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1 Introduction

Description logics (DLs) are a family of logical formalisms well-suited for the represen-
tation of and reasoning about conceptual knowledge on an abstract logical level. How-
ever, for many knowledge representation applications, it is essential to integrate the
abstract logical knowledge with knowledge of a more concrete nature. As an example,
consider the modeling of manufacturing processes, where it is necessary to represent
“abstract” entities like subprocesses and workpieces and also “concrete” knowledge,
e.g., about the duration of processes and physical dimensions of the manufactured
objects [2; 25].

The standard technique for extending Description Logics to allow for the repre-
sentation of concrete knowledge is to use so-called concrete domains which have been
introduced by Baader and Hanschke in [1]. Baader and Hanschke define the descrip-
tion logic ALC(D), i.e., the extension of the basic propositionally complete description
logic ALC with concrete domains. More precisely, ALC(D) can be parameterized with
a concrete domain D, where D provides a set of predicates over a given domain like,
e.g., the real numbers or the set of time intervals. The concrete domain predicates
can then be used inside a concrete domain concept constructor. For example, the
ALC(D)-concept

Vsubprocess. Drilling M Jworkpiece diameter.<5cm

describes a process all of whose subprocesses are drilling processes and which is related
to a workpiece whose diameter is at most 5 centimeters. In the example, Drilling is a
concept name (unary predicate), subprocess, workpiece, and diameter are roles (binary
predicates), and < 5em is a predicate from the concrete domain. The second conjunct
demonstrates the use of the concrete domain concept constructor. More information
on concrete domains can, e.g., be found in [4; 11; 17].

In this paper, we are interested in the complexity of reasoning with DLs which pro-
vide concrete domains, where “reasoning” refers to testing satisfiability and subsump-
tion of concepts. In [20], we proved that reasoning with ALC(D) is PSPACE-complete
provided that reasoning with the concrete domain D (i.e., testing the satisfiability
of finite conjunctions of predicates from D) is in PSPACE. However, for many ap-
plications, the expressivity of ALC(D) is not su cient and one wants to extend this
logic with additional concept- and role-constructors, and with so-called TBoxes. We
investigate several such extensions and show that, in the extended logics, reasoning
becomes considerably harder. More precisely, we consider the extension of ALC(D)
with

1. acyclic TBoxes,
2. inverse roles (and inverse features), and
3. a role-forming concrete domain constructor.

We prove that reasoning with ALC(D) and general TBoxes is undecidable which
explains why we extend ALC(D) with the weaker acyclic TBoxes (see, e.g., [21] for
acyclic TBoxes and [7; 15] for general TBoxes).



By introducing a NEXPTIME-complete variant of the Post Correspondence Prob-
lem [23; 14], we show that there exists a concrete domain P for which reasoning is in
PTIME such that reasoning with each of the above three extensions of ALC(D) (pa-
rameterized with the concrete domain P) is NEXPTIME-hard. This dramatic increase
in complexity is rather surprising since, from a computational point of view, all of
the proposed extensions look harmless. For example, in [19], we show that the exten-
sion of “many” PSPACE Description Logics with acyclic TBoxes does not increase the
complexity of reasoning. Moreover, it is well-known that ALC extended with inverse
roles is still in PSPACE (see, e.g., [16]).

As a corresponding upper bound, we show that, if reasoning with a concrete do-
main D is in NP, then reasoning with the DL ALCRPZ(D) with acyclic TBoxes
is in NExPTIME. The logic ALCRPZ(D) is the extension of ALC(D) with inverse
roles and role-forming concrete domain constructors. Finally, we investigate whether
ALCRPI(D) can be augmented by so-called feature agreement and feature disagree-
ment constructors. This step is rather natural since the mentioned constructors are
closely related to concrete domains and amenable to a similar algorithmic treatment [1;
20]. We can, however, show that reasoning with the logic ALCZF is already undecid-
able.

2 Description Logics

In this section, we introduce the description logics which we are concerned with in
the remainder of this paper. We first introduce the logic ALCZ(D) which extends
ALC(D) with inverse roles and then extend it to the logic ALCRPZ(D). This two-step
approach is pursued since the definition of ALCRPZ(D) involves some rather unusual
syntactic restrictions which we like to keep separated from the more straightforward
syntax of ALCZ(D).

2.1 The Description Logic ALCZ(D)

In this section, the Description Logic ALCZ(D) is introduced. We start by defining
concrete domains which were first introduced by Baader and Hanschke [1].

Definition 1 (Concrete Domain). A concrete domain D is a pair (Ap, p), where
Ap is a set called the domain, and ®p is a set of predicate names. Each predicate
name P € ®p is associated with an arity n and an n-ary predicate PP C AZ. A
predicate conjunction of the form

c= /\ (x(()z), e ,:L“gi)) : P,
1<i<k
where P; is an n;-ary predicate for 1 < ¢ < k and the xgi) are variables, is called
satisfiable iff there exists a function mapping the variables in ¢ to elements of Ap

such that ( (x(()i)), e (ng))) € PP for 1 <i < k. Such a function is called a solution

i

for ¢. A concrete domain D is called admissible iff



1. the set of its predicate names is closed under negation and contains a name Tp
for Ap and

2. the satisfiability problem for finite conjunctions of predicates is decidable.

With P, we denote the negation of the predicate P, i.e., the predicate with the exten-
sion P’ = Ap \ PP.

We will only consider concrete domains which are admissible. Based on concrete
domains, we introduce the syntax of ALCZ(D).

Definition 2 (Syntax). Let N¢o, Ng, and N.r be mutually disjoint sets of concept
names, role names, and concrete feature names, respectively, and let N,z be a subset
of Ng. Elements of N,y are called abstract features. The set of ALCZ(D) roles Np is
NrU{R™ | R € Np}. An expression f;--- f,g, where f1,..., f, € Nyp and g € N.p,
is called a path.! The set of ALCT(D)-concepts is the smallest set such that

1. every concept name is a concept

2. if C'and D are concepts, R is a role, g is a concrete feature, P € ® is a predicate
name with arity n, and wuq,...,u, are paths, then the following expressions are
also concepts:

(a) =C,CND,CUD,

(b) 3R.C, VR.C,

(¢) Juq,...,u,.P, and

(d) gt

An ALCZ(D)-concept which uses only roles from Np is called an ALC(D)-concept.
With sub(C'), we denote the set of subconcepts of a concept C which is defined in the

obvious way such that C' € sub(C).

In the following, we denote concept names with A and B, concepts with C' and D,
roles with R, abstract features with f, concrete features with g, paths with u, and
predicates with P. As usual, we use the following abbreviations:

e dfy - f,.C for Af1.---3f,.C,
o Vfi--- fr.Cfor Vfi.---Vf,.C, and

o (fi--- fag)t for Vfi.---Vfy.gT.

The syntactical part of a description logic is usually given by a concept language and a
so-called TBox formalism. The TBox formalism is used to represent the terminological
knowledge of an application domain and is introduced in the following.

Definition 3 (TBoxes). Let A be a concept name and C be a concept. Then A = C'
is a concept definition. Let T be a finite set of concept definitions.

LA concrete feature is a path of length 1.



e A concept name A directly uses a concept name B in T if there is a concept
definition A = C in T such that B appears in C. Let uses be the transitive
closure of “directly uses”.

e 7 is called acyclic if there is no concept name A such that A uses itself in 7.

e If 7 is acyclic, and the left-hand sides of all concept definitions in 7 are unique,
then T is called a TBoz.

TBoxes can be thought of as sets of macro definitions, i.e., the left-hand side of every
concept definition is an abbreviation for the right-hand side of the concept definition.
In the DL literature, researchers often consider TBox formalisms which are more
expressive than the one just introduced. For example, one may admit cyclic TBoxes
[22: 26] or so called general TBoxes in which the left-hand sides of concept definitions
may be arbitrary concepts instead of just concept names [7; 15]. However, we will
see that admitting general TBoxes makes reasoning with ALC(D) (and hence also
ALCZ(D)) undecidable. We now define the semantics of ALCZ(D).

Definition 4 (Semantics). An interpretation T is a pair (Az,-T), where Az is a
set called the domain and - the interpretation function. The interpretation function
maps

e each concept name C to a subset C7 of A7,

e each role name R to a subset RT of A1 x A7,

e each abstract feature f to a partial function fZ from Az to Az, and
e each concrete feature g to a partial function gI from A7 to Ap.

If u = f1- fng is a path, then uZ(a) is defined as fZ --- fI g%, where de-
notes function composition and f;  fa(a) = fo(f1(a)) for fi and fo functions. The
interpretation function is extended to arbitrary roles and concepts as follows:
(R7)" = {(a,b) | (b,a) € R}
(CnD)f:=ctnD*

(cuD)t:=ctTubpt
(AR.C)E :={a € Az | {b]| (a,b) € R} N CT # ()}
(VR.C)T :={a e Az | {b| (a,b) € RT} C CT}

(Fuy,...,un.P)t:={a € Az | ul(a

Ti={aeAr|g'(a

= x; for 1 <i<mnand (z1,...,2,) € PP}

)
)"
)
(=C)F := A\ C*
)
)
)
) undefined}

)
)
Let C be a concept and T be a TBox. If C% # (), then T is called a model for C.
If AZ = DT for all A= D € T, then T is called a model for 7. If R is a role (g a

concrete feature) and we have (a,b) € RT (¢7(z) = y), then b is called R-filler of a (y
g-filler of x) in Z.



Throughout this paper, we will call elements from Az abstract objects and elements
from Ap concrete objects. Our definition of ALC(D) differs slightly from the original
version which was introduced in [1]. Instead of separating concrete and abstract
features, Baader and Hanschke define only one type of feature which is interpreted
as a partial function from Az to Az U Ap. Obviously, Baader and Hanschke’s logic
is slightly more expressive than ours. However, in knowledge representation it seems
rather hard to find any cases in which the additional expressiveness is really needed.
Furthermore, separating concrete and abstract features allows a clearer algorithmic
treatment and clearer proofs.

To avoid considering roles such as R~ ~, we define a function Inv which returns the
inverse of a role. More precisely, Inv(R) = R~ if R is a role name, and Inu(R) = S
if R = 57. We generally assume that concepts contain only roles of the form R and
R~ (where R is a role name) which can obviously be done without loss of generality.
The basic reasoning problems on concepts are defined as follows.

Definition 5 (Inference Problems). Let C' and D be concepts. C subsumes D
w.r.t. a TBox T (written D Cy C) iff

D C 7 for all models Z of T.

C is satisfiable w.r.t. a TBox T iff there exists a model of both 7 and C. Both
inferences are also considered without reference to TBoxes: C subsumes D iff C

subsumes D w.r.t. the empty TBox. C'is satisfiable iff it is satisfiable w.r.t. the empty
TBox.

It is well-known that (un)satisfiability and subsumption can be mutually reduced to
each other, i.e., C C7 D iff CM—D is unsatisfiable w.r.t. 7 and C' is satisfiable w.r.t. 7
iff we do not have C' Cy L (where L abbreviates AM—A for an arbitrary concept name
A). We prove decidability of satisfiability and subsumption of ALCZ(D)-concepts in
Section 4. Throughout this paper, we call two concepts C and D equivalent iff C'
subsumes D and D subsumes C.

2.2 The Description Logic ALCRPZ(D)
The Description Logic ALCRP(D) was introduced in [11] and extends ALC(D) with

a role-forming concrete domain constructor, i.e., it allows the definition of roles with
reference to the concrete domain. In this section, we extend the logic ALCZ(D) with
this role-forming constructor.

Definition 6 (Predicate Roles). A predicate role is an expression of the form
ety s tn)s (01, V)P
where P is an n 4+ m-ary predicate. The semantics is given as follows:
(At tun), (V1. .., 0).P)E =
{(a,b) € Az x Az | ul(a) = z; for 1 <i < m,
vE(b) =y for 1 <i<m, and (z1,...,Zp,y1,...,Ym) € PP}
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With R, we denote the set of predicate roles. The set of ACCRPI(D) roles R is
defined as Nz UR U {R™ | R € R}. An ALCRPI(D)-concept is an ALCI(D)-
concept whose roles are from R. Hence, in ALCRPI(D), predicate roles may be
used everywhere where a role name from Np \ Nyp is allowed in ALCZ(D). An
ALCRPZI(D)-concept which does not contain the converse constructor on roles is
called an ALCRP(D)-concept. In the following, a role which is either a predicate role
or the inverse of a predicate role is called complez role.

ALCRPI(D) TBoxes are defined in the obvious way. For example, the following
concept is an ALCRPZ(D)-concept:

An3g, fg.PNVfY(3(g),(9).P)”.—A

This concept is unsatisfiable since every domain object satisfying it would have to
be in both A and —A which is impossible. In [10], it is proved that satisfiability
and subsumption of ALCRP(D)-concepts is undecidable. Furthermore, as shown
n [11], there exists a decidable fragment of the logic ALCRP(D) which contains
ALC(D) as a sublogic. In the following, we introduce an analogous fragment of the
logic ACCRPZ(D). To do this, we fist need to define the negation normal form for
concepts and describe how concepts can be converted into this form.

Definition 7 (NNF). An ALCRPZ(D)-concept is said to be in negation normal

form (NNF) if negation occurs in front of concept names, only. The following rewrite

rules preserve equivalence. Exhaustive rule application yields a concept which is in
NNF.

-~(CnD

-(3R.C

=(Juy,...,up.P

~(g1

= -CU-D =(CUD)=-CnN-D --C=C
= (VR.-C) -(VR.C) = (IR.-C)

— Juq,...,up. PUuitU-- Uuyt

= dg.Tp

~ ' —

We may now define restricted concepts.

Definition 8 (Restricted ALCRPZ(D)-concept). An ALCRPL(D)-concept C is
called restricted iff the result C' of converting C' to NNF satisfies the following condi-
tions:

1. For any VR.D € sub(C"), where R is a complex role, sub(D) does not contain
any concepts of the form Juq, ..., u,.P or 4S.FE, where S is a complex role.

2. For any 3R.D € sub(C'), where R is a complex role, sub(D) does not contain
any concepts of the form Juq, ..., u,.P or VS.E, where S is a complex role.

All ALCRPZ(D)-concepts we use in this paper (also inside TBoxes) are restricted.
Hence, we will in the following write “ALCRPZL(D)-concept” for “restricted ALCRPI(D)-
concept”. Note that the et of restricted ALCRPZ(D)-concepts is closed negation, and,
hence, subsumption of restricted ALCRPZ(D)-concepts can be reduced to satisfiabil-

ity of restricted ALCRPL(D)-concepts.



The restrictions given in [11] for the logic ALCRP(D) are slightly less restrictive
than the ones given here. They additionally admit concepts of the form Juq, ..., u,.P
“inside” universal restrictions of the form VR.D, where R is a predicate role, provided
that (i) the feature chains uq, ..., u, do not contain any abstract features and (ii) the
Juq,...,u,.P concept is not nested inside additional value or exists restrictions in
VR.D. For example, the concept V(3(g), (¢).P).(AM3g.P) is restricted in the sense of
[11] but not in our sense. The concepts V(3(g), (9).P).3S.(AMTg.P) with S a role name
and V(3(g), (9).P).(AM 3fg.P) are not restricted in either sense. The reason for the
more restricted definition given above is the presence of the inverse role constructor.
When constructing a tableau algorithm for ACCRPZ(D) with the weaker restrictions
given in [11], one runs into termination problems.? Consider, for example, the concept

J9.Tp N 3f7¢g.Tp 11 VY(3g),(fg)-1%2).Fg. Tp N If.T)

where PP = Apx Ap. A straightforward tableau algorithm would generate an infinite
“f~-path” of objects, each of which has a “concrete g-successor”. In fact, it seems
rather easy to prove undecidability of ALCRPZ(D) with the weaker restrictions using
a technique similar to the one used in [10] to show undecidability of unrestricted
ALCRP(D).

In Section 4, we prove that satisfiability and subsumption of restricted ALCRPZ(D)-
concepts (as defined above) are decidable in nondeterministic exponential time. Before
we do this, we establish several lower bounds for the complexity of reasoning with con-
crete domains.

3 Lower Complexity Bounds

In this section, we define a NEXPTIME-complete variant of Post’s Correspondence
Problem (PCP) and a concrete domain P. We then reduce the NEXPTIME-complete
variant of the PCP to the satisfiability of ALC(P)-concepts w.r.t. TBoxes, the satisfi-
ability of ALCZ(P)-concepts, and the satisfiability of ALCRP(P)-concepts (the latter
two without reference to TBoxes).

3.1 Post’s Correspondence Problem

Post’s Correspondence Problem was introduced by Emil Post [23] and is a very useful
undecidable problem which is defined as follows.

Definition 9 (PCP). A Post Correspondence Problem (PCP) P is given by a finite,

non-empty list (¢1,71),..., (¢, 1) of pairs of non-empty words over some alphabet ¥.3
A sequence of integers i1, ..., 4y, with m > 1, is called a solution for P iff
G-l =T T

2Readers not familiar with tableau algorithms may skip this comment or return to it after reading
Section 4.

#Usually, the word lists may also contain the empty word. We use this formulation since, in our
case, it allows for simpler proofs.



Let f(n) be a mapping from N to N and let |P| denote the sum of the lengths of all
words in the PCP P, i.e.,
IPl= > 1| +]ril-

1<i<k

A solution iq,..., i, is called an f(n)-solution iff m < f(|P|). With f(n)-PCP, we
denote the version of the PCP that admits only f(n)-solutions.

In the following, when talking of “the PCP” (as opposed to “a PCP”), we refer
to the problem of deciding whether a given PCP P has a solution. Undecidability
of the (general) PCP was first proved in [23] and later reproved by Hopcroft and
Ullman in [14]. In [9], a variant of the PCP is listed as an NP-complete problem
(problem number [SR11]). In this variant, a PCP is given by a finite lists of word
pairs (¢1,71),..., (¢, ) and a positive integer K < k. As solutions, only sequences
of length at most K are admitted. Inspired by this result, we prove NEXPTIME-
completeness of the 2" + 1-PCP. The main di culty is proving NEXPTIME-hardness.
First, we introduce another variant of the PCP.

Definition 10 (MPCP). Let P = (¢1,71),..., (¢, ) be a PCP. A solution iy, ..., ip
for P is called an MPCP-solution iff iy = 1. With MPCP, we denote the version of
the PCP that admits only MPCP-solutions.

For a function f(n) from N to N, we define f(n)-MPCPs and f(n)-MPCP-solutions
in the obvious way. The next lemma illustrates the relationship between the 2"-PCP
and the 2"-MPCP.

Lemma 11. If the 2"-MPCP is NEXPTIME-hard, then the 2"+1-PCP is NEXPTIME-
hard.

Proof It has to be shown that the 2"-MPCP reduces to the 2" + 1-PCP. Hopcroft
and Ullman give a reduction from the MPCP to the PCP [14], i.e., they define a
translation v which maps MPCPs to PCPs such that P has an MPCP-solution iff
7(P) has a solution. A close examination reveals that P has an MPCP-solution of
length at most i iff y(P) has a solution of length at most 7 + 1. a

By the lemma just proved, it is su cient to show that the 2"-MPCP is NEXPTIME-
hard. Before we do this, we give a lemma showing the relationship between different
variants of the MPCP.

Lemma 12. Let g(n) = 201" where a € N, and d € Ny are constants.* If the
g(n)-MPCP is NEXPTIME-hard, then the 2"-MPCP is NEXPTIME-hard.

Proof We need to show that the g(n)-MPCP reduces to the 2"-MPCP. Let P =
(1,71)y...,(£g, i) be an MPCP with |P| = n. W.lo.g., we may assume n > 2 since
the claim is trivial if n = 2.

For the reduction, augment P by new X T-words /1 and 74, yielding P’ such
that |P'| = a x n? and Y41 and 71 do not appear in solutions of P’. Tt is easy to

“When writing 2”d, we mean 2("*).



see that this is possible: We need to increase the size of P by m = a xn% — n. Pick a

symbol o not appearing in P (it is not important whether o € 3 since we may just
change the underlying alphabet). We set £y, := 0™ ! and 7,1 := 0. Since n > 2,
we have m > 2 and hence it is obvious that ¢;4; and r;4; do not appear in solutions
of P'. Furthermore, P has a g(z)-solution iff P’ has a 2"-solution. a

In order to do show that the 2"-MPCP is NExpTiME-hard, we use a reduction of the
acceptance problem of Turing Machines.

Definition 13 (Turing Machine). A nondeterministic Turing Machine is given by
a tuple M := (Q.T", ,q0,Qy). Q is a finite set of states where g9 € Q is the initial
state and Qf C @ is a set of final states. T' is a finite set of symbols with ' NQ = (
which always contains the special symbol B called the blank symbol. Finally, is a
transition function which maps @ x I' to the power set of Q x I' x {left, right, stay}.
Let M = (Q.T', ,q0,Qy) be a (nondeterministic) Turing Machine. An ID uqv of M is
a word in ["*QT™*. An ID has the usual interpretation, i.e., it describes the inscription
of the infinite tape (all tape cells “before u” and “behind »” are labeled with B), the
current state ¢, and the head position of M, which is on the rightmost symbol of .
The usual transition relation on IDs is denoted by +—. Intuitively. uqul—u'q'v' if a
single step of M in ID uqv may result in ID u'¢'v’. An exact definition is omitted and
can be found in any book on recursion theory, see e.g. [14]. By -, we denote the
reflexive transitive closure of —.

M accepts an input w (given as an initial tape inscription) iff there exists a ¢y € Qf
such that gowH—ugsv for some u,v € T'*.

We now give a transformation from Turing Machines and their inputs to MPCPs
which is crucial for proving the central result of this section. The transformation
is identical to the one used by Hopcroft and Ullman to prove undecidability of the
general PCP [14]. We repeat it for the sake of completeness. Let M = (Q,T, ,qo, Qr)
be a Turing Machine and fix an input w for M. We now define the corresponding
MPCP PM = (¢y,71),..., (¢, 7). The first pair (¢1,71) is defined as

b =14 1 = fqowf.

The set of remaining pairs (¢;,r;) is partitioned into 4 groups and can be found in
Figure 1. As stated by Hopcroft and Ullman, if P} has a solution, then this solution
corresponds to a word starting with fgowlfuqrv1 - - - §n¢nvs,, where subwords between
successive f’s are successive IDs in a computation of M with input w and ¢, is a final
state.

In the following, we fix a turing machine M and a word w and prove several
properties of the PCP PM. We call a pair of words (z,y) a partial solution iff z is a
prefix of y and there exists a sequence of integers ¢;,...,%,, such that x = ¢;, --- ¢
and y = rj, ---r;,, . Hopcroft and Ullman prove the following lemma.

im

Lemma 14. Suppose that there exists a sequence of IDs qyw —u1qrvi —- - - —Upqpvy,.
Then there exists a partial solution

(z,y) = (Hgowluiqrviff - - - fun—1gn—1vn—1f,
ﬂqﬂwﬂUIQIUlﬂ Tt ljun71QTzflvnflljunannlj)-

10



Group 1
Left word Right word
X X for each X € I’
i i
Group II. For each ¢ € Q\ Qf, p € Q, and X, Y, Z € I":
Left word Right word
Zqf pzY4 if (¢,B) =(p,Y,L)
Group IIL. For each ¢ € Q@ and X, Y € I":
Left word Right word
XqY q
Xq q
Yy q
Group 1IV.
Left word Right word
qfif i for each ¢ € Q;

Figure 1: The MPCP translation.

In the following, we denote the length of a word w with |w|.
Lemma 15. If there exists a partial solution
(2, y) = (Hgowhurqrvif - - fun—1gn—10n—1f,
figowlurqrvif - - fun—1Gn—1Vn—1§UnGnont),
with gn € Qf, and |u;v;| < n+ |w| for 1 <i < n, then there exists a (partial) solution
(33’7 y’) = (Hgowlurqrvil - - - Hun—1gn 10— 1H{Ungnonl - - - furgrodf,
ﬂqowHUIQIUIﬂ T Huananlvnflﬂunannlj T HuTqulelj)
with r < 2n + |w| and |uv;| < n+|w| for all 1 <i <r.
Proof By induction over max(|uy|, |vy|), it can be shown that each partial solution
(2, y) = (Hgowhurqrvif - - fun—1gn—10n—1f;
fgowlurgror - fun—1gn—10n—1§ungnont),
with ¢, € Q¢ and max(|u,|, |va|) > 0 can be extended to a partial solution

(:E, y) = (ﬂqowuulﬁhvlﬂ T uun—l%z—lvn—luunQnUnﬂa

ﬂqowHUIQIUIﬂ T HuananlvnflHunannﬂunJrIQnUnJrlH)7

11



where max(|uy|, |v,|) > max(|unt1], |vnt1]). Both the induction start and step can
easily be shown by using (at most) |u,| + |v,| concatenations of pairs from Group I
and a single concatenation of a pair from Group III.

Obviously, the induction needs at most |u, |+ |v,| steps, and, hence, it follows that
(z,y) can be extended to a partial solution

($”7 y”) = (ﬁqﬂwﬁUIQIUlﬂ Tt ljunfl%zflvnflﬁun%lvnlj T ljurfl%lvrflﬁa
fgowhurqrorh - - - Hun—1Gn—1Vn—1§UnGnvnll - - - ftr—1¢nvr—14Gnt)

where g, € Qf and r < n+ |u,vy|. Since |upv,| < n+|w|, we have (i) r < 2n+|w| and
(ii) |ujvi] < n+|w| for all 1 < ¢ < r by construction of (z”,4"). A single concatenation
with the pair from Group IV yields the desired solution (z',y’). a

We now establish the lower bound for the 2"-MPCP.

Proposition 16. [t is NEXPTIME-hard to decide whether a 2"-MPCP has a solution.

Proof Let M be a Turing Machine which solves a NExXPTIME-complete problem and
stops after at most glwl? steps on any input w. W.lLo.g., we assume that M makes at
least max{|w|,2} steps on w before stopping.” The reason for this will become clear
later. We show that

M accepts w iff P has a 20+1Pu" " _golution (%)

for some integer a > 2. It then remains to apply Lemma 12 to obtain NEXPTIME-
hardness.

First for the “only if” direction. Let w be an input to M and assume that
M accepts w in n steps, where n < 2lwl? Then there exists a sequence of IDs
gowh—u1qrvi—---F—upq,v, such that ¢, € Q. By Lemma 14, there exists a
partial solution

(z,y) = (Bgowhuiqrvrf - - - fun—1Gn—1vn—1f,

fgowhurqioif - - - fun—1gn—10n—1fungnont),

for PM. Since a Turing Machine writes at most one symbol per step, we obviously
have |u;v;| < n+|w| for 1 <i < n. By Lemma 15, there exists a solution I = iy,... iy
corresponding to a word

wr =Ly -+ by, = 1iy i, = lgowhuiqruil - - furgrop il

with 7 < 2n + |w| and |u;v;| < n + |w| for all 1 < ¢ < r. Since, by assumption, M
makes at least |w| steps if started on w, it follows that » < 3n and |u;v;| < 2n for
all 1 < ¢ < r. We need an estimation for the length m of the solution 7,...,%p.
Obviously, we have m < r x (2n + 2) + 2 since m is clearly bounded by the number of
symbols in wy, and the length of each subword of wy of the form fu;q;v; is bounded
by 2n +2. Tt follows that m < 6n?+ 6n + 2 and hence m < nb since M makes at least

5To be precise, this implies that we also assume |w| > 1. This can, however, also be done w.l.o.g.
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2 steps before stopping, i.e., n > 2. Since m < n% and n < 2‘“"‘1, we have m < 26*|“"d,
and, since |w| < |PM|, we have m < 26+ P

Now for the “if” direction. Assume that M does not accept w, i.e., no computation
of M on w reaches a final state. We claim that, for each partial solution (z,y) of P,
there exists a sequence of IDs gywb—wuiqiv1 —- - -—uy,q,v, such that z is a prefix
of

fgowlurqivil - - - Bun—1gn—1vn—1fun,

and y is a prefix of

ﬂQOwﬂmmmﬁ T Iiun—l(In—lvn—lﬂunannliun)'

It is straightforward to prove this by induction on the length m of the sequence of
integers 41, . .., i, corresponding to the partial solution (z,y). Obviously, this implies
that the pair from Group IV do not appear in partial solutions since this pair refers to
final states and final states are never reached by computations of M on w. It follows
that, for all partial solutions (x,y),  contains strictly more f symbols than y which
implies |z| > |y|. Hence, there exists no solution for PM. a

The main result of this section is now easily obtained.

Theorem 17. It is NEXPTIME-complete to decide whether a 2™ + 1-PCP has a so-
lution.

Proof NEXPTIME-hardness is an immediate consequence of Proposition 16 and
Lemma 11. To decide the 2" +1-PCP, a nondeterministic Turing Machine may simply
“guess” a 2" 4 1-solution and then check its validity. Since it is not hard to see that
this can be done in exponential time, the 2" 4+ 1-PCP is in NEXPTIME. a
3.2 A Concrete Domain for Encoding the PCP

In this section, we introduce a concrete domain that will allow to reduce the 2™ + 1-
PCP to concept satisfiability.

Definition 18 (Concrete Domain P). Let ¥ be an alphabet. The concrete do-
main P is defined by setting Ap := ¥* and defining ®p as the smallest set containing
the following predicates:

e unary predicates word and nword with word” = Ap and nword” = 0,
e unary predicates =, and #, with == {e} and #I'= 27,
e a binary equality predicate = and a binary inequality predicate #, and

e for each w € ¥, two binary predicates conc,, and nconc,, with

concl, = {(u,v) | v = uw} and nconc’, = {(u,v) | v # vw}.
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Since the definition of P depends on X, it would be more precise to define a concrete
domain Py, for each alphabet ¥. For simplicity, we assume X to be fixed. It is obvious
that ®p is closed under negation. To show that P is admissible, we need to show that
the satisfiability of finite predicate conjunctions is decidable. We do this by developing
an appropriate algorithm.

We start by introducing a normal form for predicate conjunctions. Let ¢ be a pred-
icate conjunction. Then there exists a predicate conjunction ¢’ which is satisfiable iff
c is satisfiable and which contains only predicates from the set {nword, =, #, concy }.
The conjunction ¢’ can be computed from ¢ by applying the following normalization
steps.

1. Eliminate all occurrences of the word predicate from ¢ and call the result ¢;.

2. Let x be a variable not appearing in ¢;. Augment ¢; by the conjunct =¢(z) and
then replace every occurrence of #.(y) in ¢; with #(z,y) calling the result co.

3. Let f1,..., Bk be all conjuncts in ¢ which are of the form nconey, (z,y) and let
z1,...,T, be variables not appearing in co. For each 7 with 1 < ¢ < k and
Bi = concy(y, z), augment ¢y by the conjuncts concy, (y, z;) and #(z;, 2z). Then
delete the conjunct §; from co. Call the result cs3.

4. Remove occurrences of the = predicate from c3 by “filtration”: Let ~ be the
equivalence relation induced by occurrences of the = predicate in c3. For each
variable z occurring in c3, substitute every occurrence of z in c3 by [z]., i.e.,
by the equivalence class of z w.r.t. ~. Then delete all occurrences of the =
predicate from c3. The result of this step is the normal form ¢’ of c.

Obviously, the normalization process preserves satisfiability, i.e., a predicate conjunc-
tion c is satisfiable iff its normal form ' is satisfiable. The blowup of the size of ¢
produced by the normalization is at most linear.

Before the algorithm itself can be given, we introduce some notions. Let ¢ be a
predicate conjunction (not necessarily in normal form). With V(c¢), we denote the
set of variables used in c¢. The conc-graph G(c) = (V, E) of ¢ is the directed graph
described by occurrences of conc,, predicates in ¢, i.e., V. = V(c) and (z,y) € F iff
concy(z,y) is a conjunct of ¢ for some word w. A conjunction ¢ is said to have a
conc-cycle if G(c) has a cycle. The distance dist(v,v") of two variables v,v" € V in ¢
is the length of the longest path leading from v to v' in G(c). With lev(v), we denote

max{k | dist(v,v') = k and v’ is a sink}

where a sink is a node which has no outgoing edges. Let w,w’ € ¥ . The function
pre is defined as follows:

re(w, ') = v if w=ovw withv # ¢
p ’ "1 undefined if no such v exists

The algorithm for deciding the satisfiability of conjunctions of predicates in normal
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define procedure sat-P(c)
if ¢ contains the nword predicate or norm(c) = inconsistent then
return inconsistent
fori=1to |V(c)| do
while there exist z,y,y’ € V(c) with lev(z) =1
and w,w' € ¥ with w # w' such that
concy (y, ) and concy (y',z) are in ¢ do

if neither w is a su x of w' not vice versa then (A3)
return inconsistent
w.l.o.g., assume that w' is a su x of w. (A4)

// since norm was just applied, we have w = vw' for a v # e.
replace concy (y, ) by concpreqw v (y,y') in ¢
if norm(c) = inconsistent then
return inconsistent
if there exist 2,y € V(c) and a w € ¥ such that
concy (y, ) and =.(z) are in ¢ then
return inconsistent
if there are z1,..., 25, y1,...,yx € V(c)
and wy,...,w,_; € X such that
(=¢ (z1), =¢ (y1) are in c or 1 = y1), and #(zk, yx) is in ¢ and
concy, (Ti, ziy1) and concy, (yi, yir1) are in ¢ for 1 <47 < k — 1 then
return inconsistent
return consistent

define procedure norm(c) // cis passed “by reference” (see text)
while there exist z,y,y’ € V(c) with y # ¢’ and a w € ¥ such that
concy (y, ) and concy,(y', z) are in ¢ do (A1)
replace every occurrence of 3/ in ¢ by y
if ¢ contains a conc-cycle then
return inconsistent
if there exist z,y € V(c) and w,w’ € 3% with w # w' such that (A2)
concy (y, ) and concy (y,x) are in ¢ then
return inconsistent
return consistent

Figure 2: The P satisfiability algorithm.

form can be found in Figure 2. Note that the parameter to norm is passed “by ref-
erence”, i.e., changes made to ¢ in norm are also effective in the calling procedure.
Before the correctness of the algorithm is proved formally, we explain the underlying
intuitions. Assume that the satisfiability of a conjunction cg is to be decided. The al-
gorithm repeatedly performs several normalization steps and inconsistency checks. If
all normalization is done and no inconsistencies were found, the resulting conjunction
is satisfiable. Since the normalization is satisfiability-preserving, this implies satisfia-

15



bility of ¢y. The normalizations in the algorithm are concerned with situations of the
form
concy (y,x), concy (y', x)

where several cases can be distinguished:

Al. y # 4 and w = w'. In this case, y and 3’ describe the same word and can be
identified.

A2. y =19 and w # w'. In this case, c is unsatisfiable.

A3. y # ¢/ and neither w is a su x of w’ nor vice versa. In this case, ¢ is unsatisafi-
able.

Ad. y#y and w' is a su x of w. We may replace the above situation by

CONCpre(w,w') (y, y'), CONCyy! (y', 33)

These cases and several additional inconsistencies checked by the algorithm (e.g.,
conc-cycles) are discussed in detail in the correctness proof. If all normalization was
performed and no inconsistency is found, we have obtained a conjunction ¢ for which
the corresponding conc-graph is a forest, i.e., a collection of trees, and which satisfies
some additional properties guaranteeing that we can construct a solution for c. We
now formally prove correctness and termination of the algorithm. For a conjunction
¢, let |c| denote the number of conjuncts in c.

Lemma 19 (Correctness and Termination). Let ¢ be an input to sat-P. The
algorithm terminates after O(|c|¥) steps (where k € N is constant) returning consistent
if ¢ has a solution and inconsistent otherwise.

Proof We first prove correctness, i.e., that ¢ has a solution if sat-P returns consistent
and that ¢ has no solution if sat-P returns inconsistent. After doing this, we establish
termination. To prove correctness, we walk through the algorithm and examine the
performed steps in detail.

If the algorithm returns unsatisfiable in the first if statement, this is either because
¢ contains the nword predicate (in this case, ¢ is obviousy unsatisfiable) or because
norm returned unsatisfiable. Hence, let us examine the norm procedure. The while
loop eliminates situations of the form conc,(y, ), concy,(y',z) with y # ¢'. In this
situation, we clearly have that (y) = (y') for all solutions for ¢ and hence it is
a satisfiability-preserving operation to identify y and y’. After this normalization
step, norm checks if ¢ contains a conc-cycle or if there is a situation of the form
concy (y, ), concy (y, x) with w # w'. Obviously, ¢ is unsatisfiable in both cases.

We now return to the main procedure. The for loop iterates from 1 to |V (c)|. The
while loop inside the for loop examines situations of the form conc, (y, ), concy (y', )
with w # w' and lev(z) = i. Since norm was just applied (note that it is also applied
at the end of the while loop), we have y # 3. In the following, we call a situation
concy (y, ), concy (y',z) with w # w' and y # y' a fork for xz. If neither w is a
su x of w’ nor vice versa, ¢ is obviously unsatisfiable. If w’ is a su x of w, replac-
ing concy (y, ) by concpew,wy(y,y') is a satisfiability-preserving operation. Since, in
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doing so, we may have created any of the situations that norm checks for, the norm
procedure needs to be re-applied. Note that both the elimination of a fork and the
application of norm may create new forks concy (7, %), concg (7', ). However, it is
not hard to see that (in both cases) lev(Z) > lev(r) and hence the newly generated
forks will be eliminated during a later step of the for loop. Finally, situations of the
form concy(y,z), =.(z) and certain situations involving the # predicate are checked
for whose existence imply unsatisfiability of c.

We need to show that ¢ has a solution if the algorithm returns consistent. By
the above considerations, ¢ has the following properties if consistent is returned:

1. ¢ contains no conc-cycles,
2. ¢ contains no situations of the form concy(y, ), conc, (v, z) with y # 3/,
3. if coney(y, ), concy (y, x) are in ¢, then w = w', and

4. if =.(z) is in ¢, then there exist no y € V(c) and w € ¥ such that concy(y, )
is in c.

Properties 1 and 2 imply that the conc-graph G(c) = (V, E) of ¢ is a forest. We define
a solution for ¢ inductively. Our strategy is to start defining (v) for the variables v
which are the root of a tree in the forest G(c) and then “move downwards the trees”
to define (v') for all remaining variables v’. Since the edges in the trees correspond
to concy-predicates, our choice of (v) for the root v of a tree determines (v') for all
remaining nodes v’ in the same tree. We must, however, carefully choose (v) for the
roots v of the trees to guarantee that all =, and # predicates in ¢ are satisfied. Let ¢

be the number of trees in G(c) and let wy, ..., w; be words from £ such that
|wit1]| — |w;i| > |V]* max{w | conc, is used in ¢} for 1 <i < ¢.
For the induction start, fix an ordering on the trees in G(c) and let zq,..., 2, € V

such that z; is the root of the 7’th tree in G(c). For all 1 <i <, set
e (z;) =e€if =.(z;) is in ¢ and
e (z;) = w; otherwise.

For the induction step, if 2 is a node with (z) = w and concl,(z,y) is in ¢, then set

(y) =ww'. is well-defined since G(c) is a forest and Property 3 from above holds.
Obviously, satisfies all conc,, predicates in c. Property 4 from above implies that, if
=(z) is in ¢, then z is the root of a tree and hence also satisfies all =.(z) predicates
in ¢. Now for #(z,y) predicates. We make a case distinction:

e z and y are in the same tree. By definition of and since the last if clause in
the main procedure did not apply, #(z,y) is satisfied.

e z and y are in different trees, and both trees have a root z with (z) = ¢, i.e.,
=(z) is in ¢. Identical to the above case.
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e z and y are in different trees and at least one of the trees has a root z with
(2) # €. Let z and 2’ be the roots of the two trees. By definition of , we have

abs(| (2)| = | (2")]) > |V| * max{w | conc,, is used in c}

where abs(z) denotes the absolute value of xz. This implies that, for any two
nodes z’' and ', where 2’ is in the tree with root z and %' is in the tree with
root 2’, we have (z') # (v').

It remains to show termination after at most polynomially many steps. This amounts
to showing that the two while loops terminate after at most polynomially many steps
since it is easy to see that all the tests (in the if clauses) and operations (node and
conjunction replacements) can be performed in polynomial time.

Termination after polynomially many steps is obvious for the loop in the norm
procedure since, in every iteration, the number of variables in ¢ decreases and the
algorithm never introduces new variables. Now for the while loop in the main pro-
cedure. If a fork concy(y, ), concy (v, z) is found, then concy, (y,x) is replaced by
concpm(w’w/)(y, y'). As was already noted, this and the application of norm may gen-
erate new forks concy (9, %), concg (§', %) but only with the restriction lev(z) > lev(z).
Hence the newly generated fork will not be considered during the current iteration
step of the for loop. We conclude that the while loop terminates after polynomi-
ally many steps since the number of forks concy(y,z), concy (y', z) with lev(z) =1 is
clearly bounded by |c|. O

The following proposition is an immediate consequence of the lemma just proved and
the fact that the blowup produced by the normalization is at most linear.

Proposition 20. It is decidable in deterministic polynomial time whether a finite
conjunction of predicates from P has a solution.

Corollary 21. The concrete domain P is admissible.

3.3 Satisfiability of ALC(P)-concepts w.r.t. TBoxes

In this section, we show that the satisfiability of ALC(P)-concepts w.r.t. TBoxes is
NExPTIME-hard. This result is rather surprising since (1) satisfiability of ALC(D)-
concepts without reference to TBoxes is known to be PSPACE-complete if reasoning
with the concrete domain D is in PSPACE [20], and (2) admitting acyclic TBoxes does
“usually” not increase the complexity of reasoning [19].

The proof is by a reduction of the 2" + 1-PCP using the concrete domain P
introduced in the previous section. Given a 2" + 1-PCP P = (¢1,71),..., (b, %), we
define a TBox T[P] of size polynomial in |P| and a concept (name) C such that C' is
satisfiable w.r.t. T[P] iff P has a solution. Figure 3 contains the reduction TBox and
Figure 4 an example model for |P| = 2. In the figures, [, r, z, and y denote abstract
features. The first equality in Figure 3 is not meant as a concept definition but
as an abbreviation: Replace every occurrence of Chluy,us,us,us] in the lower three
concept definitions by the right-hand side of the first identity substituting wuy, ..., uy
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Chluy, ug, us, us] = (I(u1,u2). = M I(uz,ug). =)

U U (3(ur, ug).conce, M I(uz, uq).concey,)
(Ei,ri) in P

Co =30.Cy N 3ar.Cy
M Ch[ﬁrn_lgg,’rﬁ"_lgg,fr"_lgr,rf"_lgr]

Cpo =W.Cp_y M 3Ar.C,_y
M Chllrge, rlge, brgy, rlgy]
On—l = Ch[égfa r3e, ggra 7"91-]

C=C
n3atg,. = N 3"g,. =,
M 3r"y.3ge, gr. = N 3Ir"yge. #e
M Chlr"ge, " xge, 7" gr, 7" 2 gy ]

M Chlr"zge, " yge, " xgr, 7"y g1

Figure 3: The ALC(P) reduction TBox T[P] (n = |P]).

appropriately. We first informally explain the intuition underlying the reduction and
then give a formal proof of its correctness.

The general idea is to define 7[P] such that models of C' and T[P] have the form
of a binary tree of depth |P| whose edges are connected by two “chains” of concy,
predicates. Pairs of corresponding objects (x;,y;) on the chains represent partial solu-
tions of the PCP P. More precisely, the first line of the definitions of the Cy, ..., C)_1
concepts ensures that models Z of C and 7[P] have the form of a binary tree of
depth n (with n = |P|) whose left edges are labeled with the abstract feature ¢ and
whose right edges are labeled with the abstract feature r (not to be confused with
pairs (¢;,r;) € P). Let the abstract objects an,...ap 271 be the leaves of this tree
(see Figure 4 for the naming scheme). By the second line of the definitions of the
Co,...,Cp_1 concepts, every a,; (0 <i < 2") has a filler z; for the concrete feature
ge and a filler y; for the concrete feature g,. These second lines also ensure that the x;
and y; objects are connected via two “predicate chains” where the predicates on the
chains are either equality or conc,, predicates. More precisely, for 0 < i < 2" —1, either
x; = ;41 and y; = y;41 or there exists a j € {1,...,k} such that (z;,z;41) € concZ
and (y;,yi11) € concfj. Furthermore, by the second line of the definition of C', we have
x1 = y1 = €. Hence, pairs (x;,y;) are partial solutions for P. Since we must consider
solutions of a length up to 2" + 1, the 2" objects on the fringe of the tree with their
2™ — 1 connecting predicate edges are not su cient, and we need to “add” two more
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Figure 4: An example model of C' for n = 2.

objects ay 2» and ay 271 which behave analogously to the objects ay, g, ... anon—1, i.e.,
have associated concrete objects xon, yor and xon1,yon 1, respectively. This is done
by the last two lines of the definition of C'. Finally, the third line of the definition of C
ensures that zon 1 = yon 1 # € and hence that (zony1,yon 1) is in fact a full solution.

Lemma 22. Let P = ({1,71),...,(fg,7x) be a PCP. Then P has a solution iff the
concept (name) C' is satisfiable w.r.t. the TBox T[P].

Proof During the proof, we abbreviate |P| by n. First assume that C[P] is satis-
fiable. Using induction over n and considering the definitions of the C; concepts, it
is easy to show that there exist objects a;; for 0 <7 < mn and 0 < j < 2’ such that
ap,0 € CI,

1. ZI(a’i,j) — a(i+1),2j and TI(ai’j) = a(i+1),(2j+1) fOI' 0 S ’L <n and 0 S _] < 2i, and
2. iy € (CHtrn=+0 g, rgn=(4Dg, gyn=G+Dg, =g )7 for 0 < i < .

The first Property implies that the a; ; form a binary tree in which edges connecting
left successors are labeled with £, edges connecting right successors are labeled with r,
and nodes are not necessarily distinct. The naming scheme for nodes is as indicated
in Figure 4.

We now establish a certain property for every two neighbouring fringe nodes ay_;
and a,, (j41) which will then allow us to deduce the existence of two sequences of con-
crete objects related by conc, predicates and the equality predicate. Corresponding
nodes from the two sequences represent partial solutions of P. Fix two nodes a,, ; and
p,(j+1) With 0 <7 < 2" — 1. By induction over n, it is straightforward to prove that
there exists a common ancestor a,, of ap; and U, (j41) such that

(ng_(m'i'l))I(am’r) = an’j a,nd (Tgn_(m—l_l))l-(am,r) = an7j+1
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By Property 2 from above, we have
oy € (Cher" =) gy pgr= (Mt g, ppn=(mtl g, pgn=(mtlg )T,

Since this holds independently from the choice of j, we may use the definition of the
Chluy,u2, u3, ug] concept to conclude that there exist concrete objects xy, ..., zon_1
and v, ...,yan—1 and indexes i1,...,i9n_1 € {1,...,k} U {®} such that

1. geI(an,j) = z; and g%(an,j) =y; for 0 < j < 2", and
2. forall1 <j <2 —1,
e if i; = & then z;_; = z; and y; 1 = y;, and

P

o (zj_1,z5) € conch and (y;—1,y;) € concr,. otherwise.

Analogously, by the last two lines of the definition of C, there exist abstract ob-
jects anpan, ay (2n41), concrete objects Ton, Ton i1, yon, yoni1, and indexes ign,ioniy €
{1,...,k} U {&} such that

1. 27 (apan 1) = apoe and y(anon 1) = U (2741))5
2. g7 (ani) = z; and g7 (an;) = y; for i € {27, 2" + 1},
3. for all j € {2",2" + 1},

e if i; = & then z;_; = z; and y;_1 = y;, and
e (zj_1,7;) € conc) and (y;_1,y;) € concl otherwise.
1]- lj
Moreover, by the second and third line of the definition of C', we have ¢y = yg = € and
Tony1 = yony1 # €. Taking together these observations, it is clear that the sequence

i1, - -4y, which can be obtained from iy, ... 49711 by eliminating all 7; with i; = &,
is a solution for P. Furthermore, we obviously have 1 < p < 2" 4 1.
Now for the “only if” direction. Assume that P has a solution iy,...,%, with

m < 2Pl + 1. With L; (resp. R;), we denote the concatenation ¢;, +++ 4 (resp.
iy --oriy) for 1 < j <m and set Ly = Ry = € and Lj = Ly, (resp. Rj = Ry,) for all
j > m. We define a model Z for T[P] with the form of a binary tree of depth n such
that CT # (). Again, the object names in Figure 4 indicate the naming scheme used.

AT :={a;; | 0<i<n,0<j <2} U{anan,an2n1)}

For all 4,7 with 0 <i <nand 0<j < 2’ set
(ai) = agit1),(2j) and r¥(ai) = a1y 2i11)-

Set II(an’(gn_l)) = Qp2n and yI(an’(gn_l)) = an’(2n+1).

For all 4 with 0 <4 < 2™ 4+ 1 set
geI(an,i) := L; and gz:(an,i) = R;.

It is not hard to verify that Z is a model for 7[P] and that ago € CT. a
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Chluy,ug, us, us] = (I(u1,uz). = M I(ug, us). =)

U U (3(ui,ug).conce, M I(uz, uq).concey,)
(Zi,ri) in P

Tree=3(RNL).TA3I(RMOr).T
M Chltr™ gy, r0" L gp, r" g, v 1g,]
NVR.(I(RNE).TNI(RNr).T
M Ch[fr"ﬂgg, " gy, 0r" 2g,, r€"72gr])

NVYR" 2. (3(RNL).TNIRN7T).T
M Chllrge, rlge, brgy, rﬁgr])
MYR"L.Chl[lg, rg¢, gy, TGy

C[P] = Tree
n3actge. = N A"g,. =
N 3r*y. g, gr. = N Ir"ygp. #e
N Chlr"ge, " xge, " gr, " 2, ]

M Chlr"xzge, v"yge, " xgr, "y gy ]

Figure 5: The ALCR(P) reduction concept C[P].

Obviously, the size of T[P] is polynomial in |P| and 7 [P] can be constructed in time
polynomial in |P|. Since subsumption can be reduced to satisfiability, we obtain the
following theorem.

Theorem 23. There exists an admissible concrete domain D for which satisfiability is
in PTIME such that satisfiability and subsumption of ALC(D)-concepts w.r.t TBoxes
are NEXPTIME-hard.

On first sight, the concrete domain employed for the reduction may look somewhat
unnatural since it operates on words. However, it is straightforward to encode words
as natural numbers and to define the operations on words as rather simple operations
on the naturals [2]: Words over an alphabet 3 can be interpreted as numbers written
at base |X|+1 (assuming that the empty word represents 0); the concatenation of two
words v and w can then be expressed as vw = v*(|2|41)/% 4w, where |w| denotes the
length of the word w. Hence, a concrete domain which provides the natural numbers,
(in)equality, (in)equality to zero, addition, and multiplication is also appropriate for
the reductions.

As already noted, there exist other variants of TBoxes than the ones introduced
in Section 2. A popular one are so-called general TBoxes which are formally defined
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Figure 6: An example model of C' w.r.t. T

as follows.

Definition 24 (General TBox). A general concept inclusion (GCI) has the form
C C D, where both C and D are (possibly complex) concepts. An interpretation Z is
a model for a GCI C T D iff CT C D*. Sets of GCIs are called general TBozes. An
interpretation Z is a model for a general TBox T iff 7 is a model for all GCIs in 7.

Similar to the main result presented in this section, the following theorem can be
obtained.

Theorem 25. There exists an admissible concrete domain D such that satisfiability
and subsumption of ALC(D)-concepts w.r.t. general TBozes is undecidable.

Proof Let P be an instance of the PCP and consider a concept C' and a general
TBox T as follows:

C:=dg. =c Ndfg. =

TP :=={3fTC y |_l PEIg,fig.con% N 3fg, fifg.concy,
iTi)€

TCE dg. = U—dg, fg.=}

Here, C — D is used as an abbreviation for =C' LI D. The first two GClIs ensure that
models of C' and T represent all possible solutions of the PCP P. Additionally, the
last GCI ensures that no potential solution is a solution. It is hence straightforward
to prove that C is satisfiable w.r.t. 7 iff P has no solution, i.e., we have reduced
the general, undecidable PCP to the satisfiability of ALC(D)-concepts w.r.t. general
TBoxes. An example model of C w.r.t. 7 can be found in Figure 6. It remains to
remind the reader that satisfiability reduces to subsumption. a

The reduction technique employed to show the lower bound is a rather general one
and there surely exist more description logics with concrete domains to which they can
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Figure 7: Predicate chains in models of C[P].

be applied. As an example, consider ALCR(D), i.e., ALC(D) with role conjunction
(see, e.g., [8]). We conjecture that NEXPTIME-hardness of this logic can be proved
analogously to the proof of Theorem 29. The reduction concept C[P] can be found in
Figure 5.

3.4 Satisfiability of ALCZ(P)-Concepts

In this section, we show that satisfiability of ALCZ(P)-concepts (without reference
to TBoxes) is NExPTIME-hard. As in the previous section, it is surprising that a
rather small change in the logic, i.e., adding inverse roles, causes a dramatic increase
in complexity.

We employ a reduction that is similar to the one used in the previous section, i.e.,
it is a reduction of the 2" + 1-PCP and uses the concrete domain P. Given a PCP
P = (t1,r1),..., Lk, 1), we define a concept C[P] of size polynomial in |P| which
has a model iff P has a solution. The concept C[P] can be found in Figure 8. In the
figure, hy, hy, x4, 2y, Yo, Yr, 20, and z, are concrete features. Note that the equalities are
not concept definitions but abbreviations. As in the previous section, replace every
occurrence of Chluy, ua, us,us] in the lower three concept definitions by the right-hand
side of the first identity substituting ui,...,us appropriately and similarly for every
occurrence of X. We first informally explain the structure of models of C[P] and then
give a formal proof of the correctness of the reduction.

In the reduction given in the previous section, the models of 7[P] are binary trees
of depth |P| whose leaves are connected by two chains of concrete domain predicates
such that pairs of corresponding nodes (z,y) represent partial solutions of the PCP
P. In the ALCZ(P) reduction, due to the first line in the definition of C[P] and
the 3f~ quantifiers in the definition of X, models of C[P] have the form of a tree of
depth |P| — 1 in which all edges are labeled with f~. This edge labelling scheme is
possible since the inverse of an abstract feature is not a feature. As in the previous
reduction, we define two chains of concrete domain predicates, only this time they
do not connect the leaves of the tree but emulate the structure of the tree following
the scheme indicated in Figure 7. Again, corresponding objects on the two chains
represent partial solutions of the PCP P. A more detailed clipping from a model of
C[P] can be found in Figure 9. The existence of the chains is ensured by the definition
of X and the second line in the definition of C[P]. The concept X establishes the
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—

Figure 8: The ALCZ(P) reduction concept C[P] (n = |P| — 1).

edges of the predicate chains as depicted in Figure 9 (more precisely, Figure 9 is a
model of the concept X') while the second line of C[P] establishes the edges “leading
around” the fringe nodes. Edges of the latter type and the dotted edges in Figure 9
are labeled with the equality predicate. To see why this is the case, let us investigate
the length of the chains.

The length of the two predicate chains is twice the length of the number of edges
in the tree plus the number of fringe nodes, i.e., 2  (2IF1 —2) + 2IPI=1 Ty eliminate
the factor 2 and the summand 271!, C[P] is defined such that every edge in the
predicate chains leading “up” in the tree and every edge “leading around” a fringe
node is labeled with the equality predicate. To extend the chains to length 2IP1 4+ 1,
we need to add three additional edges (definition of C[P], lines three, four, and five).
Finally, the last two lines in the definition of C[P] ensure that the first concrete
object on both chains represents the empty word and that the last objects on the
chains represent a (non-empty) solution for P.

Lemma 26. Let P = ({1,71),...,(fg,7%) be a PCP. Then P has a solution iff the
concept C[P] is satisfiable.

Proof Let n = |P| — 1 during the proof (this implies n > 1). First assume that
C[P] is satisfiable, i.e., that there exists an interpretation Z = (Az,-T) and an a € A
such that a € C[P]*. We show that 7 has the form of a binary tree of depth n.
Using induction over n and considering the first line of the definition of C[P] and the
definition of X, it is easy to show that there exist abstract objects b; ; for 0 <7 < n
and 0 < j < 2¢ such that by € C[P}* and, for 0 <i <mn and 0 < j < 27,
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Figure 9: A clipping from a model of C[P].

L {(bij, biis1),25)s (bigs biisny,2i4+1))} € (F )7,
2. b(i+1),2j € (Ch[fgfagfafgragr])za and

3. bit1),2i+1) € (ChLfpe, ge, fory gr])T

Obviously, the first property implies that the b; ; form a binary tree of depth n whose
edges are labelled with f~. However, for the remaining proof, it is more convenient
to number the nodes in the tree in a different way. For doing this, we define three
auxiliary functions.

Let T be a binary tree of depth n whose nodes are labeled with natural numbers in
preorder (this tree is independent of the b; ; and of Z in general).® With sucl(n) and
sucr(n) we denote the node label of the left resp. right successor of the node labeled
with n in T (sucl(n) and sucr(n) are undefined if the given node has no successors).
Furthermore, for n € N, lev(n) denotes the level of the node in T labeled with n and
is undefined if no such node exists. By “renaming” the nodes b; ;, it is easy to show
that there exist abstract objects ai,...,ayn+1_; such that, for all 1 < i < 27+ —1
with lev(i) < n,

L. f (a’sucl ) = a; and f (asucr 2)) = Gy,
2. agueyiy € (Ch[fge, 90, f9r, gr])T, and

3. A sucr(i) € (Ch[fpfagﬂafpragr])I-

Note that the a; form a binary tree of depth n labeled in preorder whose edges are la-
beled with f~ and whose nodes are not necessarily distinct. Hence, when we in the fol-
lowing talk of the nodes of the tree, we mean the objects a1, ..., agn+1_;. By the second

5To label a tree in preorder, first label its root, then inductively label the subtree induced by the
root’s left successor and finally label the subtree induced by the root’s right successor.
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line of C[P] and definition of X, there exist concrete objects 1, ..., Ton+t1_1,Y1,- ., Yan+i_1
such that g7 (a;) = z; and g7 (a;) = y; for all 1 < i < 2", Next, we prove the follow-

ing claim:

Claim: For all 1 < j < 271 — 1, we have either z; = z;;1 and y; = y;41 or there
exists an ¢ € {1,...,k} such that (z;,z;41) € concZ and (y;,y;+1) € concl,.

Fix a j with 1 < j < 2! — 1. From the preorder numbering scheme, it follows that

two cases need to be distinguished:

1. i+1 = sucl(i). By Property 2 from above, we have a; 1 € (Ch[fgs, 9¢, fgr,9r])F-
By definition of Ch, this implies the claim.

2. There exists a node a; and nodes as,,...,as, (m > 0) such that

o i+ 1= sucr(t),
e s = sucl(t),
e for all £ with 0 < /¢ < m, sg11 = sucr(sg), and
® Sy =1
By the Properties given above, we have a;1,as,,-..,as,, € (Ch[fgs, g¢, f9r, gr])T

and as, € (Chlfpe,ge, fPr,9:])%. Furthermore, from the numbering scheme, it
follows that lev(i) = n, and, by the second line of C[P],

a; € (a(gg,hg). =T El(grahr)- :))I'
Using the definition of Ch, it is now straightforward to prove the claim.

It is an immediate consequence of the claim that there exist indexes 41,...,%on+1_o €
{1,...,k} U {&} such that, for all 1 < j < 27! —1,

e if i; = & then z; = z;1; and y; = yj41, and

o (zj,zj41) € conc) and (y;,y;j+1) € concl otherwise.
7,]- ZJ
Similarly, by the third, fourth, and fifth line of the definition of C[P], there exist ob-

jects Tont1, Ton+1 1, Tont119, Yont1, Yon+1 41, Yon+1 o and indexes ton+1_1,lon+1,%9n+141 €
{1,...,k} U {&} such that

1. 2f(ap) = zon+1 and zx(ag) = yon+1,

y%(ao) = Tyn+141 and yf(ao) = Yontiqg,
zéI(ao) = Zon+1 o and zf(ao) = Ygn+1 49, and

2. for all j € {2”+1 —1,Qn+1 gl 4 1}

e if i; = & then z; = 2,1, and y; = yj41, and

P

o (zj,zj11) € concz_ and (y;,y,+1) € concy,. otherwise.
J
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Moreover, by the last two lines of the definition of C[P], we have zyp = yy = €
and Zon+1,1 = Yon+1yy # €. Taking together these observations, it is clear that
the sequence if,...,i,, which can be obtained from 4y,...,isnt141 by eliminating
all i; with i; = &, is a solution for P. Furthermore, since n = |P| — 1, we have
0<p<2Pl4i.

Now for the “only if” direction. Assume that P has a solution iy,...,%, with
m < 2Pl41 =271 11, With Kf (resp. KJ’“), we denote the concatenation /;,,- - -, /;;
(resp. 7, ,m;;) for 1 < j <m and set Kf =K} =eand Kf = K!, (resp. Ki = Ky,)
for all j > m. We define a model for C[P] with the form of a binary tree of depth n.

AT = {a; |1 <i< 2"t}
For all i with 1 <4 < 2"*! and lev(i) < n set
S (asueiy) = ai and [ (aguer(iy) = ai-
It remains to set up the concrete features. We first set up only some of the features.

1. gf(a;) = K | and g (a;) = KT | for 1 <4 < 2"+!
2. o (ag) = K},p_, for t € {¢,r}
3. yf(ap) = Kby for t € {£,r}
4. zf(ag) = Kbopuy for t € {€,r}

Based on this, we now define the interpretation of the remaining concrete features.
With sucl (i), we denote the j-fold composition of sucl. For i € {1,...,2"*! —1} and
te{l,r}, we set

T . .
()= J 9(ai) if lev(i) = n
i (o) = { gtI(a’sucr"*lev(i)(i)) otherwise

pI(a~) o { gtz(asucl(i)) if lev(i) =n —1
1 \Q; gtI(asucr"*’ev(i)fl(sucl(i)) if lev(i) <n-—1

Note that nodes a; with lev(i) = n do not need to have fillers for the concrete feature
p. Tt is straightforward to check that 7 is well-defined and that ag € C[P]*. a

Obviously, the size of C[P] is polynomial in |P| and C[P] can be constructed in time
polynomial in |P|. Since subsumption can be reduced to satisfiability, we obtain the
following theorem.

Theorem 27. There exists an admissible concrete domain D for which satisfiabil-
ity is in PTIME such that satisfiability and subsumption of ALCZ(D)-concepts are
NExPTIME-hard.
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3.5 Satisfiability of ALCRP(P)-Concepts

In this section, we prove that satisfiability of ALCRP(P)-concepts is NEXPTIME-
hard. Hence, adding the role-forming concrete domain constructor yields another
extension of ALC(D) in which reasoning is considerably harder than in ALC(D) itself.

As in the previous two sections, we give a reduction of the 2" 4+ 1-PCP using the
concrete domain P. Given a PCP P = (¢1,71),..., (¢, %), we define a concept C[P]
of size polynomial in |P| which has a model iff P has a solution. The concept C[P]
can be found in Figure 10, where X and Y denote concept names, x and y denote
abstract features, and p denotes a predicate. The equalities in the figure are not
concept definitions but serve as abbreviations (c.f. Section 3.4). Note that S[g,p] is a
predicate role and not a concept, i.e., S[g,p] is an abbreviation for the role-forming
concrete domain constructor 3(g), (¢9).p (a lowercase p is used for predicates to avoid
confusion with the PCP P). C — D is used as an abbreviation for -C' U D. We
informally explain the structure of models of C[P] before giving a formal proof of its
correctness.

Figure 11 contains an example model of C[P] with |P| = n = 2. Obviously, the
structure of models of C[P] is rather similar to the structure of models of the ALC(D)
reduction TBox 7[P] from Section 3.3: Models have the form of a binary tree of
depth n whose fringe nodes (together with two “extra” nodes) are connected by two
predicate chains of length 2" 4+ 1. Corresponding nodes on the two chains represent
words z and y from partial solutions (z,y) of the PCP P. The Tree concept ensures
the existence of the binary tree. The concept names By, ..., B,_1 are used for a binary
numbering (from 0 to 2™ — 1) of the fringe nodes of the tree. More precisely, for a
domain object a € A7, set

pos(a) = S1- Bi(a) 2

where
1 ifa€ B}
0 otherwise,

Bila) = {

i.e, the number pos(a) is binarily coded by the concept names By, ..., B,_1. The Tree
and DistB concepts ensure that, for two fringe nodes a and o’ with a # o', we have
pos(a) # pos(a’). Due to the first line of the C[P] concept, every fringe node has
(concrete) successors for the gy and g, features. The last two lines of C[P] guarantee
the existence of the two extra nodes such that (i) both nodes have concrete gy- and
gr-fillers, and (ii) one of the extra nodes is in X7 while the other is in Y7Z. It remains
to describe how the edges of the two predicate chains are established.

For the sake of simplicity, let us start with describing how the edges ending at the
extra nodes are generated. W.lo.g., we concentrate on the extra node b with b € X7
and on edges between gy-fillers. Let a be the fringe node with pos(a) = 2™ — 1, =
be the gp-successor of a, and y be the gy-successor of b (both concrete objects exist
according to the definition of C[P]). By the fifth line of the definition of C'[P], we have
a € Ezt{X)T. The concept Ez#[X] has the form of a disjunction where each disjunct
establishes a different “type” of edge between z and y (and another edge between the
corresponding g,-fillers). We exemplarily use the subconcept VS[gs, =].-X of Ext[X]
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k
DistBlk] = ['1((B; = YR.B)) N ~B; — VR.~B;)

1=

Tree = AR.By M dR.— By
MVR.(DistB[0] M3IR.B; M 3IR.—By)

NYR"'.(DistBln — 1] M 3R.Bp_; N3R.~B,_;)

Slg,p] = 3(9), (9)-p

n—1/k—1
Edgelg, p] = (,J:'O (j.';'o _'Bj> M (By — VS[g,p]-=Bg) N (=B, = VS[g,p].Br)

n—1/k—1
L klzlo (jljo Bj> M (B, — VYS[g,p].Bx) M (=B — vs[g,p]_ﬁBk)>

DEdge[P] = (Edge[ge, =] 1 Edgelg,, =])U
LI (Edgelge, coney,] 1 Edgelgy, concy,])
(4;yry) in P
Ext[D] = (VS|[ge, =].—D N VS|gr,=].~D)U
T P(VS[gg, coney,.-D NYS|g,, coney;].mD
C[P] = TreeMYR".3gp.word MVR".3g,.word
MVYR™.[(=By M- M =By_1) = (3gs. =¢ M 3gr. =)
M=(ByM---MN Byp_1) = DEdge[P]
M(BypM---MBp_1) —
(Ext{ X NVz.Ext]Y]
M 3z.(X N 3gp.word N Ig,.word)
M 3y.(Y M 3ge, g = M 3g0#,))]

Figure 10: The ALCRP(P) reduction concept C[P] (n = |P]).
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Figure 11: An example model of C[P] with |P| = 2.

to demonstrate how the edge between z and y is established. From the fact that
a € (VS[gs,=].~X)? and b € X7, it follows that (a,b) ¢ S[ge,=]%, i.e., (a,b) ¢
(3(ge), (ge)- #)F and thus (z,y) ¢ #7, which obviously implies that (z,y) € =P. In
the case a € (VS[ge, concy,].~X)T, an analogous argument leads to (z,y) € concZ.
The edges which do not end at extra nodes are established in a similar way by the
DEdge and Edge concepts. The DEdge concept is just a disjunction over the various
edge types while the Edge concept actually establishes the edges. The FEdge concept

is essentially the negation of the well-known propositional formula

n—1 k—1 n—1 k-1
ANNAzi=10)=@=12,=00 A A\ z,=0 = (2 =z})
k=0 j=0 k=0 j=0

which encodes incrementation modulo 2", i.e., if k£ is the number binarly encoded

by the propositional variables zg,...,z,_1 and k' is the number binarly encoded by
the propositional variables xzf,...,z} ;, then we have ¥’ = k + 1 modulo 2" (see,
e.g., [6]). Assume a € (Edgelgs,p])t (where p is either “=" or conc;.) and let b be

the fringe node with pos(b) = pos(a) + 1, = be the gp-successor of a, and y be the
ge-successor of b. The Edge concept ensures that, for each S[gy, p]-successor c of a, we
have pos(c) # pos(a) + 1, i.e., there exists an 7 with 0 < i < n such that c¢ differs from
b in the interpretation of B;. Tt follows that (a,b) ¢ S[gs,p]*. As in the case of the
edges ending at one of the extra nodes, we can conclude (z,y) € p?. All remaining
issues such as, e.g., ensuring that one of the partial solutions is in fact a solution, are
as in the reduction given in Section 3.3.

Lemma 28. Let P = ({1,71),...,(fg,7x) be a PCP. Then P has a solution iff the
concept C[P] is satisfiable.
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Proof During the proof, we abbreviate |P| by n. First assume that C[P] is satisfi-
able. Using induction over n and the definitions of the Tree and DistB concepts, it is
easy to show that there exist objects a; ; for 0 <7 <n and 0 < j < 2' such that

1. R%(a; ) = {agi+1),2j5 0a41),2j41) ) for 0 <i<mand 0 < j < 2 and
2. pos(an,;) =j for 0 < j < 2™

The first property implies that the a;; form a binary tree whose edges are labeled
by R and whose nodes are not necessarily distinct.” The naming scheme for nodes is
as indicated in Figure 4. By the first line of the C[P] concept, there exist concrete
objects zg,...,Ton 1 and yg,...,yom_1 such that

9t (an,;) = z; and gF(an ;) = yj for all 0 < j < 2™

By the third line of C[P], we have a,,; € (DEdge[P])* for all a, ; with pos(a, ;) #
2" —1, i.e., for all a, ; with 0 < j < 2" — 1. By definition of DFEdge|P], for each j with
0 <7 < 2", we have either

Qn,, 5 € (Edge[géa :] M Edge[gﬁ :])I
or there exists a pair (¢;,7;) € P such that
an,;j € (Edgelge, conce,] 1 Edgelgy, concri])z.

As was already shown in the intuitive explanations, the first property implies z; = ;11
and y; = y;41 while the second implies (z;,z;11) € concZ and (y;,yj+1) € concﬁ (we
refrain from repeating the arguments here). Summing up, there exist concrete objects
Zoy ..., Ton—1 and yo,...,yon_1 and indexes iy, ...,i9n 1 € {1,...,k} U{&} such that

1. g7 (an;) = zj and g7 (an,j) = y; for 0 < j < 2", and
2. forall1 <j <2 —1,
e ifi; = & then z;_; = z; and y;_1 = y;, and

P

o (zj_1,15) € conch and (y;—1,y;) € coney, otherwise.

Analogously, by definition of the Ezt[D] concept and the last four lines of the definition
of C[P], there exist abstract objects ay,on, Qp (2n41), CONCTEte objects Tan, Ton 1, Yon, Yon 41,
and indexes ign,ion 1 € {1,...,k} U {d} such that

1. 2% (apan—1) = apae and y(anon 1) = U (2741)5
2. ggI(an,i) = z; and gf(an,i) =y, for i € {2",2" + 1},
3. for all j € {2™ 2™ 4+ 1},

e if i; = & then z; | = z; and y; 1 = y;, and

"The fringe nodes must obvioulsy be distinct because of the B; concepts. However, some “inner”
nodes may coincide.
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o (zj_1,z5) € concZ]_ and (y;—1,y;) € concfij otherwise.

Moreover, by the second and last line of the definition of C[P], we have zyp = yp =€
and Toni1 = yony1 # €. Taking together these observations, it is clear that the

sequence i1, . . ., i,, which can be obtained from i, ..., iz: 11 by eliminating all i; with
i; = &, is a solution for P. Furthermore, we obviously have 1 < p < 2" 4 1.
Now for the “only if” direction. Assume that P has a solution iy,...,%, with

m < 2Pl 4 1. With L; (resp. R;), we denote the concatenation £;, -+ ;; (resp.
iy ooory;) for 1. < j <m and set Ly = Ry = € and Lj = Ly, (resp. R; = Rp,) for all
j > m. We define a model Z for C[P] with the form of a binary tree of depth n. The
object names in Figure 4 indicate the naming scheme used. Set

AI = {ai,j | 0<2< TL,O < _] < 2Z} U {an,2”aan,(2“+1)}'

For all 0 < j < n, B]-I is the smallest superset S of {a;41,; |0 <i < 2/ A mod 2 # 0}
which is closed under the following condition:

a;j € Sandi<n=—= A(i+1),(25) C(i+1),(2j+1) € S.
Now for the interpretation of the roles.
For all i, with 0 <i <nand 0<j <2 set RT(a;;) := {a(it1),25)s G(it1),(2j+1) }-

Set $I(an’(2n_1)) = Qp2n and yI(an,(gn_l)) = an’(2n+1).

For all 7 with 0 <4 < 2™ + 1 set geI(an,i) := L; and gf(an,i) = R;.
It is not hard to verify that Z is a model for C[P]. a

Obviously, the size of C[P] is polynomial in |P| and C[P] can be constructed in time
polynomial in |P|. Since subsumption can be reduced to satisfiability, we obtain the
following theorem.

Theorem 29. There exists an admissible concrete domain D for which satisfiabil-
ity is in PTIME such that satisfiability and subsumption of ALCRP(D)-concepts are
NExPTIME-hard.

4 Upper Complexity Bound

In this section, we establish an upper bound corresponding to the lower bounds given in
the previous section. We consider concrete domains D for which satisfiability is in NP
and show that satisfiability and subsumption of (restricted) ALCRPZ(D)-concepts
w.r.t. TBoxes is in NEXPTIME. First, a tableau algorithm for deciding satisfiability
of ALCRPZ(D)-concepts without reference to TBoxes is devised. Then, we modify
the presented algorithm to take into account TBoxes by using “on the fly unfolding”
as proposed in [19].
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4.1 A Completion Algorithm for ALCRPI(D)

In this section, we prove satisfiability of ALCRPZ(D)-concepts (without reference to
TBoxes) to be in NEXPTIME by devising an appropriate algorithm. The presented
algorithm is a so-called tableau algorithm which tries to construct a canonical model
for the input concept by repeatedly applying completion rules to a completion system.
Input concepts are required to be in negation normal form. We start with introduc-
ing completion systems, which are the fundamental data structure of the completion
algorithm presented in this section.

Definition 30 (Completion System). Let O, and O, be disjoint sets of abstract
nodes and concrete nodes (both countably infinite). A completion tree for an ACCRPZI(D)-
concept D is a tree whose set of nodes is a subset of O, W O.. Each node a € O,

of the tree is labeled with a subset L(a) of sub(D), each edge (a,b) with a,b € O,

is labeled with a (possibly complex) role £(a,b) occurring in D, and each edge (a,z)
with @ € O, and z € O, is labeled with a concrete feature £(a,z) occurring in D.8
The following properties have to be satisfied.

1. concrete nodes have no successors,

2. if b and ¢ are successors of a and L(a,b) = L(a,c) = f for an abstract feature
f, then b = c.

3. if b is successor of a and L(a,b) = f~ for an abstract feature f, then for all
successors ¢ of b, we have L(b,c) # f.

4. if z and y are successors of a and L(a,z) = L(a,y) = g for a concrete feature g,
then z = y.

A completion system for an ALCRPZL(D)-concept D is a pair (T,P), where T is
a completion tree for D and P is a function mapping each P € ®p with arity n
appearing in D to a subset of (O.)".

Let T be a completion tree, R € 7%, and a,b € O,. b is called R-successor of
a in T iff b is a successor of a and L(a,b) = R (for concrete features g, the notion
g-successor is defined analogously). b is called R-neighbor of a iff b is R-successor of
a or a is Inv(R)-successor of b. The notion R-neighbor is extended to paths in the
obvious way: Let u = f;--- fng be a path and x € O.; = is u-neighbor of a in T if
there exist nodes by,...,b, € Oy such that by is fi-neighbor of a, b; is f;-neighbor of
bi—1 for 1 < i < n, and z is g-successor of b, (resp. if = is a g-successor of a in the
case that u = g). With neighby(a,u), we denote the u-neighbor of a in T (which is
unique due to Properties 2 to 4 of completion trees). The index T is omitted if clear
from the context. If R is a predicate role, then b is a virtual R-successor of a if

1. R=3(u1,... un), (v1,...,0p).P,

2. there exist concrete nodes x1,...,z, such that z; = neighb(a,u;) for 1 <i < n,

8Recall that predicate roles are expressions of the form 3(ui,...,un), (v1,...,v,).P and a role is
called complex if it is either a predicate role or the inverse of a predicate role.
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3. there exist concrete nodes y1, ..., yn such that y; = neighb(b,v;) for 1 < i < m,
and

4. («Tla---amnayla"wym) EP(P)

If R= 5" and S is a predicate role, then b is a virtual R-successor of a if a is a virtual
S-successor of b. A node a € O, is a general R-neighbor of a node b € O, if b is an
R-neighbor of a or b is a virtual R-successor of a.

If the satisfiability of a concept D is to be decided, the completion algorithm is started
with the initial completion system Sp = (Tp,Py), where Tp is the tree consisting
of a single node a with £(a) = {D} and Py maps each P € ®p to (). The algorithm
repeatedly applies the (yet to be defined) completion rules until (1) it finds a comple-
tion system to which no more rules are applicable or (2) it finds a completion system
containing a contradiction. If the final completion system contains a contradiction
(be it complete or not), D is not satisfiable. Otherwise, the final completion system
represents a model for D. Before the completion rules are defined, we introduce a bit
of notation.

Definition 31 (“4” operation). An abstract or concrete node is called fresh w.r.t.
a completion tree T if it does not appear in T. Let S = (T, P) be a completion system.
By S + aRb (resp. S + agx), where a is a node in T and b (resp. z) is fresh in S, we
denote the completion system S’ which can be obtained from S as follows:

e If R € N, and a has an R-neighbor o' (resp. ¢ € N.r and a has a g-successor
z'), then rename o’ in T with b (resp. 2’ in T and P with z).

e Otherwise, augment T by a new successor b of a (resp. z of a) and set L(a,b) = R
(resp. L(a,x) = g).

When nesting the +-operation, we ommit brackets writing, e.g., S 4+ aRb 4+ bRc for
(S + aRb) + bRc. Let u = f1--- frg be a path. By S + auz, where z is fresh in S,
we denote the completion system S’ which can be obtained from S as follows: Let
bi, ..., b, be distinct objects which are fresh in S. Set

S =S+ afib+ bifoby + -+ bp_1fnby, + bngz.

The completion rules can be found in Figure 12. With roles(D) in the Reh rule, we
denote the set of role names and predicate roles used (directly or as inverse) in the
input concept D. The RU rule is nondeterministic, i.e., it has more than one possible
outcome. The algorithm returns unsatisfiable only if there is no way to apply the
completion rules such that a complete and clash-free completion system is obtained.
Intuitively, the algorithm can be thought of as “guessing” the “right” outcome of the
RU rule. The notion “clash” formalizes what it means for a completion system to be
contradictory.

Definition 32 (Clash). Let S = (T, P) be a completion system for a concept D. S
is concrete domain satisfiable iff the conjunction

Cp = /\ /\ (1,...,zp): P

P used in D (z1,...,zn)€P(P)
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RN ifCiNCy € L(a), Cy ¢ L(a), or Cy ¢ L(a)
then L(a) := L(a) U{C4,Cy}

RU ifCiUCy € L(a) and C; ¢ L(a) or Cy ¢ L(a)
then L(a) := L(a) U{C} for some C € {Cy,Cs}

R3  if 3R.C € L(a) and, for all general R-neighbors b of a, C ¢ L(b)
then set S := S + aRb for a fresh b € O, and set L(b) := {C}

RY  if VR.C € L(a), b is general R-neighbor of a, and C ¢ L(b)
then set £(b) := L(b) U{C}

Rec if Juy,...,up.P € L(a) and there exist no z1,...,x, € O, such that
x; = neighb(a,u;) for 1 <i < n and (z1,...,z,) € P(P)
then augment S as follows:
Set Sy := S and, for each 1 <1 <mn, set S; = S;_1 + au;z;
with z; fresh in S; ;.
Finally, set S := S,, and P(P) := P(P) U {(z1,...,2p)}

RR  ifbis I(uy,...,up), (v1,...,vy).P-neighbor of a and there exist no
TlyeeesTnyYly- - Ym € Oc such that z; = neighb(a,u;) for 1 <i < n,
y; = neighb(b,v;) for 1 <4 < m, and (z1,...,Zn,Y1,---,Ym) € P(P)
then augment S as follows:
Sp:=8;for 1 <i<mn,S; =81+ au;x; with x; fresh in S;_;
Sy :=Sp; for 1 <i<m, S; =S5!_; +bvjy; with y; fresh in S]_,.
Set S:= 5] and P(P) :=P(P)U{(Z1,-- s TnsY1y---+Ym)}
Rceh  if I(ugy ... up), (1,...,0mp).P € roles(D),
x; = neighb(a,u;) for 1 <i < mn, y; = neighb(b,v;) for 1 < i < m, and

(xlaaxnayla7ym)¢,P(P)U,P(ﬁ) -
then P(P') :=P(P")U{(z1,...,Zn,Y1,--.,ym)} for a P' € {P, P}

Figure 12: Completion rules for ACCRPZ(D) on input Cy.

define procedure sat(S)
if S contains a clash then
return unsatisfiable
if S is complete then
return satisfiable
Apply a (possibly nondeterministic) completion rule to S yielding S’
return sat(S’)

Figure 13: The sat algorithm.

is satisfiable. S is said to contain a clash iff there occurs a node a € O, in T such
that
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1. {A,~A} C L(a) for a concept name A,
2. gt € L(a) and there exists an z € O, such that x is g-successor of a, or
3. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. S is called complete iff no com-
pletion rule is applicable to S.

The completion algorithm (called sat from now on) itself can be found in Figure 13
in a pseudo code notation.

In the following, we introduce some notions needed for proving termination of the
algorithm. A completion system S’ is derived from a completion system S if S’ can be
obtained from S by repeatedly applying completion rules. For a node a in T, let #(a)
denote the level of @ in T, i.e., its distance to the root node. With |C|, we denote the
size of a concept C' which is defined as the number of symbols (constructors, concept
names, role names, concrete feature names, and predicate names) in C. With rd(C),
we denote the role depth of a concept C' which is defined inductively as follows (for
technical reasons, we also define the role depth of roles):

1. rd(A) = rd(—=A) = 0 for concept names A,
2. rd(R) =1 for role names R,

3. rd(I(u1, ... un), (V1,...,0y).P) is the length of the longest path in the set
{ut, ..., Un,v1,...,0n} (where the length of a path u = f1--- frg is n + 1),

4. rd(C1 N Cy) = rd(Cy U Cy) = max(rd(Cy), rd(C?)),

5. rd(AR.C) = rd(VR.C') = max(rd(R), 1 + rd(C)),

6. rd(Jui,...,up.P) is the length of the longest path in {u1,...,u,}, and
7. rd(gT) = 0.

Let C be a concept. With nf(C), we denote the number of distinct abstract features
used in C. Furthermore, rez(C), denotes the number of concepts in sub(C) of the
form IR.D with R € Ng \ Nyr. Let C be a set of concepts. With rd(C), we denote
the maximum role depth of all concepts in C. We set

Clacr := {C € C | sub(C) contains a concept of the form IR.E with R complex role}
and
Clap :={C € C | sub(C) contains a concept of the form Juy,...,u,.P}.

For showing termination, we that the depth and outdegree of completion trees con-
structed by the algorithm is bounded. In order to show the bound on the depth, we
prove that the level of abstract nodes having concrete g-successors (for some g € N.r)
is bounded. This is important since it implies that, if a node b is a virtual successor
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of a node a, then the depth of b is bounded. It is not hard to see that this fact is
crucial for the boundedness of the depth of completion trees. To show the mentioned
bound on the level of objects with concrete successors, we prove that, if £(a) contains
a concept of the form Juq, ..., u,.P or 35.C with S complex role, then the level of the
node a is bounded. We start with establishing this latter two bounds (one for each
concept type).

Lemma 33. Let S = (T, P) be a completion system derived from an initial comple-
tion system Sp. For all abstract nodes a in T, we have rd(L(a)|3.r) < rd(D) — £(a).

Proof The proof is by induction over the number of rule applications. The lemma, is
obviously true for the initial completion system Sp. For the induction step, we make
a case distinction according to the rule applied. R and RLUI are straightforward since
they only add concepts C' to labels £(a) with rd(C) < rd(L(a)). Re, RR, and Rch are
trivial since they do not change node labels at all. Hence, the only interesting cases
are R9 and RV.

e Assume R3 is applied to a concept IR.C' € L(a) where sub(C) contains a con-
cept of the form 4S.F with S complex role. The rule application generates
an R-successor b of a and sets £(b) = {C}. By induction hypothesis, we
have rd(AR.C) < rd(D) — £(a). It follows that rd(C) < rd(D) — £(b) since
rd(3R.C) > rd(C) +1 (“>” since R may be a complex role) and £(b) = £(a) + 1.

e Assume RV is applied to a concept VR.C € L(a) adding C' to L(b) where sub(C')
contains a concept of the form 3S.F with S complex role. Since D is in restricted
form, VR.C is also in restricted form, and, hence, R is not a complex role
(see Definition 8). This implies that b is R-neighbor of a and hence 4(b) €
{€(a)—1,4(a)+1} implying £(b) < £(a)+1. By induction hypothesis, rd(VR.C) <
rd(D) — £(a). It follows that rd(C) < rd(D) — ¢(b) since rd(VR.C) = rd(C) + 1
(“=” since R is not a complex role) and £(b) < £(a) + 1. a

Lemma 34. Let S = (T, P) be a completion system derived from an initial comple-
tion system Sp. For all abstract nodes a in T, we have rd(L(a)|3p) < rd(D) — £(a).

Proof Straightforward by induction on the number of rule applications, employing
the definition of restrictedness (similar to the proof of Lemma 33). a

Now for the bound on the level of objects having concrete successors.

Lemma 35. Let S = (T, P) be a completion system derived from an initial com-
pletion system Sp. Then, for all abstract nodes a and concrete nodes x in T, if
(a,z) € g%, where g is a concrete feature, then £(a) < rd(D).

Proof Only the Rc and RR rules may introduce successors for concrete features. We
first treat the Re rule. Assume that the rule was applied to a concept Juq,...,u,.P €
L(a) and generates a g-successor z for an abstract node b, where g is a concrete feature.
By Lemma 34, we have £(a) < rd(D) — rd(Juq, . .., u,.P). Furthermore, by definition
of the Re rule, we have £(b) < 4(a) + rd(3uy,...,u,.P), and, hence, ¢(b) < rd(D).
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Now assume that the RR rule was applied to an object a and its S-neighbor b.
Then either (i) b is successor of a and L(a,b) = S or (ii) a is successor of b and
L(b,a) = S—. First consider case (i). In this case, L(a,b) was generated by an
application of the R3 rule to a concept 35.C' € L(a). From Lemma 33, it follows
that £(a) < rd(D) — rd(3S.C"). Furthermore, we have ¢(b) = ¢(a) + 1. Suppose
that the rule application generates a g-successor x for an abstract node ¢, where g
is a concrete feature. By definition of the RR rule, it is easy to see that we have
l(c) < £(b) + rd(3S.C). Since £(b) = £(a) + 1, this yields ¢(c) < £(a) + 1 + rd(35.C),
and, from 4(a) < rd(D) — rd(3S.C), we obtain ¢(c) < rd(D) — rd(35.C) + 1+ rd(35.C)
which clearly implies £(c) < rd(D). Case (ii) is analogous. a

We can now prove the bounds on the size of completion trees.

Lemma 36. Let D be an ALCRPI(D)-concept and let S = (T, P) be a completion
system derived from an initial completion system Sp.

1. The out-degree of T is bounded by nf(D) + rex(D) and

2. the depth of T is bounded by 3 x rd(D).

Proof We first prove Point 1. Only applications of the R4, Re, and RR rules may
generate successors. The Rc and RR roles generate only f-successors with f abstract
feature. Since, by definition of T, there can be at most one f-successor per node
and abstract feature f, applications of the Rc and RR rules may generate at most
nf(D) successors per node. Applications of the R3 rule may additionally generate
R-successors with R € Ng \ N,r. However, by definition of R3, it is easy to see that
the number of successors per node generated in this way is bounded by rez(D).
Now for Point 2. We prove the following claim:

For all abstract nodes a in T, rd(L(a)) < 3 * rd(D) — £(a). (1)

The claim obviously implies £(a) < 3 * rd(D). The proof is by induction over the
number of rule applications. The claim is obviously true for the initial completion
system Sp. Now for the induction step. Note that rd(L(a)) < rd(D) for all abstract
nodes a in T. This implies that the claim holds true for all nodes a with £(a) < 2 x
rd(D). Hence, we will in the following consider only nodes a with £(a) > 2xrd(D). We
make a case distinction according to the rule applied. RIM and RU are straightforward
since they only add concepts C to labels £(a) with rd(C) < rd(L(a)).

e Assume R3 is applied to a concept AR.C' € L(a) adding C to £(b). By induction
hypothesis, rd(3R.C') < 3% rd(D) — £(a). Tt follows that rd(C) < 3xrd(D) — £(b)
since rd(IR.C) = rd(C) + 1 and £(b) = l(a) + 1.

e Assume RV is applied to a concept VR.C' € L(a) adding C' to L(b). As noted
above, we may safely assume £(b) > 2 x rd(D). By Lemma 35 and since the
maximum length of paths in D is bounded by rd(D), we have that u”(b) is
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undefined for each path u in D.? Tt follows that R is not a virtual R-successor
of a, and, hence, £(b) < ¢(a) + 1. We can now argue as in the R3 case.

e If the Re rule is applied to a concept Juq,...,u,.P € L(a), then £(a) < 3 *
rd(D) — rd(3uq,. .., u,.P) by induction hypothesis. Hence, by definition of the
Re rule, for all (abstract and concrete) nodes b created by the rule application,
we have £(b) < 3 % rd(D). Since Re does not augment node labels with new
concepts, this proves the claim.

e The case of the RR rule is similar to the Re rule. u

Using the lemma just established, we can now prove termination.

Proposition 37 (Termination). Let D be an input to the completion algorithm and
let K = (nf(D) + rex(D))>*™ D). The algorithm terminates after at most O(|sub(D)|*
K + K?) rule applications.

Proof We first examine the maximum number of applications of the R, RLI, R3, and
RV rules. Each such application adds a new concept to a node label. By Lemma 36,
there exist at most K nodes. Obviously, the size of each node label is bounded by
|sub(D)|. Since nodes are never removed from the tree and concepts are never removed
from node labels, there may be at most |sub(D)| x K applications of the mentioned
rules. It remains to treat applications of the Re, RR, and Rech rules.

Rc This rule may be applied at most once per concept Juy,...,u,.P appearing in
a node label. Hence, the above considerations imply that there may be at most
|sub(D)| x K applications.

RR RR may be applied at most once per edge and each node has at most one
incoming edge. Hence, the number of RR applications is bounded by K.

Rech This rule may be be applied at most once per pair of abstract nodes, i.e., at
most K? times.

Taking the above observations together, we obtain the bound stated in the lemma:
Applications of the RM, R, R3, and RY rules yield the first summand, applications
of Rch the second, and all remaining applications just yield a constant factor. a

We now prove the correctness of the algorithm.

Lemma 38 (Soundness). If there exists a complete and clash-free completion sys-
tem S = (T,P) derived from the initial completion system Sp, then D is satisfiable.

°This does not necessarily hold for nodes b with £(b) > rd(D). To see this, note that we may,
e.g., have fg as a path in D, L(a,b) = f~ and L(a,z) = g with £(a) = rd(D) and £(b) = £(a) + 1.
Obviously, (fg)*(b) is defined.
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Proof Let S = (T,P) be as in the lemma. Since S is clash-free, there exists a
solution for (p, i.e., a mapping from the set of concrete nodes used in T to Ap.
Define the interpretation Z by setting Az to the set of abstract nodes in T,

A to {a| A € L(a)} for all A € Ng,
R% to {(a,b) | L(a,b) = R or L(b,a) = Inv(R)} for all R € N, and
g" to {(a, (2))]|L(a,z) =g} for all g € Nep.

Considering Properties 2 to 4 of completion trees, it is obvious that Z is well-defined. We
first show the following claim.

Claim: For all a,b € Az and roles R € R, we have (a,b) € RT iff b is general R-
neighbor of a.

We make a case distinction according to the type of R.

1. R € Ni. Then b is a general R-neighbor of a iff b is R-neighbor of a. By
definition of Z and of R-neighbors, b is R-neighbor of a iff (a,b) € RT.

2. R=S" with § € Ng. Again, b is a general R-neighbor of a iff b is R-neighbor
of a. By definition, b is R-neighbor of a iff a is S-neighbor of b. As in Case 1, a
is S-neighbor of b iff (b,a) € ST. By semantics, (b,a) € ST iff (a,b) € RT which
proves the claim.

3. R = 3(u1,...,up), (v1,...,0m).P is a predicate role. If b is R-neighbor of a,
then the non-applicability of the RR rule ensures that b is also a virtual R-
successor of a. Hence, b is general R-neighbor of ¢ iff b is virtual R-successor of
b. By definition, b is virtual R-successor of b iff (x) there exist concrete nodes
TlyeeesTnyYly- -, Ym Such that

e x; = neighb(a,u;) for 1 <7 < n,

e y; = neighb(b,v;) for 1 <i < m, and

e (1,. ., Tn,Y1,---,Ym) € P(P).
We need to show that this is the case iff (xx) there exist aq,...,apn,B1,...,0m €
Ap such that

. u%(a):ai for 1 <i < n,

. viI(b) =; for 1 <7 <m, and

o (ala"'aanaﬁla"'algm) € PD‘
This proves the claim, since, by semantics, we have (x*) iff (a,b) € RZ. The
direction from (*) to (%) is straightforward by definition of Z. Now for the
direction from (#%) to (*). Assume that (x) holds. By Case 1, this implies the
existence of concrete nodes z1,...,Zp, Y1, .., Ym such that z; = neighb(a,u;) for

1 < i< nand y; = neighb(b,v;) for 1 <17 < m. Since the Reh rule is not appli-
cable to S and R € roles(D), we have either (z1,...,Zp,y1,-..,Ym) € P(P) or
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(1. s Tp, Y1y - Ym) € P(P). The latter implies (av,...,an,B1,--.,0m) €
P° which is a contradiction. Hence, we conclude (z1,...,Zn,Y1,---,Ym) €
P(P).

R = S~ with S predicate role. As in Case 3, b is general R-neighbor of a iff
b is virtual R-successor of a. By definition, b is virtual R-successor of a iff a
is virtual S-successor of b. As in Case 3, we conclude that this is the case iff
(a,b) € ST. By semantics, (b,a) € ST iff (a,b) € RT.

This finishes the proof of the claim. By induction over the concept structure, we show
that C' € L(a) implies a € CT for all a € Az and subconcepts C' of D. The induction
start, i.e., the case that C' is a concept name, is an immediate consequence of the
definition of Z. For the induction step, we make a case distinction according to the
topmost constructor in C.

C = —FE. Since D is in negation normal form, F is a concept name. Since S is
clash-free, E ¢ L(a) and, by definition of Z, a ¢ EZ. Hence, a € (-E)~.

C = C1NCy. Since the RM rule is not applicable to S, we have {Cy,Cs} C L(a).
By induction, a € C and a € C, which implies a € (C; 1 Cs)*.

C = C1 Uy, Similar to the previous case.

C = dR.E. Since the R3 rule is not applicable to S, there exists an abstract
node b in T such that b is general R-neighbor of @ in T and E € £(b). The above
claim yields (a,b) € RZ. By induction, we have b € EZ. Hence, we conclude
a € (3R.E)L.

C =VR.E. Let b € Az such that (a,b) € RT. By the above claim, b is a general
R-neighbor of a in T. Since the RV rule is not applicable to S, we have F € L(b).
By induction, it follows that b € EZ. Since this holds for all b, we can conclude
a € (VR.E)L.

C = Juy,...,up.P. For each i with 1 < ¢ < n, the following holds: Since
the Re rule is not applicable to S, there exist abstract nodes by,...,b, in T
such that by is fi-neighbor of a, b; is f;-neighbor of b;_1 for 1 < 7 < n, and
there exists a concrete node z; such that z; is g-successor of b,,. By definition
of Z, we have ff(a) = b1, g (b,) = (), and fF(bj—1) = b; for 1 < i < n.
Furthermore, we have (z1,...,2,) € P(P) and since is a solution for (p,
( (z1),..., (7)) € PP. Summing up, a € (3uy,...,u,.P)L.

C = ¢g1. Since S is clash-free, a has no g-successor = in T. By definition of Z,
g% (@) is undefined and hence a € (g1)%.

Since D € L(ag) for the root ag of T, we have D? # () and hence Z is a model for D.

O

It remains to prove completeness.
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Lemma 39 (Completeness). For any satisfiable ACCRPZL(D)-concept D, the ex-
pansion rules can be applied such that they yield a complete and clash-free completion
system for D.

Proof Let Z = (Az,-T) be a model for D. We use this model to “guide” the applica-
tion of the non-deterministic completion rule RU such that a complete and clash-free
completion system for D is obtained. A completion system S = (T,P) is called Z-
compatible iff there exists a mapping 7 from the abstract nodes in T to Az and from
the concrete nodes in T to Ap such that

a) C € L(a) = m(a) € CT

)
b) b is general R-neighbor of a = (7(a), (b)) € R?
¢) z is g-successor of a = gI(ﬂ(a)) = 7(z)

)

d) (z1,...,2,) € P(P) = (n(21),...,7(x,)) € PP

for all abstract nodes a,b in T, subconcepts C' of D, roles R € ﬁ, concrete nodes
T,T1,...,T, in T, concrete features g, and predicates P € ®p.

Claim: If a completion system S is Z-compatible and a rule R is applicable to S,
then it can be applied such that it yields an Z-compatible completion system S’.

Let S be an Z-compatible completion system, let 7w be a function satisfying a) to d),
and let R be a completion rule applicable to S. We make a case distinction according
to the type of R.

RM Since the rule is applicable, there exists an abstract node a such that C; 1 Cy €
L(a). By a), this implies 7(a) € (C1MCs)T and hence 7(a) € CT and 7(a) € CF.
Obviously, 7 satisfies a) to d) w.r.t. the obtained completion system S’.

RU There exists an abstract node a such that C;UUCy € L(a). This implies 7(a) € CT
or w(a) € C%. Hence, the rule can be applied such that 7 satisfies a) to d) w.r.t.
the obtained completion system S’.

R3 There exists an abstract node a such that 3R.C € L(a). By a), this implies
m(a) € (AR.C)T and hence, there exists an s € Az such that (7(a),s) € R and
seCL.

— First assume that either R is a role or R is a feature and a does not have
an R-neighbor in S. The R3 rule generates a new abstract node b with
L(b) = {C} such that b is an R-successor of a yielding a new completion
system S’. Define " as 7 U {b — s}. Obviously, 7’ satisfies a), ¢), and d)
w.r.t. S’. By definition of general R-neighbors, =’ satisfies b) w.r.t. §’.

— Now assume that R is an abstract feature and a does already have an R-
neighbor b in S. Then, the R3 rule consistently renames b to some new
name ¢ (c.f. the “+” operation) and sets L(c) := L(c) U{C}. Define 7’ as
mU{c — 7(b)}. Since b) holds for 7 w.r.t. S and by definition of 7/, we have
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(n'(a),7'(c)) € RT. Since abstract features are interpreted as functions, we
have 7'(c) = s implying 7'(c) € CT. Hence, ' satisfies a) to d) w.r.t. the
obtained completion system S’.

RV There exist abstract nodes a and b such that VR.C' € L(a), b is a general R-
neighbor of a, and C' ¢ L(b). By a), b), and semantics, this implies 7(a) €
(VR.C)Z, (n(a),n(b)) € R, and 7w(b) € CZ. The rule application adds C to
L(b). Obviously, 7 satisfies a) to d) w.r.t. the obtained completion system S’.

Rec There exists an abstract node a such that Juq,...,u,.P € L(a) with u; =

@ ... (Z_) ; for 1 < i < n. By a), this implies 7(a) € (Juq, ..., u,.P)*. Hence

f1 kl g y 9 p ) ) )

there exist sg-i) eArforl <i<nandl<j <k and ay,...,a, € Ap such
that

~ ((a),sy")

_ () ()

(3]' )54 )

(FINT for 1 < i <,
(2

. (

(i.)) _

€
E(f]))Iforlgignand1<j§ki,
a; for 1 <4 <mn, and

After the application of the R3 rule, there exist abstract nodes bg-i) forl1 <i<n
and 1 < j < k; and concrete nodes x1,...,x, such that

- bgi) is fl(i)—neighbor of a for 1 <i<m,
— 0 is fP-neighbor of 8| for 1 <i<nand 1< j <k,

— x; is g;-successor of b,(fi) for 1 <4 <mn, and
— (z1,...,2n) € P(P).

We call the completion system obtained by rule application S’. Define 7’ by
extending 7 as follows: (i) for 1 < i < m and 1 < j < k;, set ﬂ'(bg-l)) = sg-l);
(ii) for 1 < i < m, set (7;) := @;.'° We need to show that «' satisfies a) to d)

w.r.t. the new completion system S’. First, we show the following:

If, during the rule application, an abstract object ¢ is renamed to bg-i)

(resp. a concrete object y to x;), then we have W’(bg-i)) = m(c) (resp. (+)

m'(zi) = 7(y)).
For assume that an object b is renamed to bg-i). This implies that there exists an
object d such that b is f;i)—neighbor of din S (d is either a or bgzzl) Since (i) s

satisfies b) w.r.t. S, (ii) fZ(n(d)) = W(Sg-i)), and (iii) features are interpreted as

functions, we have w(b) = ng')_ By definition of Z, it follows that «(b) = =’ (b;i))
(the case with y and z; is analogous).

!9Note that existing objects may be renamed due to the use of the “4+” operation. We assume
that, if the “+” operation renamed an object a to b, then the object name a is never “reintroduced”
afterwards (and similar for concrete objects). Hence, 7’ really is an extension of .
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Since the rule application adds no new concepts to node labels, () implies that
7’ satisfies a) w.r.t. S’. Similarly, b) and d) are immediate consequences of (x)
and the definition of Z. (note that the rule application may generate new virtual
R-successor relationships for some abstract nodes a and b and a complex role
R). Property c) is satisfied by 7’ by definition.

RR There exist abstract nodes a, b such that b is R-neighbor of a with R = I(uq, ..., uy), (v1,...,0m).P,
i.e., either b is an R-successor of a or @ is an R~ -successor of b. In any case, b)
yields (m(a),n(b)) € RT. We proceed analogous to the Rc case.

Rch There exist abstract nodes a,b and a predicate role
ug, ... up), (V1,. .., 0m).P € roles(D)

such that z; = neighb(a,u;) for 1 <i < n and y; = neighb(b,v;) for 1 < i < m.
The rule application adds (z1,...,Zn, y1,...,ys) either to P(P) or to P(P). By
semantics, we have either

(m(z1),...,7(zn), 7(11), .., 7(ym)) € PP

(1(21), .+ oy (Z)y T(Y1)s - () € P

Hence, the rule Rch can be applied such that 7 satisfies a) to d) w.r.t. the
obtained completion system S’.

It remains to show that the lemma is a consequence of the above claim. Let Sp =
(Tp, Py) be the initial completion system for D and let ag be the node in Tp. Set 7(ag)
to s for an s € DZ. Obviously, 7 satisfies a) to d) and hence Sp is Z-compatible. By
the claim, the completion rules can be applied such that only Z-compatible completion
systems are obtained. By Lemma 37, every sequence of rule applications terminates
yielding a complete completion system. Hence, we can obtain a complete and Z-
compatible completion system S = (T,S) by rule application. It remains to show
that this implies the clash-freeness of S. Let m be a mapping for S satisfying a) to d).

1. S does not contain a clash of the form {A,~A} C L(a) since, together with a),
this would imply 7(a) € AT N (=A)? which is impossible.

2. Tt needs to be shown that, whenever gt € L(a), then there exists no g-successor
x of a. Assume to the contrary that there exists an abstract object a, a concrete
object x, and a concrete feature g such that gt € L(a) and z is g-successor of a
in T. By a), we have 7(a) € (¢1)%. By c), we have g% (n(a)) = m(z) which is a
contradiction.

3. It remains to show that S is concrete domain satisfiable, i.e., that the predicate
conjunction (p is satisfiable. However, using d), it is straightforward to show

that the “concrete part” of 7 is a solution for (p. O
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Satisfiability w.r.t. TBoxes can be reduced to satisfiability without TBoxes by using
unfolding [21]. Unfolding a concept C' w.r.t. a TBox 7 means iteratively replacing
concept names in C' by their definitions given in 7 (unfolding obviously terminates
since 7T is acyclic). This yields a concept C’ which is satisfiable w.r.t. 7 iff C' is satis-
fiable w.r.t. 7. Together with Lemmas 37, 38, and 39 and the fact that subsumption
can be reduced to satisfiability, this gives the following result.

Theorem 40. Satisfiability and subsumption of ACCRPZI(D)-concepts w.r.t. TBozes
are decidable.

The complexity of the presented algorithm is analyzed in the next section.

4.2 Acyclic TBoxes and Complexity

In this section, we modify the algorithm introduced in the previous section to directly
take into account TBoxes (instead of using unfolding) and then analyze the complexity
of the modified algorithm. The modification technique we employ was introduced in
[19], where it was used to prove that many PSPACE tableau algorithms for deciding
concept satisfiability (e.g., for ALC-concepts) can be modified to decide satisfiability
of concepts w.r.t. TBoxes such that their PSPACE complexity is preserved. First, the
TBox has to be converted to a certain normal form.

Definition 41 (Simple TBoxes). A TBox 7T is called simple iff it satisfies the fol-
lowing requirements:

e The right-hand side of each concept definition in 7 contains exactly one con-
structor (i.e., it is of the form —=A, A1 M As, A; U Ay, AR.A, VR.A, Juq, ..., uy,.P,
or gt, where A, A;, and A, are concept names).

e If the right-hand side of a concept definition in 7 is = A, then A does not occur
on the left hand side of any concept definition in 7.

The following lemma is proved in [19].

Lemma 42. Any TBoz T can be converted into a simple one T' in linear time, such
that T' is equivalent to T in the following sense: Any model for T' can be extended to
a model for T, and, vice versa, any model for T can be extended to a model for T'.

This notion of equivalence is necessary since the translation to simple form may remove
concept names and add additional ones. A short comment on what is meant by
“extended” is appropriate. Let 7 be a TBox, 7" the result of converting it to simple
form, and Z be a model for 7. We can construct a model for 7' from Z by setting
AT to an appropriate value for all concept names A that have been introduced in
the conversion of 7 to 7'. Defining a model for 7 from a model of 7’ works similar
(additionally interprete all variables that have been eliminated during the conversion
of T to T").

We now modify the sat algorithm from Section 4.1 to decide the satisfiability of
concept names A w.r.t. simple TBoxes 7. Using the modified algorithm, it is obviously
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also possible to decide the satisfiability of arbitrary concepts C' w.r.t. TBoxes 7: Add
a definition A = C to 7 where A is a new concept name in 7, convert the resulting
TBox to simple form (the concept name is not eliminated during conversion, see [19])
and start the algorithm with (A,7") where 7' is the newly obtained TBox. The
modified algorithm works on completion trees of a restricted form since node labels
may only contain concept names.

Definition 43 (Modified Completion Algorithm). Let A be a concept name and
T be a simple TBox. Making use of the existing sat algorithm, the algorithm tbsat is
defined as follows.

1. Modify the completion rules of sat as follows: In the premise of each completion
rule, substitute “C' € L(a)” by “A € L(a) and A = C € T” and analogously
for “C ¢ L(a)”. E.g., in the conjunction rule, “Cy M Cy € L(a)” is replaced by
“AeLa)and A=C1NCy, eT”.

2. Start the sat algorithm with the initial completion system Sy = (T4, Py) as
defined in Section 4.1. Use the modified rules for the sat run.

In the following, we investigate the soundness, completeness, termination, and com-
plexity of the modified algorithm. To do this, we need to extend the notion of size and
of subconcepts to TBoxes: For a TBox T, |T| denotes the size of T and is defined as

TI=">_ IOl

A=CeT

Furthermore, sub(7) denotes the set of subconcepts used in 7 and is defined as

sub(T) = U sub(C).

A=CeT

We argue that the tbsat algorithm started with input A, 7 performs exactly the same
steps as the sat algorithm started on the concept C' which is the result of unfolding
A w.r.t. T. Because of this, we give a precise definition of the notion unfolding. In
the following, we generally assume that, if A, 7 is an input to thsat, then A € sub(T).
This can be done w.l.o.g. since, if A ¢ sub(T), T can be extended by a new concept
definition A" = A, where A’ # A and A’ ¢ sub(T).

Definition 44 (Unfolding). Let 7 be a TBox. A concept name A is called defined
in 7 if A appears on the left-hand side of a concept definition in T and undefined
otherwise. A concept C is called unfolded w.r.t. T iff every concept name in C is
undefined in 7. Given a concept C and a TBox 7, C' can be converted to a concept
C’ which is (i) unfolded w.r.t. 7 and (ii) satisfiable w.r.t. 7 iff C is satisfiable w.r.t.
T by using the following unfolding algorithm:

define procedure unfold(T)
while C' contains a concept name A defined in 7do
Let A= E€T.
Replace each occurrence of A in C with E.
return C'

47



In Section 4.1, we introduced several measures on concpets for proving termination.
The following lemma clarifies the relation between these measures and unfolding.

Lemma 45. Let A be a concept name and T be a simple TBozx. If C is the result of
unfolding A w.r.t. T, then

1. nf(C) < T,

2. rex(C) < |T1,

3. 1d(C) < [T, and
4. [sub(C)] <|T1.

Proof Point 1 is trivial and Property 2 is an immediate consequence of Property 4.
Hence, we concentrate on the proof of Properties 3 and 4. For Property 3, assume
that the role depth of C exceeds |7|. This means that the right hand side of a concept
definition A’ = dR.D or A’ =VR.D in T contributes to the role depth more than once.
From this, however, it follows that unfolding D w.r.t. T yields a concept containing
A" which is a contradiction to the acyclicity of T.

Now for Property 5. The property is proved by defining an injection I from sub(C)
to sub(T). The existence of such an injection implies Property 5 since, obviously,
|sub(T)| < |T|. Assume that the concepts in sub(7T) are ordered by a total order <.
For a concept set ¥ C sub(7), min(¥) denotes the concept in ¥ which is minimal
w.r.t. <. Define a function I from sub(C) to sub(T) as follows:

I(E) := min{F € sub(T) | unfold(F,T) = E}.
We show that I is total and injective.

e Let £ be the number of steps the while loop in the unfolding algorithm makes
to compute C' and let C; (0 < i < k) denote the concept C after the i’th loop,
i.e., Cp = A and C, = C. To prove totality, we establish the following claim:

Claim: For all 1 <i < k, and for all E € sub(C;), there exists an F' € sub(T)
such that unfold(E,T) = unfold(F,T).

The claim implies totality since, for all concepts E € sub(C) = sub(C}), we have
unfold(E,T) = E. The proof of the claim is by induction over i. For i = 0, the
claim trivially holds since Cy = A and we assume that A € sub(T). Now for the
induction step. Assume that, in the the 7’th step, a concept name A’ has been
replaced by a concept F. Let E € sub(Cj11) \ sub(C;). Then we have one of the
following two cases:

— E € sub(F). This implies E' € sub(7T), and, hence, E satisfies the claim.

— FE ¢ sub(F). Then there exists an E’ in sub(C;) such that E can be ob-
tained from E’ by substituting an occurrence of A’ in E’ by F. Obviously,
unfold(E,T) = unfold(E',T). Since E' € sub(C;) satisfies the claim by
induction hypothesis, E € sub(C;y1) does also satisfy the claim.
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e Assume that I is not injective, i.e., there exist two concepts E,E' € sub(C)
with £ # E’ such that I(E) = I(E') = F. By definition of I, this implies
unfold(F,T) = E and unfold(F,T) = E'. Since F # E’ and unfolding is deter-

ministic, this is obviously impossible. a

We may now establish correctness and termination of the modified algorithm.

Proposition 46. Let satisfiability of D be in NP and (A, T) be the input to the thsat
algorithm. Then tbsat terminates after (’)(de) rule applications returning “satisfi-
able” if A is satisfiable w.r.t. T and “unsatisfiable” otherwise, where d is a constant.

Proof Let C be the result of unfolding A w.r.t. 7. C'is in NNF since 7 is in simple
form. A run of the tbsat (resp. sat) algorithm on (A, 7T) (resp. on C) is a sequence of
completion rules as applied by the algorithm if started with input (A, 7) (resp. with
input C). By induction over the number of rule applications, it is straightforward
to show that the set of runs of thsat on (A,7) is identical to the set of runs of sat
on C: at every point in the computation where a nondeterministic decision has to
be made (deciding which rule to apply or deciding which consequence of the RU
rule to use), the available choices are exactly the same for both algorithms. Let
K = (nf(C) + rex(C))>*C), By Proposition 37, the algorithm terminates after at
most O(|sub(C)| * K + K?) rule applications. By Lemma 45, this implies that tbsat
terminates after

O(T1+ TN+ 277

rule applications which obviously implies the bound given in the lemma. Furthermore,
soundness and completeness are immediate consequences of the equivalence of run sets.
a

Finally, the upper bound for satisfiability and subsumption of ALCRPZ(D)-concepts
can be given.

Theorem 47. If satisfiability of the concrete domain D is in NP, satisfiability and
subsumption of ALCRPI(D)-concepts w.r.t. TBoxes can be decided in nondetermin-
istic exponential time.

Proof By Proposition 46, thsat decides satisfiability of ALCRPZ(D)-concepts w.r.t.
TBoxes and terminates after exponentially many rule applications. During its run,
tbsat constructs a completion system S = (T,P). After each rule application, the
predicate conjunction (p induced by P has to be tested for satisfiability. Since the
satisfiability test for finite predicate conjunctions is in NP, it remains to show that
the size of (p is at most exponential in the size of the input TBox 7. This is, however,
obvious since each rule application adds at most one tuple to P. a

Since the set of runs tbsat may perform on an input A,7 is identical to the set of
runs sat may perform on the result C' of unfolding A w.r.t. 7, there seems to exist an
alternative way to obtain Theorem 47: Conjecturing that
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e unfolding a concept C' w.r.t. a (not necessarily simple) TBox 7 can be done in
time exponential in |C| + |7, and

e the result from Lemma 45 can be generalized in an appropriate way to the
unfolding of (possibly complex) concepts w.r.t. (not-necessarily simple) TBoxes,

we claim that the same complexity result can be proved by using unfolding as a prepro-
cessing step to the sat algorithm (without defining simple TBoxes). This is somewhat
surprising since unfolding is usually believed to be “harmful” w.r.t. complexity and it
is well-known that unfolding may lead to an exponential blow-up in concept size. In
our case, unfolding is nevertheless “harmless” since it is not the concept size which
is crucial for the complexity of the presented algorithm, but the measures given in
Lemma 45. However, we prefer the use of simple TBoxes since, in our opinion, it is
far more elegant and more closely related to the techniques used in implementations
of DL systems (see, e.g., [3]).

5 Undecidability of ALCZF

The description logic ALCF (D) is the extension of ALC(D) with so-called feature
agreements and feature disagreements. In [20], it is proved that satisfiability of
ALCF(D)-concepts is PSPACE-complete. The algorithm used to establish the up-
per bound shows that it is natural to consider concrete domains in combination with
feature (dis)agreements since the algorithmic treatment is very similar (see also [13]).
It is hence also natural to consider the description logic ACCRPZF (D) which is the
extension of ALCRPZ(D) with feature (dis)agreements. However, in this section, we
show that concept satisfiability is already undecidable for the fragment ALCTF, i.e.,
for ALC with inverse roles and feature (dis)agreements.

Definition 48 (Feature (dis)agreement). Let v; = fl(l) e f,(ll) and v = f1(2) e f,g?)
be sequences of abstract features. A feature agreement is an expression of the form
v1dva. A feature disagreement is an expression of the form viTwvs. The semantics of
feature agreements and disagreements is defined as follows:

(vidv2)F :={a € Az | Fb € Ar.vF(a) =bAvi(a) =b}
('UIT'UQ)I = {a € Az | dby, by € AI.U%(a) =b; A 'UQI(CL) =by A by ;lé bg}

The undecidability of ALCZF if proved by a reduction of the well-known, undecidable
domino problem (see, e.g., [5] and [18]). A domino problem is given by a finite set
of tile types. All tile types are of the same size, each type has a quadratic shape
and colored edges. Of each type, an unlimited number of tiles is available. The
problem is to arrange these tiles to cover the first quadrant of the plane without holes
or overlapping, such that adjacent tiles have identical colors on their touching edge
(rotation of the tiles is not allowed).

Definition 49 (Domino System). Let D = (D, H,V) be a domino system, where
D is a finite set of tile types and H,V C D x D. A mapping 7: N> — D is a solution
of D if
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Grid =3f7.T N V[ aylyr T Vf7.(flef 0 flyf 0 flzyf)

Tiling = (dle_lD Dg) 1 d|e_|D d’EZIZ\l{d} —(Dg M Dg)

M (Dd — dx. LI Dd’)

deD (d,d"eH
deD( d 4 (d,d")ev d)

Cp = Grid 11 Yf~ . Tiling

Figure 14: The ALCZF reduction concept Cp.

Figure 15: Clipping from a model of Cp.

e if 7(z,y) =dand 7(x 4+ 1,y) = d’ then (d,d’) € H, and
o if 7(z,y) =dand 7(z,y + 1) = d' then (d,d') € V.

In the following, we reduce the domino problem to satisfiability of ALCZF-concepts.
Given a domino system D, the reduction concept Cp is such that (i) models of Cp
have the form of a two-side infinite grid, (ii) every node of the grid is an instance of
exactly one of the concept names D, with d € D (representing tile types), and (iii) the
horizontal and vertical conditions V and H are satisfied. The reduction concept can
be found in Figure 14 and a sample C'p model can be found in Figure 15. Again, the
equalities in the figure are used as an abbreviation and are not intended to denote
concept definitions. The symbols z, y, and f denote (abstract) features. In the
reduction, the Grid concept generates the grid and the Tiling concept ensures that
the condition listed as (ii) and (iii) are satisfied. We now formally proof correctness.

Lemma 50. Cp is satisfiable iff D has a solution T.

Proof Assume that Cp has a model Z = (Az,-T). We define a solution 7 for D. Let
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a € CL and let b € (f)%(a) (such a and b exist due to the first conjunct of th Grid
concept). Define the function 7 from N? to Az inductively as follows.

w(0,0) = b
2. if w(i,7) = c and % (c) = d, then w(i + 1,j) = d
3. if w(i,7) = c and y*(c) = d, then n(i,j +1) =d

The Grid concept ensures that this function is total, i.e., that 27 and y” are always
defined. Finally, we define 7(i,j) as the d € D for which 7(i,j) € DZ. Note that,
due to the first line of Tiling, there exists exactly one such d for each = (i,7). It is
straightforward to check that 7 is well-defined and a solution for D.

Conversely, assume that 7 is a solution for D. We define a model Z for Cp as
follows:

o Az =N U{)\}

ot ={((i,7),(i +1,5)) | i,j € N}
y" ={((G,5), (6,5 + 1)) | i,j € N}
fE=A((,9),)) | 4,5 € N}

e DI =7171(d) foralld € D

Again, it is straightforward to verify that Z is a model for D. a

The following theorem is an immediate consequence of Lemma 50 and the undecid-
ability of the domino problem.

Theorem 51. Satisfiability of ALCIF-concepts is undecidable.

6 Conclusion

In this paper, we investigate the complexity of various extensions of the Description
Logic ALC(D). The lower bounds are established using a NEXPTIME-complete variant
of the Post Correspondence Problem together with a (rather natural) concrete domain
‘P for which reasoning can be done in PTIME. More precisely, we prove the following
problems to be NEXPTIME-hard:

1. satisfiability of ALC(P)-concepts w.r.t. TBoxes,
2. satisfiability of ALCZ(P)-concepts, and

3. satisfiability of ALCRP(P)-concepts.
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As a corresponding upper bound, we show that, if reasoning with a concrete do-
main D is in NP, then satisfiability and subsumption of ALCRPZ(D)-concepts w.r.t.
TBoxes is in NEXPTIME. Finally, we prove that ACCRPZ(D) cannot be extended by
feature (dis)agreements without loosing decidability since the satisfiability of ALCZF-
concepts is already undecidable.

As future work, it would be interesting to extend the obtained logics by further
constructors such as transitive roles [24] and qualifying number restrictions [12]. There
are at least two approaches: Since reasoning with ALCF (D) is known to be in PSPACE
[20], one could define extensions of ALCF(D) trying to obtain an expressive logic
with concrete domains for which reasoning is still in PSPACE. The second approach
is to define extensions of ALCZ (D) which means that the obtained logics are at least
NExPTIME-hard for “interesting” concrete domains and that feature (dis)agreements
cannot be included without loosing decidability.
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