

We assume that all classes are locally available for static analysis and that all
methods are available in bytecode form (i.e., no native methods). We distinguish
between system classes (e.g., java.util.Hashtable) and application classes.
Our algorithm does not analyze system classes, since no system class would
normally know about application classes and thus would not reference their
static fields. It can be proved formally that without explicit syntactic reference,
system class initialization cannot directly or indirectly access any static field of
an application class (this is false for general computation).
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We describe ⇒ as the transitive closure of the edge relation → of a partic-
ular directed graph whose vertices are classes and methods. The graph will be
constructed dynamically. Let LC be the set of application classes, SC the set
of system classes, and AM the set of static and instance methods of applica-
tion classes. The relation → is defined to be the edge relation on (LC ∪ SC ∪
AM ) × (LC ∪ SC ∪ AM ) consisting of the following ordered pairs:

(i) If A is an application class and A has a class initializer A.<clinit>, then
A → A.<clinit>.

(ii) If f is a static or instance method of an application class, and if f calls
another static or instance method g, then f → g. Such a call must be of
the form either invokestatic g, invokespecial g, invokeinterface g,
or invokevirtual g. In addition, if g is an instance method invoked by
invokevirtual g, and if g′ is another method with the same name and
descriptor in a subclass of the class in which g is defined, then f → g′.

(iii) If f is a static or instance method of an application class A, and if f contains
an instruction getstatic B.a or putstatic B.a, which reads or writes the
static field B.a, then f → B.

We are actually only interested in the restriction of ⇒ to classes, since this will
determine the class initialization order. Also, for efficiency, we do not construct
the entire relation →, but only the part reachable from the main class.

We start with an initial set of vertices consisting of

(a) all application classes accessible by some chain of references from the main
class,

(b) all system classes accessible from the main class, and
(c) all <clinit> methods of the application classes in (a).

The classes in (a) are available from the constant pools of all loaded classes.
Classes are loaded and prepared eagerly, and we assume that this has already
been done. Any class whose name appears in the constant pool of any loaded
class is also loaded. The initial set of edges is (i), the edges from the application
classes to their own <clinit> methods.

We now describe the computation of the call graph. Initially, we push all
<clinit> methods in (c) on a stack, then repeat the following until the stack is
empty.

Pop the next method f off the stack. If we have already processed f, discard
it and go on to the next. If we have not processed f yet, scan its code looking for
all instructions that would cause an edge to be created. These can be instruc-
tions getstatic B.a or putstatic B.a that access a static field or a method
invocation invoke... g. In the case of a getstatic B.a or putstatic B.a
instruction, create a new edge f → B if it is not already present. In case of a
method invocation invoke... g, create a new edge f → g and push g on the
stack for subsequent processing. It may also be necessary to insert g as a new
vertex in the graph if it does not already exist. In addition, if g is an instance
method invoked by invokevirtual g, and if g′ is another method with the same
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name and descriptor in a subclass of the class in which g is defined, create a new
edge f → g′ and push g′ on the stack for subsequent processing. When done,
mark f as processed.

The reason for the special treatment of instance method invocations invoke-
virtual g is that g is not necessarily the method that is dispatched. It could
be g or any method that shadows it, i.e., a method with the same name and
descriptor as g declared in a subclass, depending on the runtime type of the
object. In general we may not know the runtime type of the object at the time
of initialization, so to be conservative, we insert edges to all such methods.

class B {
static int g(A1 a) {

return a.f();
}
static A3 a = new A3();
static int b = g(a);

}
class A1 {

static int e = 1;
int f() {

return e;
}

}
class A2 extends A1 {

static int e = 2;
int f() {

return e;
}

}
class A3 extends A2 {}

Fig. 5.

Fig. 5 illustrates this situation. The correct initial value for B.b is 2, because
A2.f is dispatched in the call to a.f() in B.g, not A1.f. We must insert the edge
B.g → A2.f when we insert the edge B.g → A1.f to account for the dependency
of B.b on A2.e.

A dependency A ⇒ B is thus induced by a chain of intermediate method
calls starting with A.<clinit> and ending with a getstatic or putstatic
instruction, and all computed dependencies A ⇒ B are of this form. The number
of intermediate calls can be arbitrarily long. For example, if A.<clinit> calls f,
which calls g, which accesses the field B.a, then this entails a dependency A ⇒ B.
However, note that it does not necessarily entail a dependency A ⇒ C, where C
is the class of f or g.

A new B bytecode instruction appearing in A.<clinit> or any method called
directly or indirectly by A.<clinit> also does not by itself introduce a depen-
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dency A ⇒ B. The purpose of the new B instruction is to tell the JVM to allocate
and prepare a new instance of the class B, and no static fields are accessed in this
process. However, a new B instruction would normally be followed by an explicit
call to an initializer B.<init>, which can access static fields. But our algorithm
will see the call to B.<init> and will push it on the stack for later processing.

Once the graph is created, we perform depth-first search and calculate the
strongly connected components. This takes linear time [2]. Each component rep-
resents an equivalence class of methods and classes that are all reachable from
each other under the dependence relation →.

In our current implementation, a bad component is taken to be a strongly
connected component containing at least two classes. If A and B are two classes
contained in a bad component, then there must be a cycle

A → A.<clinit> → f2 → · · · → fn → B → B.<clinit> → g2 → · · · → gm → A,

indicating that the initialization of A directly or indirectly accesses a static field
of B and vice versa. Such bad components are flagged as errors.

If there are no bad components, then the relation ⇒ restricted to vertices
LC ∪ SC is acyclic. In this case, any topological sort of the induced subgraph
on LC ∪ SC can be used as a class initialization order. In our implementation,
we just use the postorder number of the low vertex of each component computed
during depth-first search.

In the absence of reported bad circularities, our eager initialization strategy
and the standard lazy strategy should normally give the same initial values. This
is because we conservatively trace all possible call chains, so if there is a true
dependency of a static field A.a on another static field B.b, where A and B are
distinct, both the lazy method and our method will see it and will initialize B.b
first. Any call chain involving at least two distinct classes that would result in
a field receiving its default value instead of its initial value in the lazy method
will appear as a bad circularity in our method.

However, it would be difficult to formulate a complete set of conditions under
which the eager and lazy strategies could be formally guaranteed to give the
same initial values. One would have to rule out all possible ways in which a
class initializer could directly or indirectly modify a static field of another class.
Without this restriction, each class could identify itself in a common location
as it is initialized, thereby recording the actual initialization order. Thus initial
values would not be the same unless the initialization order were the same. To
avoid this, one would have to rule out a variety of possible indirect channels:
exceptions, concurrency, reflection, native methods, and file or console IO, for
example.

3 Experimental Results

To provide evidence that bad circularities are rare in practice, we have analyzed
several large publicly available Java class libraries in a variety of application
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areas. We found no bad circularities. Besides portions of the JDK version 1.4
[8], we have analyzed the complete distribution of each of the following libraries.

The COLT distribution from CERN [4] is an extensive toolkit for computa-
tional high energy physics. It provides packages for data analysis and display,
linear algebra, matrix decomposition, statistical analysis, and Monte Carlo sim-
ulation, among others. The distribution consists of 836 class files.

GEO [6] is a class library and environment supporting the creation, manipu-
lation, and display of 3D geometric objects. The distribution consists of 43 class
files.

The ACME distribution [1] is a package with several general-purpose utili-
ties, including extensions to the Java Windows Toolkit, PostScript-like graphics,
a printf() facility, a cryptography package including implementations of DES,
Blowfish, and secure hashing, an HTTP server, a multithreaded caching dae-
mon, a netnews database backend, image processing software including PPM,
JPEG, and GIF codecs and RGB image filters, and a simple chat system. The
distribution consists of 180 class files.

4 Remarks and Conclusions

An interesting open problem is to formulate conditions under which, in the
absence of reported bad circularities, the eager and lazy strategies would be
guaranteed to give the same initial values. A formal statement and proof of this
result might be based on a bytecode or source-level type system in the style of
[5].

As illustrated in Fig. 4, the true dependency relation is between static fields,
not classes. The relation ⇒ between classes is only a coarse approximation.
A finer-grained approximation ⇒ between static fields could be computed and
would give sharper results. But because the <clinit> methods are compiled to
be executed atomically, we could not take advantage of this extra information
without recompilation. Besides, our experimental results indicate that the class-
level approximation is sufficient for all practical purposes.

As mentioned, for class initialization, there is no inherent dependency of
subclasses on superclasses. Such a dependency exists only if a static field of
a superclass is referenced directly or indirectly by the static initializer of the
subclass. Static initializers are never invoked explicitly from bytecode, but only
by the virtual machine. Instance initialization is another matter, however. The
constructor B.<init> always contains an explicit call to the parent constructor
SuperclassOfB.<init>. Thus if B is instantiated during the course of static
initialization, our algorithm automatically traces the chain of calls to the parent
constructors.
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Appendix

The following sample run shows the output obtained on the fragment of Fig. 5
in the text above, along with the main class

class Pathologies {
static public void main(String args[]) {

System.out.println(B.b);
}

}

The depth-first search tree is shown. After each vertex are listed its preorder and
postorder numbers and low vertex, followed by a list of edges. The low vertex
is the eldest reachable ancestor and serves as a canonical representative of the
strongly connected component [2]. The nontrivial components (i.e., those with
more than one member) are listed, and those with at least two classes are flagged
as bad. In this example there are no bad components.
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pathologies Sun Jul 22 09:49:24 EDT 2001
Loading class info...
Local classes loaded: 5
System classes: 3
Main class: Pathologies
Resolving references...
0 error(s)
Constructing class hierarchy...
Calculating dependencies...
Component analysis:
A1, A1.<clinit>()V
A2, A2.<clinit>()V
B.<clinit>()V, B
3 nontrivial component(s)
0 bad component(s)

pathologies Sun Jul 22 09:49:24 EDT 2001
A3.<init>()V: PRE=0 POST=2 LOW=A3.<init>()V
A2.<init>()V TREE

A1.<init>()V: PRE=2 POST=0 LOW=A1.<init>()V
B.<clinit>()V: PRE=3 POST=11 LOW=B.<clinit>()V
B.g(LA1;)I TREE
B TREE
A3.<init>()V CROSS

A2.<init>()V: PRE=1 POST=1 LOW=A2.<init>()V
A1.<init>()V TREE

A1.<clinit>()V: PRE=7 POST=3 LOW=A1
A1 BACK

A2.<clinit>()V: PRE=10 POST=6 LOW=A2
A2 BACK

B: PRE=11 POST=10 LOW=B.<clinit>()V
B.<clinit>()V BACK

A1: PRE=6 POST=4 LOW=A1
A1.<clinit>()V TREE

A2.f()I: PRE=8 POST=8 LOW=A2.f()I
A2 TREE

Pathologies: PRE=12 POST=12 LOW=Pathologies
A2: PRE=9 POST=7 LOW=A2
A2.<clinit>()V TREE

A1.f()I: PRE=5 POST=5 LOW=A1.f()I
A1 TREE

A3: PRE=13 POST=13 LOW=A3
B.g(LA1;)I: PRE=4 POST=9 LOW=B.g(LA1;)I
A1.f()I TREE
A2.f()I TREE
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