Approximating Dependency Graphs
using Tree Automata Techniques*

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan
ami@is.tsukuba.ac.jp

Abstract. The dependency pair method of Arts and Giesl is the most
powerful technique for proving termination of term rewrite systems au-
tomatically. We show that the method can be improved by using tree
automata techniques to obtain better approximations of the dependency
graph. This graph determines the ordering constraints that need to be
solved in order to conclude termination. We further show that by us-
ing our approximations the dependency pair method provides a decision
procedure for termination of right-ground rewrite systems.

1 Introduction

In the area of term rewriting termination has been studied for several decades
and many powerful techniques have been developed. Three general directions
can be distinguished:

1. Syntactic methods that compare terms by constructing an explicit well-
founded order. These methods are fully automatable but have limited power.
Well-known examples are the recursive path order of Dershowitz [10] and the
Knuth-Bendix order [18].

2. Semantic methods that compare terms by interpreting them in some well-
founded domain. These methods can be very powerful in theory but their im-
plementations rely on heuristics that greatly reduce this power. Well-known
examples are the polynomial interpretations of Lankford [22] and the seman-
tic path order of Kamin and Lévy [17].

3. Transformation methods which do not attempt to prove termination directly
but rather transform the given rewrite system into another rewrite system
such that termination of the latter system is easier to prove and implies ter-
mination of the former system. Examples include the transformation order of
Bellegarde and Lescanne [6], and Zantema’s distribution elimination [27] and
semantic labelling [28]. Transformations differ in their degree of automation.

Since termination is an undecidable property of rewrite systems, even for systems
that consist of a single rewrite rule, no method will work in all cases. Recently a
new automatable technique emerged: the dependency pair method of Arts and
Giesl. In this method a rewrite system is transformed into a set of ordering

* Proceedings of the International Joint Conference on Automated Reasoning
(IJCAR’01), Siena, Lecture Notes in Articial Intelligence 2083, pp. 593-610, 2001.

constraints such that termination of the rewrite system is equivalent to the
solvability of the constraints. The generated constraints are typically solved by
standard techniques (polynomial interpretations, path orders), even when these
techniques are not applicable to the original rewrite system. The power of the
dependency pair method has been amply illustrated in a sequence of papers by
Arts and Giesl [2-4].

The ordering constraints in the dependency pair method are generated by
analyzing the cycles in the dependency graph. This graph summarizes the rela-
tionships between the dependency pairs of the rewrite system. More precisely,
there is an arrow from dependency pair s — ¢ to dependency pair © — v in the
dependency graph if some instance of ¢ rewrites to some instance of u. Since this
is undecidable in general, the dependency graph has to be estimated by a de-
cidable approximation. Arts and Giesl proposed the following simple algorithm
for this purpose: there is an arrow in the so-called estimated dependency graph
from s — ¢ to u — v if the term obtained from ¢ by replacing all outermost
defined symbols by variables and a subsequent linearization unifies with w.

The approximation of Arts and Giesl often results in an unnecessarily large
graph and hence a large number of constraints. Sometimes, as examples in this
paper will demonstrate, this causes the failure of the termination proof. The
aim of this paper is to show that by using tree automata techniques we obtain a
much better estimation of the dependency graph. Our approach is based on the
following two ingredients:

1. The powerful framework of Durand and Middeldorp for the study of decid-
able call-by-need computations in orthogonal term rewriting. This framework
is parameterized by so-called approximation mappings. An approximation
mapping abstracts from certain parts of the terms in the rewrite rules such
that the set of terms that rewrite to a term in an arbitrary regular tree
language is again regular.

2. The folklore result that it is decidable whether the set of ground instances
of an arbitrary term intersects with a regular tree language. This result is
well-known for linear terms but it also holds for non-linear terms.

We show that by adopting the so-called nv approximation we always obtain
an estimation of the dependency graph which is at least as good as the one
of Arts and Giesl but often better. Interestingly, we can automatically prove
termination of rewrite systems outside the class of so-called DP quasi-simply
terminating systems. This class, proposed by Giesl and Ohlebusch [14], consists
of all rewrite systems “where an automated termination proof using dependency
pairs is potentially feasible”.

The remainder of the paper is organized as follows. In the next section we
briefly recall the basics of the dependency pair technique. Section 3 contains
background material on tree automata. In Section 4 we define new approxima-
tions of the dependency graph. We compare our approximations with the one of
Arts and Giesl in Section 5. We also include a comparison with the approxima-
tion of Kusakari and Toyama [19,21]. In Section 6 we show that by using our

approximations the dependency pair method provides a decision procedure for
termination of right-ground rewrite systems.

2 Dependency Pairs

We assume familiarity with the basics of term rewriting ([5]). A term rewrite
system (TRS for short) consists of rewrite rules I — r that satisfy [¢ V and
Var(r) C Var(l). If these conditions are not imposed we find it useful to speak
of extended TRSs (eTRSs). Such systems arise naturally when we approximate
TRSs or orient the rewrite rules from right to left, as explained in Section 4.
Note that eTRSs which are not TRSs can never be terminating, but in this
paper we will make clear that such eTRSs are very useful for automatically
proving termination of TRSs.

Below we recall the basic notions and results of the dependency pair technique
of Arts and Giesl. We refer to [2,4,12] for motivations and further refinements.
We adopt the notation of [13,20]. Let R be a TRS over a signature F. As usual,
root symbols of left-hand sides of rewrite rules are called defined. Let F* denote
the union of F and {f* | f is a defined symbol of R} where f* has the same
arity as f. Given a term t = f(t1,...,t,) € T(F,V) with f defined, we write ¢*
for the term f*(t1,...,t,). If | — r € R and t is a subterm of r with defined root
symbol then the rewrite rule I* — t! is called a dependency pair of R. The set
of all dependency pairs of R is denoted by DP(R). In examples we often write
F for f%.

An argument filtering for a signature F is a mapping 7 that associates with
every n-ary function symbol an argument position ¢ € {1,...,n} or a (possibly
empty) list [i1,...,%4,] of argument positions with 1 < 43 < -+ < 4, < n.
The signature F, consists of all function symbols f such that 7(f) is some list
[i1,-..,%m], where in F the arity of f is m. Every argument filtering 7 induces
a mapping from 7 (F,V) to T (F,,V), also denoted by :

t if t is a variable,
7T(t) = 71'(151) ift = f(tb cee 7tn) and 7T(f) = ‘a
f(’]'('(til), . 77T(tim)) ift = f(th N ,tn) and 7T(f) = [il, . ,Zm]

Thus, an argument filtering is used to replace function symbols by one of their
arguments or to eliminate certain arguments of function symbols.

A preorder is a transitive and reflexive relation. A rewrite preorder is a pre-
order =~ on terms that is closed under contexts and substitutions. A reduction
pair consists of a rewrite preorder - and a compatible well-founded order >
which is closed under substitutions. Here compatibility means that the inclusion
2~ > C > or the inclusion > - 22 C > holds. The following theorem presents the
basic dependency pair approach.

Theorem 1 (Arts and Giesl [4]). A TRS R over a signature F is terminating
if and only if there exists an argument filtering 7 for F* and a reduction pair
(7, >) such that 7(R) C 7, and 7(DP(R)) C >. O

Because rewrite rules are just pairs of terms, 7(R) C - is a shorthand for
m(l) 7 w(r) for every rewrite rule [— r € R. From now on we assume that all
(e)TRSs are finite.

Rather than considering all dependency pairs at the same time, like in the
above theorem, it is advantageous to treat groups of dependency pairs separately.
These groups correspond to cycles in the dependency graph DG(R) of R. The
nodes of DG(R) are the dependency pairs of R and there is an arrow from s — ¢
to w — v if and only if there exist substitutions ¢ and 7 such that to —% ur. (By
renaming variables in different occurrences of dependency pairs we may assume
that ¢ = 7.) A cycle is a non-empty subset C of dependency pairs of DP(R) if
for every two (not necessarily distinct) pairs s — ¢ and v — v in C there exists
a non-empty path in C from s — ¢ to u — v.

Theorem 2 (Arts and Giesl [2]). A TRS R is terminating if and only if for
every cycle C in DG(R) there exists an argument filtering m and a reduction pair
(z,>) such that 1(R) C zZ, m(C) C U >, and 7(C) N> # &. O

Note that 7(C) N > # @ denotes the situation that 7(s) > m(t) for at least
one dependency pair s — t € C.

Since it is undecidable whether there exists substitutions o, 7 such that
to —% ut, the dependency graph cannot be computed in general. Hence, in order
to mechanize the termination criterion of Theorem 2 one has to approximate the
dependency graph. To this end, Arts and Giesl proposed a simple algorithm.

Definition 3. Let R be a TRS. The nodes of the estimated dependency graph
EDG(R) are the dependency pairs of R and there is an arrow from s — t to
u — v if and only if REN(CAP(t)) and u are unifiable. Here CAP replaces all
outermost subterms with a defined root symbol by distinct fresh variables and
REN replaces all occurrences of variables by distinct fresh variables.

Lemma 4 (Arts and Giesl [4]). Let R be a TRS.

1. EDG(R) is computable.
2. DG(R) C EDG(R). O

3 Tree Automata

We briefly recall some basic definitions and results concerning tree automata.
Much more information can be found in [8].

A (finite bottom-up) tree automaton is a quadruple A = (F,Q,Q¢, A) con-
sisting of a finite signature F, a finite set @ of states, disjoint from F, a subset
Qs C Q of final states, and a set of transition rules A. Every transition rule
has the form f(q1,...,q,) — ¢ with f € F and qi1,...,q9n,¢ € Q. So a tree
automaton A = (F,Q,Qy, A) is simply a finite ground TRS (F U Q, A) whose
rewrite rules have a special shape, together with a subset Q¢ of Q. The induced
rewrite relation on 7 (F U Q) is denoted by — 4. A ground term ¢ € T (F) is
accepted by A if t —% ¢ for some ¢ € Q¢. The set of all such terms is denoted

by L(A). A subset L C 7 (F) is called regular if there exists a tree automaton
A= (F,Q,Qy, A) such that L = L(A). It is well-known that every regular lan-
guage is accepted by a deterministic tree automaton without inaccessible states.
A deterministic automaton has no two different rules with the same left-hand
side. A state is inaccessible if no ground term reduces to it. In this paper we
make use of the additional properties mentioned below.

Lemma 5. The set of ground instances of a linear term is regular. a

We write X(t) for the set of ground instances of the term ¢. The next result
states that it is decidable whether a ground instance of an arbitrary term is
accepted by a given tree automaton. For a linear term ¢ this is obvious since (1)
X(t) is regular by Lemma 5, (2) regular languages are effectively closed under
intersection, and (3) emptiness is decidable for regular languages. The point is
that the problem remains decidable for non-linear terms. This extension will
turn out to be very important for automatically proving termination of TRSs
that rely on non-linearity (i.e., by linearizing the rewrite rules the TRS becomes
non-terminating).

Theorem 6 (Tison [26]). The following problem is decidable:

instance: tree automaton A, term t
question: X (t)NL(A) =o?

Proof. First we transform A into an equivalent deterministic tree automaton
B = (F,Q,Qy,A) without inaccessible states. We claim that X(¢t) N L(A) # @
if and only if there exists a mapping o: Var(t) — @ such that to € L(B).

= Suppose X (t) N L(A) # @. So there exists a substitution 7: Var(t) — 7 (F)
such that t7 € L(A) = L(B). Hence t7 —%, ¢ for some ¢ € Q¢. In this
sequence every subterm 7(z) of ¢ is reduced to some state. Because B is
deterministic, different occurrences of 7(x) in ¢7 reduce to the same state,
say ¢, € Q. Define the mapping o: Var(t) — @ by o(xz) = ¢, for every
x € Var(t). Clearly tr —% to —% ¢ and hence to € L(B).

< Suppose to € L(B) for some mapping o: Var(t) — Q. So to —% ¢ for
some ¢ € Q. Since all states of B are accessible, there exists a substitution
7: Var(t) — T (F) such that 7(z) =% o(z) for all x € Var(t). Hence t7 —%
to —% ¢ and thus t7 € L(B) = L(A). In other words, X(t) N L(A) # @.

Since there are only finitely many mappings from Var(t) to @Q, this yields a
decision procedure. O

We stress that for a linear term ¢ there is no need to perform the expensive
determinization of A.

4 Approximations

In this section we define new approximations of the dependency graph. Our
approximations are based on the framework of Durand and Middeldorp [11] for
the study of decidable call-by-need computations in orthogonal term rewriting.

If R is an €TRS over a signature F and L C T (F) then (—%)[L] denotes
the set of all terms s € 7(F) such that s —% ¢ for some term ¢ € L.

Definition 7. An approximation mapping is a mapping o from eTRSs to e TRSs
with the property that —r C —>Z(R) for every eTRS R. In the following we write
Ra instead of a(R). We say that « is regularity preserving if (—%)[L] is reg-
ular for all eTRSs R and regular L.

In [11] an approximation mapping « is also required to satisfy the condition
that the ground normal forms of R and R, coincide, but we do not need that
condition here. Next we define three approximation mappings that are known
to be regularity preserving. Our definitions are slightly different from the ones
found in the literature because we have to deal with possibly non-left-linear
TRSs.

Definition 8. Let R be an eTRS. The strong approximation R is obtained
from R by replacing the right-hand side and all occurrences of wvariables in
the left-hand side of every rewrite rule by distinct fresh variables, i.e., Ry =
{REN({) = z |l = r € R and x is a fresh variable}. The nv approzimation Ry
is obtained from R by replacing all occurrences of variables in the rewrite rules
by distinct fresh variables: Rynw = {REN(l) — REN(r) |l — r € R}. An eTRS
is called growing if for every rewrite rule | — r the variables in Var(l) N Var(r)
occur at depth 1 in 1. The growing approzimation Ry is defined as any left-linear
growing eTRS that is obtained from R by linearizing the left-hand sides and re-
naming the variables in the right-hand sides that occur at a depth greater than
1 in the corresponding left-hand sides.

Rs contains f(x,g(z’),y) — 2, Ruav contains f(x, g(z’),y) — f(z"”, 2", g(y)),
and Ry contains f(z,g(x'), y) — f(z,z.g(y)) or f(z',g(x),y) — F(a", 2", g(y)).
(The former is preferred as it is closer to the original rule. The ambiguity in the
definition of R, causes no problems in the sequel.)

For instance, if R contains the rewrite rule f(x,g(z),y) — f(z,z,g(y)) then
)

Theorem 9. The approximation mappings s, nv, and g are reqularity preserv-
mg. a

Nagaya and Toyama [24] proved the above result for the growing approxi-
mation; the tree automaton that recognizes (=%,)[L] is defined as the limit of
a finite saturation process. This saturation process is similar to the ones defined
in Comon [7] and Jacquemard [16], but by working exclusively with determinis-
tic tree automata, non-right-linear rewrite rules can be handled. For the strong
and nv approximation simpler constructions using ground tree transducers are
possible (see e.g. Durand and Middeldorp [11]).

Recently, Takai et al. [25] introduced the class of left-linear inverse finite
path overlapping rewrite systems and showed that the preceding theorem is
true for the corresponding approximation mapping. Growing rewrite systems
constitute a proper subclass of the class of inverse finite path overlapping rewrite

systems. Since the definition of this class is rather difficult and the construction
in the proof of regularity preservingness very complicated, we do not consider
the inverse finite path overlapping approximation here. We note however that
our results easily extend.

Definition 10. Let R be a TRS and o an approximation mapping. The nodes
of the a-approximated dependency graph DG, (R) are the dependency pairs of
R and there is an arrow from s — t to u — v if and only if both X(t) N
(=%)X (REN(u))] # @ and X(u) N (={g-1))[E(REN(1))] # .

So we draw arrow from s — ¢t to u — v if a ground instance of ¢ rewrites
in R, to a ground instance of REN(u) and a ground instance of u rewrites in
(R™1)4 to a ground instance of REN(#). The reason for having both conditions
is that (1) for decidability ¢ or u should be made linear and (2) depending on
a and R, R, may better approximate R than (R~!), approximates R~!, or
vice-versa. Also, the more conditions one imposes, the closer one gets to the real
dependency graph.

Lemma 11. Let R be a TRS and o an approzrimation mapping.

1. If « is reqularity preserving then DG, (R) is computable.
2. DG(R) C DG, (R).

Proof.

1. Let s — t and u — v be dependency pairs of R. Because REN(u) is a lin-
ear term, X (REN(uw)) is regular (Lemma 5). Since « is regularity preserving,
(—%.)[¥(REN(u))] is regular. Hence, according to Theorem 6, it is decidable
whether X(t) intersects with (—%_)[2(REN(u))]. By the same reasoning it
follows that it is decidable whether X (u) and (ﬁfR_l)a)[Z(REN(t))] inter-
sect. Hence it is decidable whether there exists an arrow from s — t tou — v
in DG, (R).

2. Suppose there is an arrow from dependency pair s — t to dependency pair
u — v in DG(R). So to —% ur for some substitutions ¢ and 7. We may
assume without loss of generality that to and ur are ground terms. Hence
to € X(t) C Y(REN(?)) and ur € X (u) € X (REN(u)). Consequently, X'(¢) N
(—R)IZ(REN(u))] # @ and X (u) N (—5%-.)[Z(REN(t))] # @. Because « is
an approximation mapping, —% C —% and —% ; C —(5 . Therefore
X(t) N (=%,)[X(REN(u))] # @ and X(u) N (H?R,l)a)[E(REN(t))] # @. In
other words, there exists an arrow from s — ¢ to u — v in DG, (R). ad

It should be clear that a better approximation mapping results in a better
approximation of the dependency graph. Hence we have the following result.

Lemma 12. DG4(R) C DG, (R) C DGs(R) for every TRS R. O

The reason for considering the strong and nv approximations in this paper is
that DGy and DG,,, are easier to compute than DG, cf. the paragraph following
Theorem 9.

5 Comparison

In this section we compare our a-approximated dependency graph with the
estimated dependency graph of Arts and Giesl and the approximation of the
dependency graph defined by Kusakari and Toyama [19, 21].

The first two examples show that the s-approximated dependency graph and
the estimated dependency graph are incomparable in general.

Ezxample 13. Consider the TRS R consisting of the two rewrite rules
f(g(a)) — f(a)

a — b
There are two dependency pairs:

Flg(a)) — Fa) (1)
F(g(a)) — A (2)

Because REN(CAP(F(a))) = F(z) unifies with F(g(a)), EDG(R) contains two

arrows: m

1) —(2)

We have (R™!)s = {f(a) — x,b — z}. Hence (H?R_l)s)[{F(a)}] consists of all
terms of the form f"(a), f*(b), F(f"(a)), F(f*(b)) with n > 0. The term F(g(a))
clearly does not belong to this set and hence there are no arrows in DG4(R).

Ezxample 14. Consider the TRS R consisting of the single rewrite rule
f(x,z) — f(a,b)

There is one dependency pair:
F(x,z) — F(a,b)

Because REN(CAP(F(a,b))) = F(a,b) and F(x,z) are not unifiable, EDG(R)
contains no arrows. However, both X(F(a,b)) N (=%)[X(REN(F(z,z)))] and
Y(F(z,z)) N (H?‘R_l)s)[Z(REN(F(a,b)))] are non-empty, as witnessed by the
terms F(a,b) and F(f(a,b),f(a,b)).

The non-left-linearity in the preceding example is essential. This is shown in

Lemma 16 below. In the proof we make use of the following lemma. Here <%
is the inverse of the relation —% (which is different from —>Z*R,1)§).

Lemma 15. («%)[Y(REN(?))] € X(REN(CAP(t))) for every TRS R and term t.

Proof. Let F be the signature of R. We use induction on the structure of . If ¢ is
a variable or if the root symbol of ¢ is a defined symbol then CAP(¢) is a variable
and hence X(REN(CAP(t))) = 7(F) and thus trivially (<%)[X(REN(t))] C
Y (REN(CAP(t))). Suppose t = f(t1,...,t,) with f a constructor. Because the
left-hand side of every rule in Ry starts with a defined symbol and the arguments
of REN(t) do not share variables, (<%)[X(REN(t))] = {f(s1,...,50) | 8i €
S(REN(t;))}. Also X(REN(CAP(£))) = {f(s1,...,5n) | s: € Z(REN(CAP(%)))}.
Hence the desired inclusion follows from the induction hypothesis. O

s

The previous lemma does not hold for eTRSs. For instance, consider the
eTRS R = {x — a} over the signature consisting of the constants a and b. If
t = b then («%)[Y(REN(?))] = {a,b} and X (REN(CAP(¢))) = {b}.

s

Lemma 16. If R is a left-linear TRS then DGs(R) C EDG(R).

Proof. Suppose there is an arrow from dependency pair s — ¢ to dependency
pair u — v in DGs(R). By definition, X'(¢) N (=%)[Z(REN(u))] # @. Since R
is left-linear, u is a linear term and thus Y (REN(u)) = X'(u). Hence there exist
ground substitutions o and 7 such that to —% wu7. Clearly to € X(REN(t)).
According to the preceding lemma ur € X(REN(CAP(t))). Since REN(CAP(t))
and u do not share variables, they are unifiable and thus there exists an arrow
from s — ¢ to u — v in EDG(R). O

Actually, with the strong approximation we can never benefit from non-
linearity. This is formally expressed in the following lemma.

Lemma 17. Let R be a nonempty eTRS, t a term, and L a set of ground terms.
The following statements are equivalent:

1 E(0)N (~R)L # 2,
2. S(REN()) N (=3)[L] # 2.

Proof.

= Obvious since X'(t) C X (REN(?)).

< Let A be an arbitrary ground redex and define the substitution o = {z +—
A | © € Var(t)}. Because in Ry a redex can be rewritten to any term,
to —5_ t' for every t' € X(REN(t)). Hence, if ¢ € X(REN(t)) N (=%)[L]
then to € X(t) N (=5)[L]. O

As a consequence, the strong approximation is not all that useful for ap-
proximating dependency graphs. For the nv approximation matters are quite
different. Our next result states that the nv-approximated dependency graph is
always a subgraph of the estimated dependency graph. In order to prove this,
we need the following preliminary result.

Lemma 18. (R.,) ! = (R).y for every eTRS R.

Proof. Since R,y = {REN(l) — REN(r) | | — r € R}, the result is obvious. O
We stress that the above lemma is not true for the strong and growing ap-

proximations. For the strong approximation the TRSs of Examples 13 and 14

serve as counterexample.

Theorem 19. DG,,(R) C EDG(R) for every TRS R.

Proof. Suppose there is an arrow from dependency pair s — ¢ to dependency
pair v — v in DG, (R). By definition, X (u) N (H?R,l)[‘v)[E(REN(t))] # O.
According to Lemmata 18 and 15, and using the observation that —% is a
subrelation of —7% , (ﬁfR,l)nv)[Z(REN(t))] = (H%nv)[E(REN(t))] C (=%
[X(REN(%))] € X (REN(CAP(¢))). Hence X (u)N X (REN(CAP(t))) # @ and hence
u and REN(CAP(t)) are unifiable. Therefore the arrow from s — ¢ to u — v also
exists in EDG(R). O

The next example shows that the nv-approximated dependency graph is in
general a proper subgraph of the estimated dependency graph.

Ezxample 20. Consider the TRS R consisting of the two rewrite rules

f(a,b,2) — f(z,z,x)
a — ¢

There is one dependency pair:
F(a,b,z) — F(z,z,x)

Since REN(CAP(F(z, z,x))) = F(x1, 22, x3) unifies with F(a, b, z), EDG(R) con-
tains a cycle. We have X (REN(F(a,b,x))) = {F(a,b,t) | t € T(F)} and R,y =
{f(a,b,x) — f(z1,72,73),a — c}. Consequently (—%)[¥(REN(F(a,b,)))] =

Y(REN(F(a, b, z))) and since no instance of F(z, ,) belongs to this set, DG,y (R)
contains no arrow. Therefore R is trivially terminating.

The TRS in the above example is not DP quasi-simply terminating. The
class of DP quasi-simply terminating TRSs was introduced by Giesl and Ohle-
busch [14] and supposed to “capture all TRSs where an automated termination
proof using dependency pairs is potentially feasible”. We note that the various
refinements of the dependency pair method (narrowing, rewriting, instantiation;
see Giesl and Arts [12]) are not applicable and moreover that proving innermost
termination (which is easy with the standard dependency pair technique) is in-
sufficient for termination as the TRS does not belong to a known class for which
termination and innermost termination coincide.

The next example shows a TRS that cannot be proved terminating with the
nv approximation but whose (automatic) termination proof becomes easy with
the growing approximation.

Example 21. Consider the TRS R consisting of the three rewrite rules

f(z,a) — f(z,g(x,b))
g(h(z),y) — glz,h(y))
gla,y) — vy

There are three dependency pairs:

F(z,a) — F(z,g(z,b)) (1)
F(z,a) — G(z,b) (2)
G(h(z),y) — G(z,h(y)) (3)

One easily verifies that DG, (R) contains two cycles:

In particular, F(a,g(a,b)) —%,, F(a,a) which explains the arrows from (1) to
(1) and (2). The problematic cycle {(1)} does not exist in DG4 (R) because no
ground instance of F(z, g(x, b)) rewrites in R, to a ground instance of F(x,a):

n @@=

As a consequence, the resulting ordering constraints (obtained from Theorem 2)
are easily satisfied (e.g. by taking 7(f) = 1 in combination with the lexicographic
path order with precedence G > h and g > h).!

In the final part of this section we compare our a-approximated dependency
graph with the approximation of the dependency graph defined by Kusakari and
Toyama [19, 21]. Their approximation relies on the concepts of w-reduction and
£2-reduction. The first concept stems from Huet and Lévy [15].

Let R be a TRS over a signature F. Let {2 be a fresh constant. The set of
ground terms over the extended signature F U {2} is denoted by 7 (F). Given
aterm t € T (F,V), the term in 7y, (F) obtained from ¢ by replacing all variables
by {2 is denoted by t,. The prefix order > on 7g(F) is defined by the following
two clauses:

— t > 2 for every t € To(F),
— f(s1,---,8n) = f(t1,...,t,) if s; = t; for every 1 < i < n.

Two terms s,t € To(F) are compatible, denoted by s T ¢, if there exists a
term u € T (F) such that both u > s and w > t. Finally, w-reduction is the
relation —,, on T (F) defined as follows: s —,, t if and only if s = C[s'] and
t = C[f2] such that 2 # s’ Tl for some | — r € R. It is easy to prove that
w-reduction is terminating and confluent. Hence every term t € 7o (F) has a
unique normal form, which is denoted by w(t). It is well-known that w-reduction
is closely related to the strong approximation. Below we make use of the following
well-known facts (for all terms s,t € T (F)):

—wlt) <t
— if s <t then w(s) < w(t).

The concept of 2-reduction corresponds to the nv approximation and is defined
as follows: s —p t if and only if s = C[¢] and t = C[rp] for some | — r € R
such that 2 # s’ 7 lg. Unlike w-reduction, {2-reduction is in general neither
confluent nor terminating.

1 Again, the TRS is not DP quasi-simply terminating. Unlike the previous example,
proving innermost termination is sufficient for termination, but the estimated in-
nermost dependency graph coincides with EDG(R) = DGuv(R) and the narrowing
refinement for innermost termination fails to make the requirements for an automatic
proof easier.

Lemma 22. Let R be a TRS. If s =% t and s' < s then s —5 1’ for some
t < t.

Proof. Induction on the length of s —% ¢, using the easy to prove fact that if
s =R, tand s’ < s then s’ —3 ¢’ for some ¢’ < ¢. O

We now have all ingredients to define Kusakari and Toyama’s approximation
of the dependency graph. Actually, their definition applies to AC rewriting, an
extension that we do not consider in this paper. The definition below is the
specialization to ordinary term rewriting.

Definition 23. Let R be a TRS. For every n > 0 we define the graph DG§(R)
as follows. Its modes are the dependency pairs of R and there is an arrow from
s — t tou — v if and only if there exists a termt' € Tp(F) such thatt' 1 upn and
either to —'5 t' with m < n orto —75 - —>fd t'. (Note that the latter condition
is equivalent to to —% t" and t' = w(t") for some term ' € To(F).)

Lemma 24 (Kusakari and Toyama [19,21]). Let R be a TRS and n > 0.

1. DGH(R) is computable.
2. DG (R) C DG(R). 0

It is not difficult to show that EDG(R) and DGY(R) are incomparable in
general, for all n > 0 (contradicting the remark in Kusakari and Toyama [21]
that their algorithm for approximating the dependency graph is more powerful
than the one of Arts and Giesl). For instance, for the TRS R of Example 14
DGY(R) contains a cycle for every n > 0 whereas EDG(R) is empty. The same
holds for DG4(R). However, it is easy to prove that DG4(R) is always a sub-
graph of DG%(R) and sometimes a proper subgraph, like in Example 13 where
DG%(R) coincides with EDG(R). Below we compare Kusakari and Toyama’s
approximation with our nv-approximated dependency graph.

Lemma 25. Let R be a TRS. If n > 0 then DG} (R) € DGY H(R).

Proof. Suppose there is an arrow from dependency pair s — t to dependency
pair u — v in DGJ} (R). So there exists a term ¢’ € T (F) such that ¢ T ug and
either t, —% t/ with m < n or to —7 - —>fu t’. First suppose that t, —7 ¢/
with m < n. If m < n — 1 then the arrow from s — ¢t to u — v also exists in
DG '(R). If m = n — 1 then we reason as follows. Since w(t') < t', w(t') T ug.
Clearly to —'5 't/ —! w(#'). Hence the arrow from s — ¢ to u — v exists in
DG" (R). Finally consider the case that to —% - —' t'. So there exists terms
t; and t9 such that ¢t —>}‘2_1 t1 —o ta —>L t'. Clearly t; —,, t5 with t}, < to.
We have w(t;) = w(th) < w(tz) = t'. Hence w(t1) and ug are compatible. Since
to —ntt =L w(ty), the arrow from s — t to u — v exists in DGy '(R). O

The following result is the key to showing that our nv-approximated depen-
dency graph is a subgraph of DG%(R), for all n > 0.

Lemma 26. Let s — t and u — v be dependency pairs of R. If X(REN(t)) N
(=%, J[X(REN(u))] # @ then there is an arrow from s — t tou — v in DG (R)
for allmn > 0.

Proof. Suppose Y (REN(t))N(—%)[Z(REN(u))] # @. So REN(t)o —% REN(u)7
for some ground substitutions ¢ and 7. Since t, < REN(¢)o, an application
of Lemma 22 yields tp —§, « for some term v < REN(u)r. Because also
un < REN(u)T, v/ T ug. Let m be the length of the f2-reduction sequence
from tg to u'. It follows that there is an arrow from s — ¢ to u — v in DG (R)
for all n > m. According to Lemma 25, the arrow exists also in DG{,(R) for
n<m. O

Theorem 27. DG, (R) C DGH(R) for every TRS R and n > 0.

Proof. Suppose there is an arrow from dependency pair s — t to dependency
pair u — v in DGy (R). By definition, X(t) N (=%)[X(REN(u))] # @. Since
X(t) € Y(REN(t)), also Y(REN(t)) N (=%)[X(REN(u))] # . According to
Lemma 26 the arrow from s — ¢ to u — v exists in DG (R) for allm > 0. O

The reverse inclusion does not hold. Consider for instance the TRS R of
Example 20. Since F(£2, 2, 2) is compatible with F(a, b, £2), DG}, (R) contains a
cycle for all n > 0.

In retrospect, Kusakari and Toyama’s approximation suffers from the fol-
lowing two problems: (1) since all variables are replaced by {2, TRSs that are
terminating because of non-linearity cannot be handled appropriately, and (2)
there is no need to bound the number of f2-reduction steps, rather, by avoiding
such a bound we can make effective use of tree automata techniques.

6 Decidable Classes

Termination is known to be decidable for several subclasses of TRSs. In this
section we investigate whether these decidability results can be obtained with
the dependency pair technique. The best known class of TRSs with a decidable
termination problem is the class of right-ground TRSs (Dershowitz [9]). The
following easy result states that in principle the dependency pair technique is
very suitable for deciding termination of right-ground TRSs.

Theorem 28. A right-ground TRS R is terminating if and only if DG(R) con-
tains no cycles.

Proof.

= Suppose DG(R) contains a cycle C = {s; — t; | 1 < i < n}. We show that R
is non-terminating. Without loss of generality we assume that C is minimal.
Since R is right-ground, there exist substitutions o; such that ¢; —% siy10;
for all 1 <4 < n and with s,,4+1 = s1. By definition of dependency pairs, for
every 1 < ¢ < n there exists a rewrite rule [; — r; € R and a subterm u; of

r; such that s; = l? and t; = uf Let C; be the context such that r; = C;[u,].
Since all steps in ug —% lgﬂcr,- take place below the root position, we also
have Uq 4):;% li+10i and thus r; = C’z[uz] H% Ci[li_;,_lai} (Wlth ln+1 = ll)

Therefore

i =rm —% Cq [l201] —r C1 [7’2] —>7z Ch [C2[1302]]
—r o =k CUCl - [Calhon])--]

which gives rise to an infinite rewrite sequence.
<« If there are no cycles in DG(R) then the conditions of Theorem 2 are trivially
satisfied and thus R is terminating. O

So as far as termination of right-ground TRSs is concerned, the only thing
that matters is a good approximation of the dependency graph. Next we consider
how the various approximations of the dependency graph deal with right-ground
TRSs.

Theorem 29. For every left-linear right-ground TRS R, DG(R) = DG,y (R).

Proof. According to Lemma 11 it suffices to show that DG, (R) € DG(R). So
suppose there is an arrow from dependency pair s — ¢ to dependency pair u — v
in DGyy (R). Hence X'(t)N (=%,)[2(REN(u))] # @. Because R is left-linear and
right-ground, Ry, = R, t is a ground term, and w is linear. Hence ¢t € (=%)[X (u)]
and thus ¢ —% wuo for some ground substitution o. Therefore the arrow from
s — t to u — v also exists in DG(R). O

The following example shows that without the left-linearity condition DG(R)
and DG,y (R) may differ.

Example 30. Consider the right-ground TRS R consisting of the three rewrite

rules
f(a) — g(h(a,b))
g(g(a)) — f(b)
h(z,z) — g(a)
There are four dependency pairs:

Fla) — G(h(a,b)) (1) G(g(a)) — F(b) (3
F(a) — H(a,b) (2) H(z,z) — G@) (4

~— —

Because R,y contains the rewrite rule h(z,y) — g(a) and (Ryy) ™t = (R)ny,
DG, (R) contains an arrow from (1) to (3). However, since G(h(a,b)) does not
rewrite to G(g(a)) in R, this arrow does not exist in DG(R).

Note that in the previous example R, also contains the rule h(z,y) — g(a)
but the corresponding rule in (R™!), is g(a) — h(z,z) and therefore G(g(a))
does not belong to (—>2‘R,1)g)[{G(h(a7 b))}]. Hence there is no arrow from (1) to
(3) in DG4(R). This holds in general.

Theorem 31. For every right-ground TRS R, DG(R) = DG4(R).

Proof. According to Lemma 11 it suffices to show that DGg(R) C DG(R). So
suppose there is an arrow from dependency pair s — t to dependency pair u — v
in DG4 (R). Hence E(u)ﬂ(—i‘R,l)g)[Z(REN(t))] # &. Because R is right-ground,
(R™1)g = R! and ¢ is a ground term. Hence X'(u) N («%)[{t}] # @ and thus
t —% uo for some ground substitution o. Therefore the arrow from s — ¢ to
u — v also exists in DG(R). O

The above results provide an easy decision procedure for termination of right-
ground TRSs R: Compute the dependency graph of R using the growing (nv, if
R is left-linear) approximation and determine whether there are any cycles. We
stress that the above results are not true for the estimated dependency graph.

Recently, Nagaya and Toyama [24] obtained the following decidability result.

Theorem 32. Termination is decidable for almost orthogonal growing TRSs.

It should be noted that this result does not cover the preceding results due
to the almost orthogonality requirement. (A TRS is called almost orthogonal
if it is left-linear and all critical pairs are trivial overlays.) On the other hand,
although it is very easy to prove that DG(R) = DGg4(R) for every left-linear
growing TRS R, the dependency pair approach does not seem to give an easy
decision procedure since the dependency graph may contain cycles, as shown in
the following example.

Ezample 33. Consider the (almost) orthogonal growing TRS R consisting of the
two rewrite rules

— g(x)
_

f(b)

G(z) (1)
Fb) (2

One easily verifies that DG(R) contains a cycle:

—
—

(1) @

However, R is clearly terminating (and it is very easy to solve the constraints
stemming from the dependency pair technique in Theorem 2).

7 Conclusion

In this paper we have shown that simple tree automata techniques are useful
to obtain better approximations of the dependency graph and hence we can
automatically prove termination of a larger class of TRSs. More sophisticated
tree automata techniques have been developed for dealing with non-linearity,

see [8, Chapter 4], but we are not aware of any preservation results for the
corresponding language classes and hence it is unclear whether these techniques
could further improve automatic termination techniques.

Obviously, our a-approximated dependency graphs are harder to compute
than the estimated dependency graph of Arts and Giesl. Consequently, we do
not propose to eliminate the estimated dependency graph. Rather, our approxi-
mations should be tried only if tools based on the estimated dependency graph
(like [1]) fail to prove termination or maybe in parallel to the search for suitable
argument filterings and orderings to satisfy the resulting constraints. Clearly
experimentation is needed to determine when to invoke our approximations.
Currently we are working on an implementation of our algorithms.

It is worthwhile to investigate whether our approach can be extended to AC
termination ([21,23]) and to innermost termination ([4]). For AC termination
we do not expect any problems, but innermost termination seems more difficult.
The reason is that the existence of an arrow from s — ¢ to u — v in the
innermost dependency graph does not only depend on whether a ground instance
to of t innermost rewrites to a ground instance ur of u, but so and ur are
additionally required to be normal forms. The latter condition is easily verified by
tree automata techniques but it is unclear how to deal with the synchronization
between the two conditions.

Since there are numerous examples of terminating TRSs whose dependency
graphs do contain cycles, it goes without saying that the work reported in this
paper is not the final answer to the problem of proving termination of rewrite
systems automatically.

Acknowledgements

I thank Seitaro Yuuki for useful discussions. The paper benefitted from detailed
comments of Jiirgen Giesl and the anonymous referees.

References

1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA,
volume 1833 of LNCS, pages 261264, 2000.

2. T. Arts and J. Giesl. Modularity of termination using dependency pairs. In Proc.
9th RTA, volume 1379 of LNCS, pages 226-240, 1998.

3. T. Arts and J. Giesl. Applying rewriting techniques to the verification of Erlang
processes. In Proc. 13th CSL, volume 1862 of LNCS, pages 457-471, 2000.

4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133-178, 2000.

5. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

6. F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in
Engineering, Communication and Computing, 1:79-96, 1990.

7. H. Comon. Sequentiality, monadic second-order logic and tree automata. Infor-
mation and Computation, 157:25-51, 2000.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 1999. Draft, available
from http://www.grappa.univ-1lille3.fr/tata/.

N. Dershowitz. Termination of linear rewriting systems (preliminary version). In
Proc. 8th ICALP, volume 115 of LNCS, pages 448-458, 1981.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-
ence, 17:279-301, 1982.

I. Durand and A. Middeldorp. Decidable call by need computations in term rewrit-
ing. In Proc. 14th CADE, volume 1249 of LNAI, pages 4-18, 1997.

J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appli-
cable Algebra in Engineering, Communication and Computing, 2001. To appear.
J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proc. 17th CADE,
volume 1831 of LNAI pages 309-323, 2000.

J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems far-
ther outwards. In Proc. FroCoS’98, volume 7 of Studies in Logic and Computation,
pages 141-160. Wiley, 2000.

G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, I and II.
In Computational Logic, Essays in Honor of Alan Robinson, pages 396—443. The
MIT Press, 1991. Original version: Report 359, Inria, 1979.

F. Jacquemard. Decidable approximations of term rewriting systems. In Proc. 7th
RTA, volume 1103 of LNCS, pages 362—-376, 1996.

S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering. Un-
published manuscript, University of Illinois, 1980.

D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In Com-
putational Problems in Abstract Algebra, pages 263-297. Pergamon Press, 1970.
K. Kusakari. Termination, AC-Termination and Dependency Pairs of Term
Rewriting Systems. PhD thesis, JAIST, 2000.

K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proc. 1st PPDP, volume 1702 of LNCS, pages 48—62, 1999.

K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs.
Research Report IS-RR-98-0026F, School of Information Science, JAIST, 1998.
D. Lankford. On proving term rewriting systems are noetherian. Report MTP-3,
Louisiana Technical University, 1979.

C. Marché and X. Urbain. Termination of associative-commutative rewriting by
dependency pairs. In Proc. 9th RTA, volume 1379 of LNCS, pages 241-255, 1998.
T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting
systems. In Proc. 10th RTA, volume 1631 of LNCS, pages 256270, 1999.

T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Proc. 11th RTA, volume 1833 of
LNCS, pages 246-260, 2000.

S. Tison. Tree automata and term rewrite systems, July 2000. Invited tutorial at
the 11th RTA.

H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17:23-50, 1994.

H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89-105, 1995.

