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1. the set of its prediate names is losed under negation and ontains a name >

D

for �

D

and

2. the satis�ability problem for �nite onjuntions of prediates is deidable.

With P , we denote the negation of the prediate P , i.e., the prediate with the exten-

sion P

D

= �

D

n P

D

.

We will only onsider onrete domains whih are admissible. Based on onrete

domains, we introdue the syntax of ALCI(D).

De�nition 2 (Syntax). Let N

C

, N

R

, and N

F

be mutually disjoint sets of onept

names, role names, and onrete feature names, respetively, and let N

aF

be a subset

of N

R

. Elements of N

aF

are alled abstrat features. The set of ALCI(D) roles



N

R

is

N

R

[ fR

�

j R 2 N

R

g. An expression f

1

� � � f

n

g, where f

1

; : : : ; f

n

2 N

aF

and g 2 N

F

,

is alled a path.

1

The set of ALCI(D)-onepts is the smallest set suh that

1. every onept name is a onept

2. if C and D are onepts, R is a role, g is a onrete feature, P 2 � is a prediate

name with arity n, and u

1

; : : : ; u

n

are paths, then the following expressions are

also onepts:

(a) :C, C uD, C tD,

(b) 9R:C, 8R:C,

() 9u

1

; : : : ; u

n

:P , and

(d) g".

An ALCI(D)-onept whih uses only roles from N

R

is alled an ALC(D)-onept.

With sub(C), we denote the set of subonepts of a onept C whih is de�ned in the

obvious way suh that C 2 sub(C).

In the following, we denote onept names with A and B, onepts with C and D,

roles with R, abstrat features with f , onrete features with g, paths with u, and

prediates with P . As usual, we use the following abbreviations:

� 9f

1

� � � f

n

:C for 9f

1

: � � � 9f

n

:C,

� 8f

1

� � � f

n

:C for 8f

1

: � � � 8f

n

:C, and

� (f

1

� � � f

n

g)" for 8f

1

: � � � 8f

n

:g".

The syntatial part of a desription logi is usually given by a onept language and a

so-alled TBox formalism. The TBox formalism is used to represent the terminologial

knowledge of an appliation domain and is introdued in the following.

De�nition 3 (TBoxes). Let A be a onept name and C be a onept. Then A

:

= C

is a onept de�nition. Let T be a �nite set of onept de�nitions.

1

A onrete feature is a path of length 1.

4
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Throughout this paper, we will all elements from �

I

abstrat objets and elements

from �

D

onrete objets. Our de�nition of ALC(D) di�ers slightly from the original

version whih was introdued in

[

1

℄

. Instead of separating onrete and abstrat

features, Baader and Hanshke de�ne only one type of feature whih is interpreted

as a partial funtion from �

I

to �

I

[�

P

. Obviously, Baader and Hanshke's logi

is slightly more expressive than ours. However, in knowledge representation it seems

rather hard to �nd any ases in whih the additional expressiveness is really needed.

Furthermore, separating onrete and abstrat features allows a learer algorithmi

treatment and learer proofs.

To avoid onsidering roles suh as R

��

, we de�ne a funtion Inv whih returns the

inverse of a role. More preisely, Inv(R) = R

�

if R is a role name, and Inv(R) = S

if R = S

�

. We generally assume that onepts ontain only roles of the form R and

R

�

(where R is a role name) whih an obviously be done without loss of generality.

The basi reasoning problems on onepts are de�ned as follows.

De�nition 5 (Inferene Problems). Let C and D be onepts. C subsumes D

w.r.t. a TBox T (written D v

T

C) i�

D

I

� C

I

for all models I of T .

C is satis�able w.r.t. a TBox T i� there exists a model of both T and C. Both

inferenes are also onsidered without referene to TBoxes: C subsumes D i� C

subsumes D w.r.t. the empty TBox. C is satis�able i� it is satis�able w.r.t. the empty

TBox.

It is well-known that (un)satis�ability and subsumption an be mutually redued to

eah other, i.e., C v

T

D i� Cu:D is unsatis�able w.r.t. T and C is satis�able w.r.t. T

i� we do not have C v

T

? (where ? abbreviates Au:A for an arbitrary onept name

A). We prove deidability of satis�ability and subsumption of ALCI(D)-onepts in

Setion 4. Throughout this paper, we all two onepts C and D equivalent i� C

subsumes D and D subsumes C.

2.2 The Desription Logi ALCRPI(D)

The Desription Logi ALCRP(D) was introdued in

[

11

℄

and extends ALC(D) with

a role-forming onrete domain onstrutor, i.e., it allows the de�nition of roles with

referene to the onrete domain. In this setion, we extend the logi ALCI(D) with

this role-forming onstrutor.

De�nition 6 (Prediate Roles). A prediate role is an expression of the form

9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P

where P is an n+m-ary prediate. The semantis is given as follows:

(9(u

1

; : : : ; u

n

);(v

1

; : : : ; v

m

):P )

I

:=

f(a; b) 2 �

I

��

I

j u

I

i

(a) = x

i

for 1 � i � n;

v

I

i

(b) = y

i

for 1 � i � m; and (x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 2 P

D

g

6



With R, we denote the set of prediate roles. The set of ALCRPI(D) roles

b

R is

de�ned as



N

R

[ R [ fR

�

j R 2 Rg. An ALCRPI(D)-onept is an ALCI(D)-

onept whose roles are from

b

R. Hene, in ALCRPI(D), prediate roles may be

used everywhere where a role name from N

R

n N

aF

is allowed in ALCI(D). An

ALCRPI(D)-onept whih does not ontain the onverse onstrutor on roles is

alled an ALCRP(D)-onept. In the following, a role whih is either a prediate role

or the inverse of a prediate role is alled omplex role.

ALCRPI(D) TBoxes are de�ned in the obvious way. For example, the following

onept is an ALCRPI(D)-onept:

A u 9g; fg:P u 8f:8(9(g); (g):P )

�

::A

This onept is unsatis�able sine every domain objet satisfying it would have to

be in both A and :A whih is impossible. In

[

10

℄

, it is proved that satis�ability

and subsumption of ALCRP(D)-onepts is undeidable. Furthermore, as shown

in

[

11

℄

, there exists a deidable fragment of the logi ALCRP(D) whih ontains

ALC(D) as a sublogi. In the following, we introdue an analogous fragment of the

logi ALCRPI(D). To do this, we �st need to de�ne the negation normal form for

onepts and desribe how onepts an be onverted into this form.

De�nition 7 (NNF). An ALCRPI(D)-onept is said to be in negation normal

form (NNF) if negation ours in front of onept names, only. The following rewrite

rules preserve equivalene. Exhaustive rule appliation yields a onept whih is in

NNF.

:(C uD) =) :C t :D :(C tD) =) :C u :D ::C =) C

:(9R:C) =) (8R::C) :(8R:C) =) (9R::C)

:(9u

1

; : : : ; u

n

:P ) =) 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") =) 9g:>

D

We may now de�ne restrited onepts.

De�nition 8 (Restrited ALCRPI(D)-onept). An ALCRPI(D)-onept C is

alled restrited i� the result C

0

of onverting C to NNF satis�es the following ondi-

tions:

1. For any 8R:D 2 sub(C

0

), where R is a omplex role, sub(D) does not ontain

any onepts of the form 9u

1

; : : : ; u

n

:P or 9S:E, where S is a omplex role.

2. For any 9R:D 2 sub(C

0

), where R is a omplex role, sub(D) does not ontain

any onepts of the form 9u

1

; : : : ; u

n

:P or 8S:E, where S is a omplex role.

All ALCRPI(D)-onepts we use in this paper (also inside TBoxes) are restrited.

Hene, we will in the following write \ALCRPI(D)-onept" for \restritedALCRPI(D)-

onept". Note that the et of restrited ALCRPI(D)-onepts is losed negation, and,

hene, subsumption of restrited ALCRPI(D)-onepts an be redued to satis�abil-

ity of restrited ALCRPI(D)-onepts.

7



The restritions given in

[

11

℄

for the logi ALCRP(D) are slightly less restritive

than the ones given here. They additionally admit onepts of the form 9u

1

; : : : ; u

n

:P

\inside" universal restritions of the form 8R:D, where R is a prediate role, provided

that (i) the feature hains u

1

; : : : ; u

n

do not ontain any abstrat features and (ii) the

9u

1

; : : : ; u

n

:P onept is not nested inside additional value or exists restritions in

8R:D. For example, the onept 8(9(g); (g):P ):(Au9g:P ) is restrited in the sense of

[

11

℄

but not in our sense. The onepts 8(9(g); (g):P ):9S:(Au9g:P ) with S a role name

and 8(9(g); (g):P ):(A u 9fg:P ) are not restrited in either sense. The reason for the

more restrited de�nition given above is the presene of the inverse role onstrutor.

When onstruting a tableau algorithm for ALCRPI(D) with the weaker restritions

given in

[

11

℄

, one runs into termination problems.

2

Consider, for example, the onept

9g:>

D

u 9f

�

g:>

D

u 8(9(g); (fg):P

2

):(9g:>

D

u 9f

�

:>)

where P

D

2

= �

D

��

D

. A straightforward tableau algorithm would generate an in�nite

\f

�

-path" of objets, eah of whih has a \onrete g-suessor". In fat, it seems

rather easy to prove undeidability of ALCRPI(D) with the weaker restritions using

a tehnique similar to the one used in

[

10

℄

to show undeidability of unrestrited

ALCRP(D).

In Setion 4, we prove that satis�ability and subsumption of restritedALCRPI(D)-

onepts (as de�ned above) are deidable in nondeterministi exponential time. Before

we do this, we establish several lower bounds for the omplexity of reasoning with on-

rete domains.

3 Lower Complexity Bounds

In this setion, we de�ne a NExpTime-omplete variant of Post's Correspondene

Problem (PCP) and a onrete domain P. We then redue the NExpTime-omplete

variant of the PCP to the satis�ability of ALC(P)-onepts w.r.t. TBoxes, the satis�-

ability of ALCI(P)-onepts, and the satis�ability of ALCRP(P)-onepts (the latter

two without referene to TBoxes).

3.1 Post's Correspondene Problem

Post's Correspondene Problem was introdued by Emil Post

[

23

℄

and is a very useful

undeidable problem whih is de�ned as follows.

De�nition 9 (PCP). A Post Correspondene Problem (PCP) P is given by a �nite,

non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of non-empty words over some alphabet �.

3

A sequene of integers i

1

; : : : ; i

m

, with m � 1, is alled a solution for P i�

`

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

:

2

Readers not familiar with tableau algorithms may skip this omment or return to it after reading

Setion 4.

3

Usually, the word lists may also ontain the empty word. We use this formulation sine, in our

ase, it allows for simpler proofs.

8
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where max(ju

n

j; jv

n

j) > max(ju

n+1

j; jv

n+1

j). Both the indution start and step an

easily be shown by using (at most) ju

n

j + jv

n

j onatenations of pairs from Group I

and a single onatenation of a pair from Group III.

Obviously, the indution needs at most ju

n

j+ jv

n

j steps, and, hene, it follows that

(x; y) an be extended to a partial solution

(x

00

; y

00

) = (℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄u

n

q

n

v

n

℄ � � � ℄u

r�1

q

n

v

r�1

℄;

℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄u

n

q

n

v

n

℄ � � � ℄u

r�1

q

n

v

r�1

℄q

n

℄)

where q

n

2 Q

f

and r � n+ ju

n

v

n

j. Sine ju

n

v

n

j � n+ jwj, we have (i) r � 2n+ jwj and

(ii) ju

i

v

i

j � n+ jwj for all 1 � i � r by onstrution of (x

00

; y

00

). A single onatenation

with the pair from Group IV yields the desired solution (x

0

; y

0

). ❏

We now establish the lower bound for the 2

n

-MPCP.

Proposition 16. It is NExpTime-hard to deide whether a 2

n

-MPCP has a solution.

Proof LetM be a Turing Mahine whih solves a NExpTime-omplete problem and

stops after at most 2

jwj

d

steps on any input w. W.l.o.g., we assume that M makes at

least maxfjwj; 2g steps on w before stopping.

5

The reason for this will beome lear

later. We show that

M aepts w i� P

M

w

has a 2

a�jP

M

w

j

d

-solution (�)

for some integer a > 2. It then remains to apply Lemma 12 to obtain NExpTime-

hardness.

First for the \only if" diretion. Let w be an input to M and assume that

M aepts w in n steps, where n � 2

jwj

d

. Then there exists a sequene of IDs

q

0

w u

1

q

1

v

1

� � � u

n

q

n

v

n

suh that q

n

2 Q

f

. By Lemma 14, there exists a

partial solution

(x; y) = (℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄;

℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄u

n

q

n

v

n

℄);

for P

M

w

. Sine a Turing Mahine writes at most one symbol per step, we obviously

have ju

i

v

i

j � n+jwj for 1 � i � n. By Lemma 15, there exists a solution I = i

1

; : : : ; i

m

orresponding to a word

w

I

= `

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

= ℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

r

q

r

v

r

℄℄

with r � 2n + jwj and ju

i

v

i

j � n + jwj for all 1 � i � r. Sine, by assumption, M

makes at least jwj steps if started on w, it follows that r � 3n and ju

i

v

i

j � 2n for

all 1 � i � r. We need an estimation for the length m of the solution i

1

; : : : ; i

m

.

Obviously, we have m � r � (2n+2) + 2 sine m is learly bounded by the number of

symbols in w

I

, and the length of eah subword of w

I

of the form ℄u

1

q

i

v

i

is bounded

by 2n+2. It follows that m � 6n

2

+6n+2 and hene m � n

6

sine M makes at least

5

To be preise, this implies that we also assume jwj � 1. This an, however, also be done w.l.o.g.

12



2 steps before stopping, i.e., n > 2. Sine m � n

6

and n � 2

jwj

d

, we have m � 2

6�jwj

d

,

and, sine jwj � jP

M

w

j, we have m � 2

6�jP

M

w

j

d

.

Now for the \if" diretion. Assume thatM does not aept w, i.e., no omputation

of M on w reahes a �nal state. We laim that, for eah partial solution (x; y) of P

M

w

,

there exists a sequene of IDs q

0

w u

1

q

1

v

1

� � � u

n

q

n

v

n

suh that x is a pre�x

of

℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄u

n

;

and y is a pre�x of

℄q

0

w℄u

1

q

1

v

1

℄ � � � ℄u

n�1

q

n�1

v

n�1

℄u

n

q

n

v

n

℄u

n

):

It is straightforward to prove this by indution on the length m of the sequene of

integers i

1

; : : : ; i

m

orresponding to the partial solution (x; y). Obviously, this implies

that the pair from Group IV do not appear in partial solutions sine this pair refers to

�nal states and �nal states are never reahed by omputations of M on w. It follows

that, for all partial solutions (x; y), x ontains stritly more ℄ symbols than y whih

implies jxj > jyj. Hene, there exists no solution for P

M

w

. ❏

The main result of this setion is now easily obtained.

Theorem 17. It is NExpTime-omplete to deide whether a 2

n

+ 1-PCP has a so-

lution.

Proof NExpTime-hardness is an immediate onsequene of Proposition 16 and

Lemma 11. To deide the 2

n

+1-PCP, a nondeterministi Turing Mahine may simply

\guess" a 2

n

+ 1-solution and then hek its validity. Sine it is not hard to see that

this an be done in exponential time, the 2

n

+ 1-PCP is in NExpTime. ❏

3.2 A Conrete Domain for Enoding the PCP

In this setion, we introdue a onrete domain that will allow to redue the 2

n

+ 1-

PCP to onept satis�ability.

De�nition 18 (Conrete Domain P). Let � be an alphabet. The onrete do-

main P is de�ned by setting �

P

:= �

�

and de�ning �

P

as the smallest set ontaining

the following prediates:

� unary prediates word and nword with word

P

= �

P

and nword

P

= ;,

� unary prediates =

�

and 6=

�

with =

P

�

= f�g and 6=

P

�

= �

+

,

� a binary equality prediate = and a binary inequality prediate 6=, and

� for eah w 2 �

+

, two binary prediates on

w

and non

w

with

on

P

w

= f(u; v) j v = uwg and non

P

w

= f(u; v) j v 6= uwg:

13



Sine the de�nition of P depends on �, it would be more preise to de�ne a onrete

domain P

�

for eah alphabet �. For simpliity, we assume � to be �xed. It is obvious

that �

P

is losed under negation. To show that P is admissible, we need to show that

the satis�ability of �nite prediate onjuntions is deidable. We do this by developing

an appropriate algorithm.

We start by introduing a normal form for prediate onjuntions. Let  be a pred-

iate onjuntion. Then there exists a prediate onjuntion 

0

whih is satis�able i�

 is satis�able and whih ontains only prediates from the set fnword, =

�

, 6=, on

w

g.

The onjuntion 

0

an be omputed from  by applying the following normalization

steps.

1. Eliminate all ourrenes of the word prediate from  and all the result 

1

.

2. Let x be a variable not appearing in 

1

. Augment 

1

by the onjunt =

�

(x) and

then replae every ourrene of 6=

�

(y) in 

1

with 6=(x; y) alling the result 

2

.

3. Let �

1

; : : : ; �

k

be all onjunts in 

2

whih are of the form non

w

(x; y) and let

x

1

; : : : ; x

k

be variables not appearing in 

2

. For eah i with 1 � i � k and

�

i

= on

w

(y; z), augment 

2

by the onjunts on

w

(y; x

i

) and 6=(x

i

; z). Then

delete the onjunt �

i

from 

2

. Call the result 

3

.

4. Remove ourrenes of the = prediate from 

3

by \�ltration": Let � be the

equivalene relation indued by ourrenes of the = prediate in 

3

. For eah

variable x ourring in 

3

, substitute every ourrene of x in 

3

by [x℄

�

, i.e.,

by the equivalene lass of x w.r.t. �. Then delete all ourrenes of the =

prediate from 

3

. The result of this step is the normal form 

0

of .

Obviously, the normalization proess preserves satis�ability, i.e., a prediate onjun-

tion  is satis�able i� its normal form 

0

is satis�able. The blowup of the size of 

produed by the normalization is at most linear.

Before the algorithm itself an be given, we introdue some notions. Let  be a

prediate onjuntion (not neessarily in normal form). With V (), we denote the

set of variables used in . The on-graph G() = (V;E) of  is the direted graph

desribed by ourrenes of on

w

prediates in , i.e., V = V () and (x; y) 2 E i�

on

w

(x; y) is a onjunt of  for some word w. A onjuntion  is said to have a

on-yle if G() has a yle. The distane dist(v; v

0

) of two variables v; v

0

2 V in 

is the length of the longest path leading from v to v

0

in G(). With lev(v), we denote

maxfk j dist(v; v

0

) = k and v

0

is a sinkg

where a sink is a node whih has no outgoing edges. Let w;w

0

2 �

+

. The funtion

pre is de�ned as follows:

pre(w;w

0

) =

�

v if w = vw

0

with v 6= �

unde�ned if no suh v exists

The algorithm for deiding the satis�ability of onjuntions of prediates in normal

14
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Figure 4: An example model of C for n = 2.

objets a

n;2

n

and a

n;2

n

+1

whih behave analogously to the objets a

n;0

; : : : a

n;2

n

�1

, i.e.,

have assoiated onrete objets x

2

n

; y

2

n

and x

2

n

+1

; y

2

n

+1

, respetively. This is done

by the last two lines of the de�nition of C. Finally, the third line of the de�nition of C

ensures that x

2

n

+1

= y

2

n

+1

6= � and hene that (x

2

n

+1

; y

2

n

+1

) is in fat a full solution.

Lemma 22. Let P = (`

1

; r

1

); : : : ; (`

k

; r

k

) be a PCP. Then P has a solution i� the

onept (name) C is satis�able w.r.t. the TBox T [P ℄.

Proof During the proof, we abbreviate jP j by n. First assume that C[P ℄ is satis-

�able. Using indution over n and onsidering the de�nitions of the C

i

onepts, it

is easy to show that there exist objets a

i;j

for 0 � i � n and 0 � j < 2

i

suh that

a

0;0

2 C

I

,

1. `

I

(a

i;j

) = a

(i+1);2j

and r

I

(a

i;j

) = a

(i+1);(2j+1)

for 0 � i < n and 0 � j < 2

i

, and

2. a

i;j

2 (Ch[`r

n�(i+1)

g

`

; r`

n�(i+1)

g

`

; `r

n�(i+1)

g

r

; r`

n�(i+1)

g

r

℄)

I

for 0 � i < n.

The �rst Property implies that the a

i;j

form a binary tree in whih edges onneting

left suessors are labeled with `, edges onneting right suessors are labeled with r,

and nodes are not neessarily distint. The naming sheme for nodes is as indiated

in Figure 4.

We now establish a ertain property for every two neighbouring fringe nodes a

n;j

and a

n;(j+1)

whih will then allow us to dedue the existene of two sequenes of on-

rete objets related by on

w

prediates and the equality prediate. Corresponding

nodes from the two sequenes represent partial solutions of P . Fix two nodes a

n;j

and

a

n;(j+1)

with 0 � j < 2

n

� 1. By indution over n, it is straightforward to prove that

there exists a ommon anestor a

m;r

of a

n;j

and a

n;(j+1)

suh that

(`r

n�(m+1)

)

I

(a

m;r

) = a

n;j

and (r`

n�(m+1)

)

I

(a

m;r

) = a

n;j+1
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By Property 2 from above, we have

a

m;r

2 (Ch[`r

n�(m+1)

g

`
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n�(m+1)

g

`

; `r

n�(m+1)

g

r

; r`

n�(m+1)

g

r

℄)

I

:

Sine this holds independently from the hoie of j, we may use the de�nition of the

Ch[u

1

; u

2

; u

3

; u

4

℄ onept to onlude that there exist onrete objets x

0

; : : : ; x

2

n

�1

and y

0

; : : : ; y

2

n

�1

and indexes i

1

; : : : ; i

2

n

�1

2 f1; : : : ; kg [ f|g suh that

1. g

I

`

(a

n;j

) = x

j

and g

I

r

(a

n;j

) = y

j

for 0 � j < 2

n

, and

2. for all 1 � j � 2

n

� 1,

� if i

j

= | then x

j�1

= x

j

and y

j�1

= y

j

, and

� (x

j�1

; x

j

) 2 on

P

`

i

j

and (y

j�1

; y

j

) 2 on

P

r

i

j

otherwise.

Analogously, by the last two lines of the de�nition of C, there exist abstrat ob-

jets a

n;2

n

; a

n;(2

n

+1)

, onrete objets x

2

n

; x

2

n

+1

; y

2

n

; y

2

n

+1

, and indexes i

2

n

; i

2

n

+1

2

f1; : : : ; kg [ f|g suh that

1. x

I

(a

n;2

n

�1

) = a

n;2

n

and y

I

(a

n;2

n

�1

) = a

n;(2

n

+1)

,

2. g

I

`

(a

n;i

) = x

i

and g

I

r

(a

n;i

) = y

i

for i 2 f2

n

; 2

n

+ 1g,

3. for all j 2 f2

n

; 2

n

+ 1g,

� if i

j

= | then x

j�1

= x

j

and y

j�1

= y

j

, and

� (x

j�1

; x

j

) 2 on

P

`

i

j

and (y

j�1

; y

j

) 2 on

P

r

i

j

otherwise.

Moreover, by the seond and third line of the de�nition of C, we have x

0

= y

0

= � and

x

2

n

+1

= y

2

n

+1

6= �. Taking together these observations, it is lear that the sequene

i

0

1

; : : : ; i

0

p

, whih an be obtained from i

1

; : : : ; i

2

n

+1

by eliminating all i

j

with i

j

= |,

is a solution for P . Furthermore, we obviously have 1 < p � 2

n

+ 1.

Now for the \only if" diretion. Assume that P has a solution i

1

; : : : ; i

m

with

m � 2

jP j

+ 1. With L

j

(resp. R

j

), we denote the onatenation `

i

1

� � � `

i

j

(resp.

r

i

1

� � � r

i

j

) for 1 � j � m and set L

0

= R

0

= � and L

j

= L

m

(resp. R

j

= R

m

) for all

j > m. We de�ne a model I for T [P ℄ with the form of a binary tree of depth n suh

that C

I

6= ;. Again, the objet names in Figure 4 indiate the naming sheme used.

�

I

:= fa

i;j

j 0 � i � n; 0 � j < 2

i

g [ fa

n;2

n

; a

n;(2

n

+1)

g

For all i; j with 0 � i < n and 0 � j < 2

i

set

`

I

(a

i;j

) := a

(i+1);(2j)

and r

I

(a

i;j

) := a

(i+1);(2j+1)

:

Set x

I

(a

n;(2

n

�1)

) := a

n;2

n

and y

I

(a

n;(2

n

�1)

) := a

n;(2

n

+1)

:

For all i with 0 � i � 2

n

+ 1 set

g

I

`

(a

n;i

) := L

i

and g

I

r

(a

n;i

) := R

i

:

It is not hard to verify that I is a model for T [P ℄ and that a

0;0

2 C

I

. ❏
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Figure 5: The ALCR(P) redution onept C[P℄.

Obviously, the size of T [P ℄ is polynomial in jP j and T [P ℄ an be onstruted in time

polynomial in jP j. Sine subsumption an be redued to satis�ability, we obtain the

following theorem.

Theorem 23. There exists an admissible onrete domain D for whih satis�ability is

in PTime suh that satis�ability and subsumption of ALC(D)-onepts w.r.t TBoxes

are NExpTime-hard.

On �rst sight, the onrete domain employed for the redution may look somewhat

unnatural sine it operates on words. However, it is straightforward to enode words

as natural numbers and to de�ne the operations on words as rather simple operations

on the naturals

[

2

℄

: Words over an alphabet � an be interpreted as numbers written

at base j�j+1 (assuming that the empty word represents 0); the onatenation of two

words v and w an then be expressed as vw = v�(j�j+1)

jwj

+w, where jwj denotes the

length of the word w. Hene, a onrete domain whih provides the natural numbers,

(in)equality, (in)equality to zero, addition, and multipliation is also appropriate for

the redutions.

As already noted, there exist other variants of TBoxes than the ones introdued

in Setion 2. A popular one are so-alled general TBoxes whih are formally de�ned
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Figure 6: An example model of C w.r.t. T

as follows.

De�nition 24 (General TBox). A general onept inlusion (GCI) has the form

C v D, where both C and D are (possibly omplex) onepts. An interpretation I is

a model for a GCI C v D i� C

I

� D

I

. Sets of GCIs are alled general TBoxes. An

interpretation I is a model for a general TBox T i� I is a model for all GCIs in T .

Similar to the main result presented in this setion, the following theorem an be

obtained.

Theorem 25. There exists an admissible onrete domain D suh that satis�ability

and subsumption of ALC(D)-onepts w.r.t. general TBoxes is undeidable.

Proof Let P be an instane of the PCP and onsider a onept C and a general

TBox T as follows:

C := 9g: =

�

u 9fg: =

�

T [P ℄ :=

�

9f:> v u

(`

i

;r

i

)2P

9g; f

i

g:on

`

i

u 9fg; f

i

fg:on

r

i

> v 9g: =

�

t :9g; fg:=

	

Here, C ! D is used as an abbreviation for :C tD. The �rst two GCIs ensure that

models of C and T represent all possible solutions of the PCP P . Additionally, the

last GCI ensures that no potential solution is a solution. It is hene straightforward

to prove that C is satis�able w.r.t. T i� P has no solution, i.e., we have redued

the general, undeidable PCP to the satis�ability of ALC(D)-onepts w.r.t. general

TBoxes. An example model of C w.r.t. T an be found in Figure 6. It remains to

remind the reader that satis�ability redues to subsumption. ❏

The redution tehnique employed to show the lower bound is a rather general one

and there surely exist more desription logis with onrete domains to whih they an
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Figure 7: Prediate hains in models of C[P ℄.

be applied. As an example, onsider ALCR(D), i.e., ALC(D) with role onjuntion

(see, e.g.,

[

8

℄

). We onjeture that NExpTime-hardness of this logi an be proved

analogously to the proof of Theorem 29. The redution onept C[P ℄ an be found in

Figure 5.

3.4 Satis�ability of ALCI(P)-Conepts

In this setion, we show that satis�ability of ALCI(P)-onepts (without referene

to TBoxes) is NExpTime-hard. As in the previous setion, it is surprising that a

rather small hange in the logi, i.e., adding inverse roles, auses a dramati inrease

in omplexity.

We employ a redution that is similar to the one used in the previous setion, i.e.,

it is a redution of the 2

n

+ 1-PCP and uses the onrete domain P. Given a PCP

P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we de�ne a onept C[P ℄ of size polynomial in jP j whih

has a model i� P has a solution. The onept C[P ℄ an be found in Figure 8. In the

�gure, h

`

; h

r

; x

`

; x

r

; y

`

; y

r

; z

`

, and z

r

are onrete features. Note that the equalities are

not onept de�nitions but abbreviations. As in the previous setion, replae every

ourrene of Ch[u

1

; u

2

; u

3

; u

4

℄ in the lower three onept de�nitions by the right-hand

side of the �rst identity substituting u

1

; : : : ; u

4

appropriately and similarly for every

ourrene of X. We �rst informally explain the struture of models of C[P ℄ and then

give a formal proof of the orretness of the redution.

In the redution given in the previous setion, the models of T [P ℄ are binary trees

of depth jP j whose leaves are onneted by two hains of onrete domain prediates

suh that pairs of orresponding nodes (x; y) represent partial solutions of the PCP

P . In the ALCI(P) redution, due to the �rst line in the de�nition of C[P ℄ and

the 9f

�

quanti�ers in the de�nition of X, models of C[P ℄ have the form of a tree of

depth jP j � 1 in whih all edges are labeled with f

�

. This edge labelling sheme is

possible sine the inverse of an abstrat feature is not a feature. As in the previous

redution, we de�ne two hains of onrete domain prediates, only this time they

do not onnet the leaves of the tree but emulate the struture of the tree following

the sheme indiated in Figure 7. Again, orresponding objets on the two hains

represent partial solutions of the PCP P . A more detailed lipping from a model of

C[P ℄ an be found in Figure 9. The existene of the hains is ensured by the de�nition

of X and the seond line in the de�nition of C[P ℄. The onept X establishes the
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Figure 8: The ALCI(P) redution onept C[P ℄ (n = jP j � 1).

edges of the prediate hains as depited in Figure 9 (more preisely, Figure 9 is a

model of the onept X) while the seond line of C[P ℄ establishes the edges \leading

around" the fringe nodes. Edges of the latter type and the dotted edges in Figure 9

are labeled with the equality prediate. To see why this is the ase, let us investigate

the length of the hains.

The length of the two prediate hains is twie the length of the number of edges

in the tree plus the number of fringe nodes, i.e., 2 � (2

jP j

� 2) + 2

jP j�1

. To eliminate

the fator 2 and the summand 2

jP j�1

, C[P ℄ is de�ned suh that every edge in the

prediate hains leading \up" in the tree and every edge \leading around" a fringe

node is labeled with the equality prediate. To extend the hains to length 2

jP j

+ 1,

we need to add three additional edges (de�nition of C[P ℄, lines three, four, and �ve).

Finally, the last two lines in the de�nition of C[P ℄ ensure that the �rst onrete

objet on both hains represents the empty word and that the last objets on the

hains represent a (non-empty) solution for P .

Lemma 26. Let P = (`

1

; r

1

); : : : ; (`

k

; r

k

) be a PCP. Then P has a solution i� the

onept C[P ℄ is satis�able.

Proof Let n = jP j � 1 during the proof (this implies n � 1). First assume that

C[P ℄ is satis�able, i.e., that there exists an interpretation I = (�

I

; �

I

) and an a 2 �

I

suh that a 2 C[P ℄

I

. We show that I has the form of a binary tree of depth n.

Using indution over n and onsidering the �rst line of the de�nition of C[P ℄ and the

de�nition of X, it is easy to show that there exist abstrat objets b

i;j

for 0 � i � n

and 0 � j < 2

i

suh that b

0;0

2 C[P ℄

I

and, for 0 � i < n and 0 � j < 2

i

,

25



= equality

= equality or on

w

for some w

f

�

f

�

g

`

g

r

g

r

g

`

h

`

h

r

g

r

g

`

h

r

h

`

h

`

h

r

p

`

p

r

X

Figure 9: A lipping from a model of C[P ℄.

1. f(b

i;j

; b

(i+1);2j

); (b

i;j

; b

(i+1);(2j+1)

)g � (f

�

)

I

,

2. b

(i+1);2j

2 (Ch[fg

`

; g

`

; fg

r

; g

r

℄)

I

, and

3. b

(i+1);(2j+1)

2 (Ch[fp

`

; g

`

; fp

r

; g

r

℄)

I

.

Obviously, the �rst property implies that the b

i;j

form a binary tree of depth n whose

edges are labelled with f

�

. However, for the remaining proof, it is more onvenient

to number the nodes in the tree in a di�erent way. For doing this, we de�ne three

auxiliary funtions.

Let T be a binary tree of depth n whose nodes are labeled with natural numbers in

preorder (this tree is independent of the b

i;j

and of I in general).

6

With sul(n) and

sur(n) we denote the node label of the left resp. right suessor of the node labeled

with n in T (sul(n) and sur(n) are unde�ned if the given node has no suessors).

Furthermore, for n 2 N, lev(n) denotes the level of the node in T labeled with n and

is unde�ned if no suh node exists. By \renaming" the nodes b

i;j

, it is easy to show

that there exist abstrat objets a

1

; : : : ; a

2

n+1

�1

suh that, for all 1 � i � 2

n+1

� 1

with lev(i) < n,

1. f

I

(a

sul(i)

) = a

i

and f

I

(a

sur(i)

) = a

i

,

2. a

sul(i)

2 (Ch[fg

`

; g

`

; fg

r

; g

r

℄)

I

, and

3. a

sur(i)

2 (Ch[fp

`

; g

`

; fp

r

; g

r

℄)

I

.

Note that the a

i

form a binary tree of depth n labeled in preorder whose edges are la-

beled with f

�

and whose nodes are not neessarily distint. Hene, when we in the fol-

lowing talk of the nodes of the tree, we mean the objets a

1

; : : : ; a

2

n+1

�1

. By the seond

6

To label a tree in preorder, �rst label its root, then indutively label the subtree indued by the

root's left suessor and �nally label the subtree indued by the root's right suessor.
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line of C[P ℄ and de�nition ofX, there exist onrete objets x

1

; : : : ; x

2

n+1

�1

; y

1

; : : : ; y

2

n+1

�1

suh that g

I

`

(a

i

) = x

i

and g

I

r

(a

i

) = y

i

for all 1 � i < 2

n+1

. Next, we prove the follow-

ing laim:

Claim: For all 1 � j < 2

n+1

� 1, we have either x

j

= x

j+1

and y

j

= y

j+1

or there

exists an i 2 f1; : : : ; kg suh that (x

j

; x

j+1

) 2 on

P

`

i

and (y

j

; y

j+1

) 2 on

P

r

i

.

Fix a j with 1 � j < 2

n+1

� 1. From the preorder numbering sheme, it follows that

two ases need to be distinguished:

1. i+1 = sul(i). By Property 2 from above, we have a

i+1

2 (Ch[fg

`

; g

`

; fg

r

; g

r

℄)

I

.

By de�nition of Ch, this implies the laim.

2. There exists a node a

t

and nodes a

s

0

; : : : ; a

s

m

(m � 0) suh that

� i+ 1 = sur(t),

� s

0

= sul(t),

� for all ` with 0 � ` < m, s

`+1

= sur(s

`

), and

� s

m

= i

By the Properties given above, we have a

i+1

; a

s

1

; : : : ; a

s

m

2 (Ch[fg

`

; g

`

; fg

r

; g

r

℄)

I

and a

s

0

2 (Ch[fp

`

; g

`

; fp

r

; g

r

℄)

I

. Furthermore, from the numbering sheme, it

follows that lev(i) = n, and, by the seond line of C[P ℄,

a

i

2 (9(g

`

; h

`

): = u 9(g

r

; h

r

): =))

I

:

Using the de�nition of Ch, it is now straightforward to prove the laim.

It is an immediate onsequene of the laim that there exist indexes i

1

; : : : ; i

2

n+1

�2

2

f1; : : : ; kg [ f|g suh that, for all 1 � j < 2

n+1

� 1,

� if i

j

= | then x

j

= x

j+1

and y

j

= y

j+1

, and

� (x

j

; x

j+1

) 2 on

P

`

i

j

and (y

j

; y

j+1

) 2 on

P

r

i

j

otherwise.

Similarly, by the third, fourth, and �fth line of the de�nition of C[P ℄, there exist ob-

jets x

2

n+1
; x

2

n+1

+1

; x

2

n+1

+2

; y

2

n+1
; y

2

n+1

+1

; y

2

n+1

+2

and indexes i

2

n+1

�1

; i

2

n+1
; i

2

n+1

+1

2

f1; : : : ; kg [ f|g suh that

1. x

I

`

(a

0

) = x

2

n+1 and x

I

r

(a

0

) = y

2

n+1 ,

y

I

`

(a

0

) = x

2

n+1

+1

and y

I

r

(a

0

) = y

2

n+1

+1

,

z

I

`

(a

0

) = x

2

n+1

+2

and z

I

r

(a

0

) = y

2

n+1

+2

, and

2. for all j 2 f2

n+1

� 1; 2

n+1

; 2

n+1

+ 1g

� if i

j

= | then x

j

= x

j+1

and y

j

= y

j+1

, and

� (x

j

; x

j+1

) 2 on

P

`

i

j

and (y

j

; y

j+1

) 2 on

P

r

i

j

otherwise.
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Moreover, by the last two lines of the de�nition of C[P ℄, we have x

0

= y

0

= �

and x

2

n+1

+1

= y

2

n+1

+1

6= �. Taking together these observations, it is lear that

the sequene i

0

1

; : : : ; i

0

p

, whih an be obtained from i

1

; : : : ; i

2

n+1

+1

by eliminating

all i

j

with i

j

= |, is a solution for P . Furthermore, sine n = jP j � 1, we have

0 < p � 2

jP j

+ 1.

Now for the \only if" diretion. Assume that P has a solution i

1

; : : : ; i

m

with

m � 2

jP j

+1 = 2

n+1

+1. With K

`

j

(resp. K

r

j

), we denote the onatenation `

i

1

; � � � ; `

i

j

(resp. r

i

1

; � � � ; r

i

j

) for 1 � j � m and setK

`

0

= K

r

0

= � andK

`

j

= K

`

m

(resp.K

r

j

= K

r

m

)

for all j > m. We de�ne a model for C[P ℄ with the form of a binary tree of depth n.

�

I

:= fa

i

j 1 � i < 2

n+1

g

For all i with 1 � i < 2

n+1

and lev(i) < n set

f

I

(a

sul(i)

) = a

i

and f

I

(a

sur(i)

) = a

i

:

It remains to set up the onrete features. We �rst set up only some of the features.

1. g

I

`

(a

i

) = K

`

i�1

and g

I

r

(a

i

) = K

r

i�1

for 1 � i < 2

n+1

2. x

I

t

(a

0

) = K

t

2

n+1

�1

for t 2 f`; rg

3. y

I

t

(a

0

) = K

t

2

n+1

for t 2 f`; rg

4. z

I

t

(a

0

) = K

t

2

n+1

+1

for t 2 f`; rg

Based on this, we now de�ne the interpretation of the remaining onrete features.

With sul

j

(i), we denote the j-fold omposition of sul. For i 2 f1; : : : ; 2

n+1

� 1g and

t 2 f`; rg, we set

h

I

t

(a

i

) :=

�

g

I

t

(a

i

) if lev(i) = n

g

I

t

(a

sur

n�lev(i)

(i)

) otherwise

p

I

t

(a

i

) :=

�

g

I

t

(a

sul(i)

) if lev(i) = n� 1

g

I

t

(a

sur

n�lev(i)�1

(sul(i))

if lev(i) < n� 1

Note that nodes a

i

with lev(i) = n do not need to have �llers for the onrete feature

p. It is straightforward to hek that I is well-de�ned and that a

0

2 C[P ℄

I

. ❏

Obviously, the size of C[P ℄ is polynomial in jP j and C[P ℄ an be onstruted in time

polynomial in jP j. Sine subsumption an be redued to satis�ability, we obtain the

following theorem.

Theorem 27. There exists an admissible onrete domain D for whih satis�abil-

ity is in PTime suh that satis�ability and subsumption of ALCI(D)-onepts are

NExpTime-hard.
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3.5 Satis�ability of ALCRP(P)-Conepts

In this setion, we prove that satis�ability of ALCRP(P)-onepts is NExpTime-

hard. Hene, adding the role-forming onrete domain onstrutor yields another

extension of ALC(D) in whih reasoning is onsiderably harder than in ALC(D) itself.

As in the previous two setions, we give a redution of the 2

n

+ 1-PCP using the

onrete domain P. Given a PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we de�ne a onept C[P ℄

of size polynomial in jP j whih has a model i� P has a solution. The onept C[P ℄

an be found in Figure 10, where X and Y denote onept names, x and y denote

abstrat features, and p denotes a prediate. The equalities in the �gure are not

onept de�nitions but serve as abbreviations (.f. Setion 3.4). Note that S[g; p℄ is a

prediate role and not a onept, i.e., S[g; p℄ is an abbreviation for the role-forming

onrete domain onstrutor 9(g); (g):p (a lowerase p is used for prediates to avoid

onfusion with the PCP P ). C ! D is used as an abbreviation for :C t D. We

informally explain the struture of models of C[P ℄ before giving a formal proof of its

orretness.

Figure 11 ontains an example model of C[P ℄ with jP j = n = 2. Obviously, the

struture of models of C[P ℄ is rather similar to the struture of models of the ALC(D)

redution TBox T [P ℄ from Setion 3.3: Models have the form of a binary tree of

depth n whose fringe nodes (together with two \extra" nodes) are onneted by two

prediate hains of length 2

n

+ 1. Corresponding nodes on the two hains represent

words x and y from partial solutions (x; y) of the PCP P . The Tree onept ensures

the existene of the binary tree. The onept names B

0

; : : : ; B

n�1

are used for a binary

numbering (from 0 to 2

n

� 1) of the fringe nodes of the tree. More preisely, for a

domain objet a 2 �

I

, set

pos(a) = �

n�1

i=0

�

i

(a) � 2

i

where

�

i

(a) =

�

1 if a 2 B

I

i

0 otherwise;

i.e, the number pos(a) is binarily oded by the onept names B

0

; : : : ; B

n�1

. The Tree

and DistB onepts ensure that, for two fringe nodes a and a

0

with a 6= a

0

, we have

pos(a) 6= pos(a

0

). Due to the �rst line of the C[P ℄ onept, every fringe node has

(onrete) suessors for the g

`

and g

r

features. The last two lines of C[P ℄ guarantee

the existene of the two extra nodes suh that (i) both nodes have onrete g

`

- and

g

r

-�llers, and (ii) one of the extra nodes is in X

I

while the other is in Y

I

. It remains

to desribe how the edges of the two prediate hains are established.

For the sake of simpliity, let us start with desribing how the edges ending at the

extra nodes are generated. W.l.o.g., we onentrate on the extra node b with b 2 X

I

and on edges between g

`

-�llers. Let a be the fringe node with pos(a) = 2

n

� 1, x

be the g

`

-suessor of a, and y be the g

`

-suessor of b (both onrete objets exist

aording to the de�nition of C[P ℄). By the �fth line of the de�nition of C[P ℄, we have

a 2 Ext[X℄

I

. The onept Ext[X℄ has the form of a disjuntion where eah disjunt

establishes a di�erent \type" of edge between x and y (and another edge between the

orresponding g

r

-�llers). We exemplarily use the subonept 8S[g

`

;=℄::X of Ext[X℄
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DistB[k℄ =

k

u

i=0

((B

i

! 8R:B

i

) u :B

i

! 8R::B

i

)

Tree = 9R:B

0

u 9R::B

0

u 8R:(DistB[0℄ u 9R:B

1

u 9R::B

1

)

.

.

.

u 8R

n�1

:(DistB[n� 1℄ u 9R:B

n�1

u 9R::B

n�1

)

S[g; p℄ = 9(g); (g):p

Edge[g; p℄ =

�

n�1

t

k=0

�

k�1

t

j=0

:B

j

�

u (B

k

! 8S[g; p℄::B

k

) u (:B

k

! 8S[g; p℄:B

k

)

t

n�1

t

k=0

�

k�1

u

j=0

B

j

�

u (B

k

! 8S[g; p℄:B

k

) u (:B

k

! 8S[g; p℄::B

k

)

�

DEdge[P ℄ = (Edge[g

`

;=℄ u Edge[g

r

;=℄)t

t

(`

i

;r

i

) in P

(Edge[g

`

; on

`

i

℄ u Edge[g

r

; on

r

i

℄)

Ext[D℄ = (8S[g

`

;=℄::D u 8S[g

r

;=℄::D)t

t

(`

i

;r

i

) in P

(8S[g

`

; on

`

i

℄::D u 8S[g

r

; on

r

i

℄::D

C[P ℄ = Tree u 8R

n

:9g

`

:word u 8R

n

:9g

r

:word

u 8R

n

:

�

(:B

0

u � � � u :B

n�1

)! (9g

`

: =

�

u 9g

r

: =

�

)

u :(B

0

u � � � uB

n�1

)! DEdge[P ℄

u (B

0

u � � � uB

n�1

)!

�

Ext[X℄ u 8x:Ext[Y ℄

u 9x:(X u 9g

`

:word u 9g

r

:word)

u 9y:(Y u 9g

`

; g

r

: = u 9g

`

:6=

�

)

��

Figure 10: The ALCRP(P) redution onept C[P ℄ (n = jP j).
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:B

1

B

0

:B

0

B

1

R R

g

`

g

`

g

`

g

`

g

`

g

`

=

�

=

g

r

g

r

g

r

g

r

g

r

g

r

=

�

= equality or on

w

for some w

RR

R R

:B

1

X Y

x

y

B

1

B

0

:B

0

B

0

:B

0

Figure 11: An example model of C[P ℄ with jP j = 2.

to demonstrate how the edge between x and y is established. From the fat that

a 2 (8S[g

`

;=℄::X)

I

and b 2 X

I

, it follows that (a; b) =2 S[g

`

;=℄

I

, i.e., (a; b) =2

(9(g

`

); (g

`

): 6=)

I

and thus (x; y) =2 6=

D

, whih obviously implies that (x; y) 2 =

D

. In

the ase a 2 (8S[g

`

; on

`

i

℄::X)

I

, an analogous argument leads to (x; y) 2 on

P

`

i

.

The edges whih do not end at extra nodes are established in a similar way by the

DEdge and Edge onepts. The DEdge onept is just a disjuntion over the various

edge types while the Edge onept atually establishes the edges. The Edge onept

is essentially the negation of the well-known propositional formula

n�1

^

k=0

(

k�1

^

j=0

x

j

= 1)! (x

k

= 1$ x

0

k

= 0) ^

n�1

^

k=0

(

k�1

_

j=0

x

j

= 0)! (x

k

= x

0

k

)

whih enodes inrementation modulo 2

n

, i.e., if k is the number binarly enoded

by the propositional variables x

0

; : : : ; x

n�1

and k

0

is the number binarly enoded by

the propositional variables x

0

0

; : : : ; x

0

n�1

, then we have k

0

= k + 1 modulo 2

n

(see,

e.g.,

[

6

℄

). Assume a 2 (Edge[g

`

; p℄)

I

(where p is either \=" or on

l

i

) and let b be

the fringe node with pos(b) = pos(a) + 1, x be the g

`

-suessor of a, and y be the

g

`

-suessor of b. The Edge onept ensures that, for eah S[g

`

; p℄-suessor  of a, we

have pos() 6= pos(a) + 1, i.e., there exists an i with 0 � i � n suh that  di�ers from

b in the interpretation of B

i

. It follows that (a; b) =2 S[g

`

; p℄

I

. As in the ase of the

edges ending at one of the extra nodes, we an onlude (x; y) 2 p

I

. All remaining

issues suh as, e.g., ensuring that one of the partial solutions is in fat a solution, are

as in the redution given in Setion 3.3.

Lemma 28. Let P = (`

1

; r

1

); : : : ; (`

k

; r

k

) be a PCP. Then P has a solution i� the

onept C[P ℄ is satis�able.
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Proof During the proof, we abbreviate jP j by n. First assume that C[P ℄ is satis�-

able. Using indution over n and the de�nitions of the Tree and DistB onepts, it is

easy to show that there exist objets a

i;j

for 0 � i � n and 0 � j < 2

i

suh that

1. R

I

(a

i;j

) = fa

(i+1);2j

; a

(i+1);(2j+1)

g for 0 � i < n and 0 � j < 2

i

and

2. pos(a

n;j

) = j for 0 � j < 2

n

.

The �rst property implies that the a

i;j

form a binary tree whose edges are labeled

by R and whose nodes are not neessarily distint.

7

The naming sheme for nodes is

as indiated in Figure 4. By the �rst line of the C[P ℄ onept, there exist onrete

objets x

0

; : : : ; x

2

n

�1

and y

0

; : : : ; y

2

n

�1

suh that

g

I

`

(a

n;j

) = x

j

and g

I

r

(a

n;j

) = y

j

for all 0 � j < 2

n

:

By the third line of C[P ℄, we have a

n;j

2 (DEdge[P ℄)

I

for all a

n;j

with pos(a

n;j

) 6=

2

n

�1, i.e., for all a

n;j

with 0 � j < 2

n

�1. By de�nition of DEdge[P ℄, for eah j with

0 � j < 2

n

, we have either

a

n;j

2 (Edge[g

`

;=℄ u Edge[g

r

;=℄)

I

or there exists a pair (`

i

; r

i

) 2 P suh that

a

n;j

2 (Edge[g

`

; on

`

i

℄ u Edge[g

r

; on

r

i

℄)

I

:

As was already shown in the intuitive explanations, the �rst property implies x

j

= x

j+1

and y

j

= y

j+1

while the seond implies (x

j

; x

j+1

) 2 on

P

`

i

and (y

j

; y

j+1

) 2 on

P

r

i

(we

refrain from repeating the arguments here). Summing up, there exist onrete objets

x

0

; : : : ; x

2

n

�1

and y

0

; : : : ; y

2

n

�1

and indexes i

1

; : : : ; i

2

n

�1

2 f1; : : : ; kg [ f|g suh that

1. g

I

`

(a

n;j

) = x

j

and g

I

r

(a

n;j

) = y

j

for 0 � j < 2

n

, and

2. for all 1 � j � 2

n

� 1,

� if i

j

= | then x

j�1

= x

j

and y

j�1

= y

j

, and

� (x

j�1

; x

j

) 2 on

P

`

i

j

and (y

j�1

; y

j

) 2 on

P

r

i

j

otherwise.

Analogously, by de�nition of the Ext[D℄ onept and the last four lines of the de�nition

of C[P ℄, there exist abstrat objets a

n;2

n

; a

n;(2

n

+1)

, onrete objets x

2

n

; x

2

n

+1

; y

2

n

; y

2

n

+1

,

and indexes i

2

n

; i

2

n

+1

2 f1; : : : ; kg [ f|g suh that

1. x

I

(a

n;2

n

�1

) = a

n;2

n

and y

I

(a

n;2

n

�1

) = a

n;(2

n

+1)

,

2. g

I

`

(a

n;i

) = x

i

and g

I

r

(a

n;i

) = y

i

for i 2 f2

n

; 2

n

+ 1g,

3. for all j 2 f2

n

; 2

n

+ 1g,

� if i

j

= | then x

j�1

= x

j

and y

j�1

= y

j

, and

7

The fringe nodes must obvioulsy be distint beause of the B

i

onepts. However, some \inner"

nodes may oinide.
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� (x

j�1

; x

j

) 2 on

P

`

i

j

and (y

j�1

; y

j

) 2 on

P

r

i

j

otherwise.

Moreover, by the seond and last line of the de�nition of C[P ℄, we have x

0

= y

0

= �

and x

2

n

+1

= y

2

n

+1

6= �. Taking together these observations, it is lear that the

sequene i

0

1

; : : : ; i

0

p

, whih an be obtained from i

1

; : : : ; i

2

n

+1

by eliminating all i

j

with

i

j

= |, is a solution for P . Furthermore, we obviously have 1 < p � 2

n

+ 1.

Now for the \only if" diretion. Assume that P has a solution i

1

; : : : ; i

m

with

m � 2

jP j

+ 1. With L

j

(resp. R

j

), we denote the onatenation `

i

1

� � � `

i

j

(resp.

r

i

1

� � � r

i

j

) for 1 � j � m and set L

0

= R

0

= � and L

j

= L

m

(resp. R

j

= R

m

) for all

j > m. We de�ne a model I for C[P ℄ with the form of a binary tree of depth n. The

objet names in Figure 4 indiate the naming sheme used. Set

�

I

:= fa

i;j

j 0 � i � n; 0 � j < 2

i

g [ fa

n;2

n

; a

n;(2

n

+1)

g:

For all 0 � j < n, B

I

j

is the smallest superset S of fa

j+1;i

j 0 � i < 2

j

^ i mod 2 6= 0g

whih is losed under the following ondition:

a

i;j

2 S and i < n =) a

(i+1);(2j)

; a

(i+1);(2j+1)

2 S:

Now for the interpretation of the roles.

For all i; j with 0 � i < n and 0 � j < 2

i

set R

I

(a

i;j

) := fa

(i+1);(2j)

; a

(i+1);(2j+1)

g:

Set x

I

(a

n;(2

n

�1)

) := a

n;2

n

and y

I

(a

n;(2

n

�1)

) := a

n;(2

n

+1)

:

For all i with 0 � i � 2

n

+ 1 set g

I

`

(a

n;i

) := L

i

and g

I

r

(a

n;i

) := R

i

:

It is not hard to verify that I is a model for C[P ℄. ❏

Obviously, the size of C[P ℄ is polynomial in jP j and C[P ℄ an be onstruted in time

polynomial in jP j. Sine subsumption an be redued to satis�ability, we obtain the

following theorem.

Theorem 29. There exists an admissible onrete domain D for whih satis�abil-

ity is in PTime suh that satis�ability and subsumption of ALCRP(D)-onepts are

NExpTime-hard.

4 Upper Complexity Bound

In this setion, we establish an upper bound orresponding to the lower bounds given in

the previous setion. We onsider onrete domains D for whih satis�ability is in NP

and show that satis�ability and subsumption of (restrited) ALCRPI(D)-onepts

w.r.t. TBoxes is in NExpTime. First, a tableau algorithm for deiding satis�ability

of ALCRPI(D)-onepts without referene to TBoxes is devised. Then, we modify

the presented algorithm to take into aount TBoxes by using \on the y unfolding"

as proposed in

[

19

℄

.
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4.1 A Completion Algorithm for ALCRPI(D)

In this setion, we prove satis�ability of ALCRPI(D)-onepts (without referene to

TBoxes) to be in NExpTime by devising an appropriate algorithm. The presented

algorithm is a so-alled tableau algorithm whih tries to onstrut a anonial model

for the input onept by repeatedly applying ompletion rules to a ompletion system.

Input onepts are required to be in negation normal form. We start with introdu-

ing ompletion systems, whih are the fundamental data struture of the ompletion

algorithm presented in this setion.

De�nition 30 (Completion System). Let O

a

and O



be disjoint sets of abstrat

nodes and onrete nodes (both ountably in�nite). A ompletion tree for anALCRPI(D)-

onept D is a tree whose set of nodes is a subset of O

a

℄ O



. Eah node a 2 O

a

of the tree is labeled with a subset L(a) of sub(D), eah edge (a; b) with a; b 2 O

a

is labeled with a (possibly omplex) role L(a; b) ourring in D, and eah edge (a; x)

with a 2 O

a

and x 2 O



is labeled with a onrete feature L(a; x) ourring in D.

8

The following properties have to be satis�ed.

1. onrete nodes have no suessors,

2. if b and  are suessors of a and L(a; b) = L(a; ) = f for an abstrat feature

f , then b = .

3. if b is suessor of a and L(a; b) = f

�

for an abstrat feature f , then for all

suessors  of b, we have L(b; ) 6= f .

4. if x and y are suessors of a and L(a; x) = L(a; y) = g for a onrete feature g,

then x = y.

A ompletion system for an ALCRPI(D)-onept D is a pair (T;P), where T is

a ompletion tree for D and P is a funtion mapping eah P 2 �

D

with arity n

appearing in D to a subset of (O



)

n

.

Let T be a ompletion tree, R 2

b

R, and a; b 2 O

a

. b is alled R-suessor of

a in T i� b is a suessor of a and L(a; b) = R (for onrete features g, the notion

g-suessor is de�ned analogously). b is alled R-neighbor of a i� b is R-suessor of

a or a is Inv(R)-suessor of b. The notion R-neighbor is extended to paths in the

obvious way: Let u = f

1

� � � f

n

g be a path and x 2 O



; x is u-neighbor of a in T if

there exist nodes b

1

; : : : ; b

n

2 O

a

suh that b

1

is f

1

-neighbor of a, b

i

is f

i

-neighbor of

b

i�1

for 1 < i � n, and x is g-suessor of b

n

(resp. if x is a g-suessor of a in the

ase that u = g). With neighb

T

(a; u), we denote the u-neighbor of a in T (whih is

unique due to Properties 2 to 4 of ompletion trees). The index T is omitted if lear

from the ontext. If R is a prediate role, then b is a virtual R-suessor of a if

1. R = 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

n

):P ,

2. there exist onrete nodes x

1

; : : : ; x

n

suh that x

i

= neighb(a; u

i

) for 1 � i � n,

8

Reall that prediate roles are expressions of the form 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

n

):P and a role is

alled omplex if it is either a prediate role or the inverse of a prediate role.
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3. there exist onrete nodes y

1

; : : : ; y

m

suh that y

i

= neighb(b; v

i

) for 1 � i � m,

and

4. (x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 2 P(P ).

If R = S

�

and S is a prediate role, then b is a virtual R-suessor of a if a is a virtual

S-suessor of b. A node a 2 O

a

is a general R-neighbor of a node b 2 O

a

if b is an

R-neighbor of a or b is a virtual R-suessor of a.

If the satis�ability of a onept D is to be deided, the ompletion algorithm is started

with the initial ompletion system S

D

= (T

D

;P

;

), where T

D

is the tree onsisting

of a single node a with L(a) = fDg and P

;

maps eah P 2 �

D

to ;. The algorithm

repeatedly applies the (yet to be de�ned) ompletion rules until (1) it �nds a omple-

tion system to whih no more rules are appliable or (2) it �nds a ompletion system

ontaining a ontradition. If the �nal ompletion system ontains a ontradition

(be it omplete or not), D is not satis�able. Otherwise, the �nal ompletion system

represents a model for D. Before the ompletion rules are de�ned, we introdue a bit

of notation.

De�nition 31 (\+" operation). An abstrat or onrete node is alled fresh w.r.t.

a ompletion tree T if it does not appear inT. Let S = (T;P) be a ompletion system.

By S + aRb (resp. S + agx), where a is a node in T and b (resp. x) is fresh in S, we

denote the ompletion system S

0

whih an be obtained from S as follows:

� If R 2 N

aF

and a has an R-neighbor b

0

(resp. g 2 N

F

and a has a g-suessor

x

0

), then rename b

0

in T with b (resp. x

0

in T and P with x).

� Otherwise, augment T by a new suessor b of a (resp. x of a) and set L(a; b) = R

(resp. L(a; x) = g).

When nesting the +-operation, we ommit brakets writing, e.g., S + aRb + bR for

(S + aRb) + bR. Let u = f

1

� � � f

n

g be a path. By S + aux, where x is fresh in S,

we denote the ompletion system S

0

whih an be obtained from S as follows: Let

b

1

; : : : ; b

n

be distint objets whih are fresh in S. Set

S

0

:= S + af

1

b+ b

1

f

2

b

2

+ � � � + b

n�1

f

n

b

n

+ b

n

gx:

The ompletion rules an be found in Figure 12. With roles(D) in the Rh rule, we

denote the set of role names and prediate roles used (diretly or as inverse) in the

input onept D. The Rt rule is nondeterministi, i.e., it has more than one possible

outome. The algorithm returns unsatis�able only if there is no way to apply the

ompletion rules suh that a omplete and lash-free ompletion system is obtained.

Intuitively, the algorithm an be thought of as \guessing" the \right" outome of the

Rt rule. The notion \lash" formalizes what it means for a ompletion system to be

ontraditory.

De�nition 32 (Clash). Let S = (T;P) be a ompletion system for a onept D. S

is onrete domain satis�able i� the onjuntion

�

P

=

^

P used in D

^

(x

1

;:::;x

n

)2P(P )

(x

1

; : : : ; x

n

) : P
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Ru if C

1

u C

2

2 L(a), C

1

=2 L(a), or C

2

=2 L(a)

then L(a) := L(a) [ fC

1

; C

2

g

Rt if C

1

t C

2

2 L(a) and C

1

=2 L(a) or C

2

=2 L(a)

then L(a) := L(a) [ fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(a) and, for all general R-neighbors b of a, C =2 L(b)

then set S := S + aRb for a fresh b 2 O

a

and set L(b) := fCg

R8 if 8R:C 2 L(a), b is general R-neighbor of a, and C =2 L(b)

then set L(b) := L(b) [ fCg

R if 9u

1

; : : : ; u

n

:P 2 L(a) and there exist no x

1

; : : : ; x

n

2 O



suh that

x

i

= neighb(a; u

i

) for 1 � i � n and (x

1

; : : : ; x

n

) 2 P(P )

then augment S as follows:

Set S

0

:= S and, for eah 1 � i � n, set S

i

= S

i�1

+ au

i

x

i

with x

i

fresh in S

i�1

.

Finally, set S := S

n

and P(P ) := P(P ) [ f(x

1

; : : : ; x

n

)g

RR if b is 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P -neighbor of a and there exist no

x

1

; : : : ; x

n

; y

1

; : : : ; y

m

2 O



suh that x

i

= neighb(a; u

i

) for 1 � i � n,

y

i

= neighb(b; v

i

) for 1 � i � m, and (x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 2 P(P )

then augment S as follows:

S

0

:= S; for 1 � i � n, S

i

= S

i�1

+ au

i

x

i

with x

i

fresh in S

i�1

S

0

0

:= S

n

; for 1 � i � m, S

0

i

= S

0

i�1

+ bv

i

y

i

with y

i

fresh in S

0

i�1

.

Set S := S

0

m

and P(P ) := P(P ) [ f(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

)g

Rh if 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P 2 roles(D),

x

i

= neighb(a; u

i

) for 1 � i � n, y

i

= neighb(b; v

i

) for 1 � i � m, and

(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) =2 P(P ) [ P(P )

then P(P

0

) := P(P

0

) [ f(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

)g for a P

0

2 fP; P g

Figure 12: Completion rules for ALCRPI(D) on input C

0

.

de�ne proedure sat(S)

if S ontains a lash then

return unsatis�able

if S is omplete then

return satis�able

Apply a (possibly nondeterministi) ompletion rule to S yielding S

0

return sat(S

0

)

Figure 13: The sat algorithm.

is satis�able. S is said to ontain a lash i� there ours a node a 2 O

a

in T suh

that

36



1. fA;:Ag � L(a) for a onept name A,

2. g" 2 L(a) and there exists an x 2 O



suh that x is g-suessor of a, or

3. S is not onrete domain satis�able.

If S does not ontain a lash, S is alled lash-free. S is alled omplete i� no om-

pletion rule is appliable to S.

The ompletion algorithm (alled sat from now on) itself an be found in Figure 13

in a pseudo ode notation.

In the following, we introdue some notions needed for proving termination of the

algorithm. A ompletion system S

0

is derived from a ompletion system S if S

0

an be

obtained from S by repeatedly applying ompletion rules. For a node a in T, let `(a)

denote the level of a in T, i.e., its distane to the root node. With jCj, we denote the

size of a onept C whih is de�ned as the number of symbols (onstrutors, onept

names, role names, onrete feature names, and prediate names) in C. With rd(C),

we denote the role depth of a onept C whih is de�ned indutively as follows (for

tehnial reasons, we also de�ne the role depth of roles):

1. rd(A) = rd(:A) = 0 for onept names A,

2. rd(R) = 1 for role names R,

3. rd(9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P ) is the length of the longest path in the set

fu

1

; : : : ; u

n

; v

1

; : : : ; v

m

g (where the length of a path u = f

1

� � � f

n

g is n+ 1),

4. rd(C

1

u C

2

) = rd(C

1

t C

2

) = max(rd(C

1

); rd(C

2

)),

5. rd(9R:C) = rd(8R:C) = max(rd(R); 1 + rd(C)),

6. rd(9u

1

; : : : ; u

n

:P ) is the length of the longest path in fu

1

; : : : ; u

n

g, and

7. rd(g") = 0.

Let C be a onept. With nf(C), we denote the number of distint abstrat features

used in C. Furthermore, rex(C), denotes the number of onepts in sub(C) of the

form 9R:D with R 2 N

R

n N

aF

. Let C be a set of onepts. With rd(C), we denote

the maximum role depth of all onepts in C. We set

Cj

9R

:= fC 2 C j sub(C) ontains a onept of the form 9R:E with R omplex roleg

and

Cj

9P

:= fC 2 C j sub(C) ontains a onept of the form 9u

1

; : : : ; u

n

:Pg:

For showing termination, we that the depth and outdegree of ompletion trees on-

struted by the algorithm is bounded. In order to show the bound on the depth, we

prove that the level of abstrat nodes having onrete g-suessors (for some g 2 N

F

)

is bounded. This is important sine it implies that, if a node b is a virtual suessor
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of a node a, then the depth of b is bounded. It is not hard to see that this fat is

ruial for the boundedness of the depth of ompletion trees. To show the mentioned

bound on the level of objets with onrete suessors, we prove that, if L(a) ontains

a onept of the form 9u

1

; : : : ; u

n

:P or 9S:C with S omplex role, then the level of the

node a is bounded. We start with establishing this latter two bounds (one for eah

onept type).

Lemma 33. Let S = (T;P) be a ompletion system derived from an initial omple-

tion system S

D

. For all abstrat nodes a in T, we have rd(L(a)j

9R

) � rd(D)� `(a).

Proof The proof is by indution over the number of rule appliations. The lemma is

obviously true for the initial ompletion system S

D

. For the indution step, we make

a ase distintion aording to the rule applied. Ru and Rt are straightforward sine

they only add onepts C to labels L(a) with rd(C) � rd(L(a)). R, RR, and Rh are

trivial sine they do not hange node labels at all. Hene, the only interesting ases

are R9 and R8.

� Assume R9 is applied to a onept 9R:C 2 L(a) where sub(C) ontains a on-

ept of the form 9S:E with S omplex role. The rule appliation generates

an R-suessor b of a and sets L(b) = fCg. By indution hypothesis, we

have rd(9R:C) � rd(D) � `(a). It follows that rd(C) � rd(D) � `(b) sine

rd(9R:C) � rd(C)+ 1 (\�" sine R may be a omplex role) and `(b) = `(a)+ 1.

� Assume R8 is applied to a onept 8R:C 2 L(a) adding C to L(b) where sub(C)

ontains a onept of the form 9S:E with S omplex role. SineD is in restrited

form, 8R:C is also in restrited form, and, hene, R is not a omplex role

(see De�nition 8). This implies that b is R-neighbor of a and hene `(b) 2

f`(a)�1; `(a)+1g implying `(b) � `(a)+1. By indution hypothesis, rd(8R:C) �

rd(D) � `(a). It follows that rd(C) � rd(D) � `(b) sine rd(8R:C) = rd(C) + 1

(\=" sine R is not a omplex role) and `(b) � `(a) + 1.

❏

Lemma 34. Let S = (T;P) be a ompletion system derived from an initial omple-

tion system S

D

. For all abstrat nodes a in T, we have rd(L(a)j

9P

) � rd(D)� `(a).

Proof Straightforward by indution on the number of rule appliations, employing

the de�nition of restritedness (similar to the proof of Lemma 33). ❏

Now for the bound on the level of objets having onrete suessors.

Lemma 35. Let S = (T;P) be a ompletion system derived from an initial om-

pletion system S

D

. Then, for all abstrat nodes a and onrete nodes x in T, if

(a; x) 2 g

I

, where g is a onrete feature, then `(a) � rd(D).

Proof Only the R and RR rules may introdue suessors for onrete features. We

�rst treat the R rule. Assume that the rule was applied to a onept 9u

1

; : : : ; u

n

:P 2

L(a) and generates a g-suessor x for an abstrat node b, where g is a onrete feature.

By Lemma 34, we have `(a) � rd(D)� rd(9u

1

; : : : ; u

n

:P ). Furthermore, by de�nition

of the R rule, we have `(b) < `(a) + rd(9u

1

; : : : ; u

n

:P ), and, hene, `(b) < rd(D).
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Now assume that the RR rule was applied to an objet a and its S-neighbor b.

Then either (i) b is suessor of a and L(a; b) = S or (ii) a is suessor of b and

L(b; a) = S

�

. First onsider ase (i). In this ase, L(a; b) was generated by an

appliation of the R9 rule to a onept 9S:C 2 L(a). From Lemma 33, it follows

that `(a) � rd(D) � rd(9S:C). Furthermore, we have `(b) = `(a) + 1. Suppose

that the rule appliation generates a g-suessor x for an abstrat node , where g

is a onrete feature. By de�nition of the RR rule, it is easy to see that we have

`() < `(b) + rd(9S:C). Sine `(b) = `(a) + 1, this yields `() < `(a) + 1 + rd(9S:C),

and, from `(a) � rd(D)� rd(9S:C), we obtain `() < rd(D)� rd(9S:C)+1+ rd(9S:C)

whih learly implies `() � rd(D). Case (ii) is analogous. ❏

We an now prove the bounds on the size of ompletion trees.

Lemma 36. Let D be an ALCRPI(D)-onept and let S = (T;P) be a ompletion

system derived from an initial ompletion system S

D

.

1. The out-degree of T is bounded by nf(D) + rex(D) and

2. the depth of T is bounded by 3 � rd(D).

Proof We �rst prove Point 1. Only appliations of the R9, R, and RR rules may

generate suessors. The R and RR roles generate only f -suessors with f abstrat

feature. Sine, by de�nition of T, there an be at most one f -suessor per node

and abstrat feature f , appliations of the R and RR rules may generate at most

nf(D) suessors per node. Appliations of the R9 rule may additionally generate

R-suessors with R 2 N

R

nN

aF

. However, by de�nition of R9, it is easy to see that

the number of suessors per node generated in this way is bounded by rex(D).

Now for Point 2. We prove the following laim:

For all abstrat nodes a in T; rd(L(a)) � 3 � rd(D)� `(a): (1)

The laim obviously implies `(a) � 3 � rd(D). The proof is by indution over the

number of rule appliations. The laim is obviously true for the initial ompletion

system S

D

. Now for the indution step. Note that rd(L(a)) � rd(D) for all abstrat

nodes a in T. This implies that the laim holds true for all nodes a with `(a) � 2 �

rd(D). Hene, we will in the following onsider only nodes a with `(a) > 2�rd(D). We

make a ase distintion aording to the rule applied. Ru and Rt are straightforward

sine they only add onepts C to labels L(a) with rd(C) � rd(L(a)).

� Assume R9 is applied to a onept 9R:C 2 L(a) adding C to L(b). By indution

hypothesis, rd(9R:C) � 3 � rd(D)� `(a). It follows that rd(C) � 3 � rd(D)� `(b)

sine rd(9R:C) = rd(C) + 1 and `(b) = `(a) + 1.

� Assume R8 is applied to a onept 8R:C 2 L(a) adding C to L(b). As noted

above, we may safely assume `(b) > 2 � rd(D). By Lemma 35 and sine the

maximum length of paths in D is bounded by rd(D), we have that u

I

(b) is
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unde�ned for eah path u in D.

9

It follows that R is not a virtual R-suessor

of a, and, hene, `(b) � `(a) + 1. We an now argue as in the R9 ase.

� If the R rule is applied to a onept 9u

1

; : : : ; u

n

:P 2 L(a), then `(a) � 3 �

rd(D) � rd(9u

1

; : : : ; u

n

:P ) by indution hypothesis. Hene, by de�nition of the

R rule, for all (abstrat and onrete) nodes b reated by the rule appliation,

we have `(b) � 3 � rd(D). Sine R does not augment node labels with new

onepts, this proves the laim.

� The ase of the RR rule is similar to the R rule.

❏

Using the lemma just established, we an now prove termination.

Proposition 37 (Termination). Let D be an input to the ompletion algorithm and

let K = (nf(D)+ rex(D))

3�rd(D)

. The algorithm terminates after at most O(jsub(D)j �

K +K

2

) rule appliations.

Proof We �rst examine the maximum number of appliations of the Ru, Rt, R9, and

R8 rules. Eah suh appliation adds a new onept to a node label. By Lemma 36,

there exist at most K nodes. Obviously, the size of eah node label is bounded by

jsub(D)j. Sine nodes are never removed from the tree and onepts are never removed

from node labels, there may be at most jsub(D)j � K appliations of the mentioned

rules. It remains to treat appliations of the R, RR, and Rh rules.

R This rule may be applied at most one per onept 9u

1

; : : : ; u

n

:P appearing in

a node label. Hene, the above onsiderations imply that there may be at most

jsub(D)j �K appliations.

RR RR may be applied at most one per edge and eah node has at most one

inoming edge. Hene, the number of RR appliations is bounded by K.

Rh This rule may be be applied at most one per pair of abstrat nodes, i.e., at

most K

2

times.

Taking the above observations together, we obtain the bound stated in the lemma:

Appliations of the Ru, Rt, R9, and R8 rules yield the �rst summand, appliations

of Rh the seond, and all remaining appliations just yield a onstant fator. ❏

We now prove the orretness of the algorithm.

Lemma 38 (Soundness). If there exists a omplete and lash-free ompletion sys-

tem S = (T;P) derived from the initial ompletion system S

D

, then D is satis�able.

9

This does not neessarily hold for nodes b with `(b) > rd(D). To see this, note that we may,

e.g., have fg as a path in D, L(a; b) = f

�

and L(a; x) = g with `(a) = rd(D) and `(b) = `(a) + 1.

Obviously, (fg)

I

(b) is de�ned.

40



����� ��� � � ����� �� �	 
� ��� ����� �
��� � 
	 ��	������� ����� ��
	�	 �

	���
�� ���� �� � 
���� � ����
�� ���� ��� 	�� �� �������� ����	 �	�� 
� � �� ���

����� ��� 
����������
�� � �� 	���
�� �� �� ��� 	�� �� ��	����� ����	 
� ��

�� �� �� � � � ����� ��� � � � �� �

�� �� ���� 	� � ���� 	� � � �� ��	� �� � ������� ��� � � � ��� ���


� �� ��������� � ���� �� � 
� ��� � 
 � ��� �

 ��	
���
�� !������
�	 " �� # �� ������
�� ����	� 
� 
	 ��$
��	 ���� � 
	 %���������&�
��	� 	��% ��� ���%
�� ��
��

���	
� '�� � �� 	 � �� ��� ���	 � � ��� %� ��$� ��� 	� � �� 
( 	 
	 ������ ��
��
����� �� ��

&� ��)� � ��	� �
	�
���
�� ������
�� �� ��� ���� �� ��

*� � � ��� +��� 	 
	 � ������ ����
����� �� � 
( 	 
	 ����
����� �� �� ,�

����
�
�� �� � ��� �� ����
�����	� 	 
	 ����
����� �� � 
( ��� 	� � �� �

"� � � �� %
�� � � ��� -��
�� 	 
	 � ������ ����
����� �� � 
( 	 
	 ����
�����

�� �� ,� ����
�
��� 	 
	 ����
����� �� � 
( � 
	 ����
����� �� 	� -	 
�  �	� *� �


	 ����
����� �� 	 
( �	� �� � �� � ,� 	�����
�	� �	� �� � �� 
( ��� 	� � �� %�
��
���$�	 ��� ��
��

.� � � 	��� � � � � ��� ���� � � � � ����� 
	 � ����
���� ���� /� 	 
	 ����
����� �� ��

���� ��� �������
���

�� �� ��� 0� ��� ��	���	 ���� 	 
	 �	� � $
���� ��

	����		�� �� �� 1����� 	 
	 ������ ����
����� �� � 
( 	 
	 $
���� ��	����		�� ��

	� ,� ����
�
��� 	 
	 $
���� ��	����		�� �� 	 
( �
� ����� ��
	� �������� ����	
��� � � � � ��� ��� � � � � �� 	��� ����

� �� � ��������� �� ��� * � � � ��

� �� � �������	� ��� ��� * � � � �� ���

� ���� � � � � ��� ��� � � � � ��� � ��� ��

&� ���� �� 	��% ���� ��
	 
	 ��� ��	� 
( �

� ����� ��
	� ��� � � � � ��� ��� � � � � �� �
�� 	��� ����

� �
�
��� � �� ��� * � � � ��

� ��
�
�	� � �� ��� * � � � �� ���

� ���� � � � � ��� ��� � � � � ��� � �
��

+�
	 ���$�	 ��� ��
�� 	
���� �� 	�����
�	� %� ��$� �

� 
( ��� 	� � �� � +��

�
����
�� ���� �
� �� �

� 
	 	���
������%��� �� ����
�
�� �� �� 2�% ��� ���
�
����
�� ���� �

� �� �
�� -		��� ���� �
� ���	� ,�  �	� *� ��
	 
��
�	 ���
��
	����� �� �������� ����	 ��� � � � � ��� ��� � � � � �� 	��� ���� �� � ��������� �� ���

* � � � � ��� �� � �������	� ��� ��� * � � � �� �
��� ��� 0	� ��� 
	 ��� ���
�

���� �� � ��� � � 
������� %� ��$� �
���� ���� � � � � ��� ��� � � � � ��� � ��� � ��

#*



���� � � � � ��� ��� � � � � ��� � ��� �� ��� ��		�
 ������ ���� � � � � ��� ��� � � � � ��� �

�
�

����� �� � ���	
����	���� ������ �� �������� ���� � � � � ��� ��� � � � � ��� �
��� ��

�� � � 	� ��	� 	 
�����	� 
���� �� �� ���� �� 
 �� ����
�� ���������
 �� � � 


 �� !�
	��� ����������
 �� �� "# ��$��	���� 
 �� !�
	��� ����������
 �� � � �
�� !�
	��� 	���������
 �� 
� �� �� ���� �� �� �������� 	��	 	��� �� 	�� ���� � 
��� 
� � 	� � "# �����	���� �
� �� � 	� � ��� 
� � �� �

���� $������ 	�� 
��� �� 	�� ������ "# �����	��� �!�
 	�� �����	 �	
��	�
�� �� ����

	��	 � � ���� ������ � � �� ��
 ��� � � %� ��� ��������	� � �� � ��� �����	���
�	�
	� ����� 	�� ���� 	��	 � �� � �����	 ����� �� �� �������	� �����&����� �� 	��

��$��	��� �� �� '�
 	�� �����	��� �	�� �� ��(� � ���� ���	���	��� ����
���� 	� 	��

	����	 ����	
��	�
 �� ��

� � � ��� )����  �� �� ����	��� ��
��� ��
�� � �� � �����	 ����� )���� 	 ��

�������
��� � �� ���� ���� �# ��$��	��� �� �� � �� �� � ������ � � ����� �

� � � ������ )���� 	�� *� 
��� �� ��	 �������� 	� 	� �� ��!� ���� ��	 
 �����
"# �����	���� � � ��

�
��� � � ��

�
� ����� ������ � � ��� � ���

� �

� � � �� � ��� )�����
 	� 	�� 
�!���� �����

� � � ����� )���� 	�� *� 
��� �� ��	 �������� 	� 	� 	��
� �+��	� �� ���	
��	

���� 
 �� � ���� 	��	 
 �� ����
�� ���������
 �� � �� � ��� � � ��
�� ��� ���!�
����� #����� ��� 
� � �� � "# �����	���� �� ��!� 
 � �� � ������ �� ��������

� � ������� �

� � � ���� ,�	 
 � %� ���� 	��	 ��� 
� � �
� � "# 	�� ���!� ������ 
 �� � ����
��

���������
 �� � �� �� )���� 	�� * 
��� �� ��	 �������� 	� 	� �� ��!� � � ��
��
"# �����	���� �	 ������� 	��	 
 � �� � )���� 	��� ����� ��
 ��� 
� �� ��� ��������

� � ������ �

� � � ���� � � � � ���� � '�
 ���� � ��	� - � � � �� 	�� ��������� �����. )����

	�� *� 
��� �� ��	 �������� 	� 	� 	��
� �+��	 ���	
��	 ����� 
�� � � � � 
� �� �

���� 	��	 
� �� ����������
 �� �� 
� �� ����������
 �� 
��� ��
 - � � � �� ���
	��
� �+��	� � ����
�	� ���� �� ���� 	��	 �� �� ����������
 �� 
�� "# ��$��	���
�� �� �� ��!� ��

�
��� � 
�� �

�
�
�
�� � ������ ��� ��

�
�
���� � 
� ��
 - � � � ��

'�
	��
��
�� �� ��!� ���� � � � � ��� � ��� � ��� ����� ��� � ����	��� ��
 �� �
������� � � � ������� � �

�� )������ �� � � ����� � � � � ���� �
� �

� � � ��� )���� 	 �� �������
��� � ��� �� ����������
 � �� �� "# ��$��	��� �� ��
����� �� ����$��� ��� ����� � � ����� �

)����  � ����� ��
 	�� 
��	 �� �� �� �� ��!� 
� �� � ��� ����� � �� � ����� ��
 �

/	 
������ 	� 
�!� �����	������

�0



Lemma 39 (Completeness). For any satis�able ALCRPI(D)-onept D, the ex-

pansion rules an be applied suh that they yield a omplete and lash-free ompletion

system for D.

Proof Let I = (�

I

; �

I

) be a model for D. We use this model to \guide" the applia-

tion of the non-deterministi ompletion rule Rt suh that a omplete and lash-free

ompletion system for D is obtained. A ompletion system S = (T;P) is alled I-

ompatible i� there exists a mapping � from the abstrat nodes in T to �

I

and from

the onrete nodes in T to �

D

suh that

a) C 2 L(a)) �(a) 2 C

I

b) b is general R-neighbor of a) (�(a); �(b)) 2 R

I

) x is g-suessor of a ) g

I

(�(a)) = �(x)

d) (x

1

; : : : ; x

n

) 2 P(P )) (�(x

1

); : : : ; �(x

n

)) 2 P

D

for all abstrat nodes a; b in T, subonepts C of D, roles R 2

b

R, onrete nodes

x; x

1

; : : : ; x

n

in T, onrete features g, and prediates P 2 �

D

.

Claim: If a ompletion system S is I-ompatible and a rule R is appliable to S,

then it an be applied suh that it yields an I-ompatible ompletion system S

0

.

Let S be an I-ompatible ompletion system, let � be a funtion satisfying a) to d),

and let R be a ompletion rule appliable to S. We make a ase distintion aording

to the type of R.

Ru Sine the rule is appliable, there exists an abstrat node a suh that C

1

uC

2

2

L(a). By a), this implies �(a) 2 (C

1

uC

2

)

I

and hene �(a) 2 C

I

1

and �(a) 2 C

I

2

.

Obviously, � satis�es a) to d) w.r.t. the obtained ompletion system S

0

.

Rt There exists an abstrat node a suh that C

1

tC

2

2 L(a). This implies �(a) 2 C

I

1

or �(a) 2 C

I

2

. Hene, the rule an be applied suh that � satis�es a) to d) w.r.t.

the obtained ompletion system S

0

.

R9 There exists an abstrat node a suh that 9R:C 2 L(a). By a), this implies

�(a) 2 (9R:C)

I

and hene, there exists an s 2 �

I

suh that (�(a); s) 2 R

I

and

s 2 C

I

.

{ First assume that either R is a role or R is a feature and a does not have

an R-neighbor in S. The R9 rule generates a new abstrat node b with

L(b) = fCg suh that b is an R-suessor of a yielding a new ompletion

system S

0

. De�ne �

0

as � [ fb 7! sg. Obviously, �

0

satis�es a), ), and d)

w.r.t. S

0

. By de�nition of general R-neighbors, �

0

satis�es b) w.r.t. S

0

.

{ Now assume that R is an abstrat feature and a does already have an R-

neighbor b in S. Then, the R9 rule onsistently renames b to some new

name  (.f. the \+" operation) and sets L() := L() [ fCg. De�ne �

0

as

�[f 7! �(b)g. Sine b) holds for � w.r.t. S and by de�nition of �

0

, we have
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(�

0

(a); �

0

()) 2 R

I

. Sine abstrat features are interpreted as funtions, we

have �

0

() = s implying �

0

() 2 C

I

. Hene, �

0

satis�es a) to d) w.r.t. the

obtained ompletion system S

0

.

R8 There exist abstrat nodes a and b suh that 8R:C 2 L(a), b is a general R-

neighbor of a, and C =2 L(b). By a), b), and semantis, this implies �(a) 2

(8R:C)

I

, (�(a); �(b)) 2 R

I

, and �(b) 2 C

I

. The rule appliation adds C to

L(b). Obviously, � satis�es a) to d) w.r.t. the obtained ompletion system S

0

.

R There exists an abstrat node a suh that 9u

1

; : : : ; u

n

:P 2 L(a) with u

i

=

f

(i)

1

� � � f

(i)

k

i

g

i

for 1 � i � n. By a), this implies �(a) 2 (9u

1

; : : : ; u

n

:P )

I

. Hene,

there exist s

(i)

j

2 �

I

for 1 � i � n and 1 � j � k

i

and �

1

; : : : ; �

n

2 �

D

suh

that

{ (�(a); s

(i)

1

) 2 (f

(i)

1

)

I

for 1 � i � n,

{ (s

(i)

j�1

; s

(i)

j

) 2 (f

(i)

j

)

I

for 1 � i � n and 1 < j � k

i

,

{ g

I

i

(s

(i)

k

i

) = �

i

for 1 � i � n, and

{ (�

1

; : : : ; �

n

) 2 P

D

.

After the appliation of the R9 rule, there exist abstrat nodes b

(i)

j

for 1 � i � n

and 1 � j � k

i

and onrete nodes x

1

; : : : ; x

n

suh that

{ b

(i)

1

is f

(i)

1

-neighbor of a for 1 � i � n,

{ b

(i)

j

is f

(i)

j

-neighbor of b

(i)

j�1

for 1 � i � n and 1 < j � k

i

,

{ x

i

is g

i

-suessor of b

(i)

k

i

for 1 � i � n, and

{ (x

1

; : : : ; x

n

) 2 P(P ).

We all the ompletion system obtained by rule appliation S

0

. De�ne �

0

by

extending � as follows: (i) for 1 � i � n and 1 � j � k

i

, set �

0

(b

(i)

j

) := s

(i)

j

;

(ii) for 1 � i � n, set �(x

i

) := �

i

.

10

We need to show that �

0

satis�es a) to d)

w.r.t. the new ompletion system S

0

. First, we show the following:

If, during the rule appliation, an abstrat objet  is renamed to b

(i)

j

(resp. a onrete objet y to x

i

), then we have �

0

(b

(i)

j

) = �() (resp.

�

0

(x

i

) = �(y)).

(�)

For assume that an objet b is renamed to b

(i)

j

. This implies that there exists an

objet d suh that b is f

(i)

j

-neighbor of d in S (d is either a or b

(i)

j�1

). Sine (i) s

satis�es b) w.r.t. S, (ii) f

I

(�(d)) = �(s

(i)

j

), and (iii) features are interpreted as

funtions, we have �(b) = s

(i)

j

. By de�nition of I, it follows that �(b) = �

0

(b

(i)

j

)

(the ase with y and x

i

is analogous).

10

Note that existing objets may be renamed due to the use of the \+" operation. We assume

that, if the \+" operation renamed an objet a to b, then the objet name a is never \reintrodued"

afterwards (and similar for onrete objets). Hene, �

0

really is an extension of �.
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Sine the rule appliation adds no new onepts to node labels, (�) implies that

�

0

satis�es a) w.r.t. S

0

. Similarly, b) and d) are immediate onsequenes of (�)

and the de�nition of I. (note that the rule appliation may generate new virtual

R-suessor relationships for some abstrat nodes a and b and a omplex role

R). Property ) is satis�ed by �

0

by de�nition.

RR There exist abstrat nodes a; b suh that b isR-neighbor of a withR = 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P ,

i.e., either b is an R-suessor of a or a is an R

�

-suessor of b. In any ase, b)

yields (�(a); �(b)) 2 R

I

. We proeed analogous to the R ase.

Rh There exist abstrat nodes a; b and a prediate role

9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P 2 roles(D)

suh that x

i

= neighb(a; u

i

) for 1 � i � n and y

i

= neighb(b; v

i

) for 1 � i � m.

The rule appliation adds (x

1

; : : : ; x

n

; y

1

; : : : ; y

n

) either to P(P ) or to P(P ). By

semantis, we have either

(�(x

1

); : : : ; �(x

n

); �(y

1

); : : : ; �(y

m

)) 2 P

D

or

(�(x

1

); : : : ; �(x

n

); �(y

1

); : : : ; �(y

m

)) 2 P

D

:

Hene, the rule Rh an be applied suh that � satis�es a) to d) w.r.t. the

obtained ompletion system S

0

.

It remains to show that the lemma is a onsequene of the above laim. Let S

D

=

(T

D

;P

;

) be the initial ompletion system forD and let a

0

be the node inT

D

. Set �(a

0

)

to s for an s 2 D

I

. Obviously, � satis�es a) to d) and hene S

D

is I-ompatible. By

the laim, the ompletion rules an be applied suh that only I-ompatible ompletion

systems are obtained. By Lemma 37, every sequene of rule appliations terminates

yielding a omplete ompletion system. Hene, we an obtain a omplete and I-

ompatible ompletion system S = (T;S) by rule appliation. It remains to show

that this implies the lash-freeness of S. Let � be a mapping for S satisfying a) to d).

1. S does not ontain a lash of the form fA;:Ag � L(a) sine, together with a),

this would imply �(a) 2 A

I

\ (:A)

I

whih is impossible.

2. It needs to be shown that, whenever g" 2 L(a), then there exists no g-suessor

x of a. Assume to the ontrary that there exists an abstrat objet a, a onrete

objet x, and a onrete feature g suh that g" 2 L(a) and x is g-suessor of a

in T. By a), we have �(a) 2 (g")

I

. By ), we have g

I

(�(a)) = �(x) whih is a

ontradition.

3. It remains to show that S is onrete domain satis�able, i.e., that the prediate

onjuntion �

P

is satis�able. However, using d), it is straightforward to show

that the \onrete part" of � is a solution for �

P

.

❏
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Satis�ability w.r.t. TBoxes an be redued to satis�ability without TBoxes by using

unfolding

[

21

℄

. Unfolding a onept C w.r.t. a TBox T means iteratively replaing

onept names in C by their de�nitions given in T (unfolding obviously terminates

sine T is ayli). This yields a onept C

0

whih is satis�able w.r.t. T i� C is satis-

�able w.r.t. T . Together with Lemmas 37, 38, and 39 and the fat that subsumption

an be redued to satis�ability, this gives the following result.

Theorem 40. Satis�ability and subsumption of ALCRPI(D)-onepts w.r.t. TBoxes

are deidable.

The omplexity of the presented algorithm is analyzed in the next setion.

4.2 Ayli TBoxes and Complexity

In this setion, we modify the algorithm introdued in the previous setion to diretly

take into aount TBoxes (instead of using unfolding) and then analyze the omplexity

of the modi�ed algorithm. The modi�ation tehnique we employ was introdued in

[

19

℄

, where it was used to prove that many PSpae tableau algorithms for deiding

onept satis�ability (e.g., for ALC-onepts) an be modi�ed to deide satis�ability

of onepts w.r.t. TBoxes suh that their PSpae omplexity is preserved. First, the

TBox has to be onverted to a ertain normal form.

De�nition 41 (Simple TBoxes). A TBox T is alled simple i� it satis�es the fol-

lowing requirements:

� The right-hand side of eah onept de�nition in T ontains exatly one on-

strutor (i.e., it is of the form :A, A

1

uA

2

, A

1

tA

2

, 9R:A, 8R:A, 9u

1

; : : : ; u

n

:P ,

or g", where A, A

1

, and A

2

are onept names).

� If the right-hand side of a onept de�nition in T is :A, then A does not our

on the left hand side of any onept de�nition in T .

The following lemma is proved in

[

19

℄

.

Lemma 42. Any TBox T an be onverted into a simple one T

0

in linear time, suh

that T

0

is equivalent to T in the following sense: Any model for T

0

an be extended to

a model for T , and, vie versa, any model for T an be extended to a model for T

0

.

This notion of equivalene is neessary sine the translation to simple form may remove

onept names and add additional ones. A short omment on what is meant by

\extended" is appropriate. Let T be a TBox, T

0

the result of onverting it to simple

form, and I be a model for T . We an onstrut a model for T

0

from I by setting

A

I

to an appropriate value for all onept names A that have been introdued in

the onversion of T to T

0

. De�ning a model for T from a model of T

0

works similar

(additionally interprete all variables that have been eliminated during the onversion

of T to T

0

).

We now modify the sat algorithm from Setion 4.1 to deide the satis�ability of

onept names A w.r.t. simple TBoxes T . Using the modi�ed algorithm, it is obviously
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also possible to deide the satis�ability of arbitrary onepts C w.r.t. TBoxes T : Add

a de�nition A

:

= C to T where A is a new onept name in T , onvert the resulting

TBox to simple form (the onept name is not eliminated during onversion, see

[

19

℄

)

and start the algorithm with (A;T

0

) where T

0

is the newly obtained TBox. The

modi�ed algorithm works on ompletion trees of a restrited form sine node labels

may only ontain onept names.

De�nition 43 (Modi�ed Completion Algorithm). Let A be a onept name and

T be a simple TBox. Making use of the existing sat algorithm, the algorithm tbsat is

de�ned as follows.

1. Modify the ompletion rules of sat as follows: In the premise of eah ompletion

rule, substitute \C 2 L(a)" by \A 2 L(a) and A

:

= C 2 T " and analogously

for \C =2 L(a)". E.g., in the onjuntion rule, \C

1

u C

2

2 L(a)" is replaed by

\A 2 L(a) and A

:

= C

1

u C

2

2 T ".

2. Start the sat algorithm with the initial ompletion system S

A

= (T

A

;P

;

) as

de�ned in Setion 4.1. Use the modi�ed rules for the sat run.

In the following, we investigate the soundness, ompleteness, termination, and om-

plexity of the modi�ed algorithm. To do this, we need to extend the notion of size and

of subonepts to TBoxes: For a TBox T , jT j denotes the size of T and is de�ned as

jT j =

X

A

:

=C2T

jCj:

Furthermore, sub(T ) denotes the set of subonepts used in T and is de�ned as

sub(T ) =

[

A

:

=C2T

sub(C):

We argue that the tbsat algorithm started with input A;T performs exatly the same

steps as the sat algorithm started on the onept C whih is the result of unfolding

A w.r.t. T . Beause of this, we give a preise de�nition of the notion unfolding. In

the following, we generally assume that, if A;T is an input to tbsat, then A 2 sub(T ).

This an be done w.l.o.g. sine, if A =2 sub(T ), T an be extended by a new onept

de�nition A

0

:

= A, where A

0

6= A and A

0

=2 sub(T ).

De�nition 44 (Unfolding). Let T be a TBox. A onept name A is alled de�ned

in T if A appears on the left-hand side of a onept de�nition in T and unde�ned

otherwise. A onept C is alled unfolded w.r.t. T i� every onept name in C is

unde�ned in T . Given a onept C and a TBox T , C an be onverted to a onept

C

0

whih is (i) unfolded w.r.t. T and (ii) satis�able w.r.t. T i� C is satis�able w.r.t.

T by using the following unfolding algorithm:

de�ne proedure unfold(T )

while C ontains a onept name A de�ned in T do

Let A

:

= E 2 T .

Replae eah ourrene of A in C with E.

return C
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In Setion 4.1, we introdued several measures on onpets for proving termination.

The following lemma lari�es the relation between these measures and unfolding.

Lemma 45. Let A be a onept name and T be a simple TBox. If C is the result of

unfolding A w.r.t. T , then

1. nf(C) � jT j,

2. rex(C) � jT j,

3. rd(C) � jT j, and

4. jsub(C)j � jT j.

Proof Point 1 is trivial and Property 2 is an immediate onsequene of Property 4.

Hene, we onentrate on the proof of Properties 3 and 4. For Property 3, assume

that the role depth of C exeeds jT j. This means that the right hand side of a onept

de�nition A

0

:

= 9R:D or A

0

:

= 8R:D in T ontributes to the role depth more than one.

From this, however, it follows that unfolding D w.r.t. T yields a onept ontaining

A

0

whih is a ontradition to the ayliity of T .

Now for Property 5. The property is proved by de�ning an injetion I from sub(C)

to sub(T ). The existene of suh an injetion implies Property 5 sine, obviously,

jsub(T )j � jT j. Assume that the onepts in sub(T ) are ordered by a total order �.

For a onept set 	 � sub(T ), min(	) denotes the onept in 	 whih is minimal

w.r.t. �. De�ne a funtion I from sub(C) to sub(T ) as follows:

I(E) := minfF 2 sub(T ) j unfold(F; T ) = Eg:

We show that I is total and injetive.

� Let k be the number of steps the while loop in the unfolding algorithm makes

to ompute C and let C

i

(0 � i � k) denote the onept C after the i'th loop,

i.e., C

0

= A and C

k

= C. To prove totality, we establish the following laim:

Claim: For all 1 � i � k, and for all E 2 sub(C

i

), there exists an F 2 sub(T )

suh that unfold(E; T ) = unfold(F; T ).

The laim implies totality sine, for all onepts E 2 sub(C) = sub(C

k

), we have

unfold(E; T ) = E. The proof of the laim is by indution over i. For i = 0, the

laim trivially holds sine C

0

= A and we assume that A 2 sub(T ). Now for the

indution step. Assume that, in the the i'th step, a onept name A

0

has been

replaed by a onept F . Let E 2 sub(C

i+1

) n sub(C

i

). Then we have one of the

following two ases:

{ E 2 sub(F ). This implies E 2 sub(T ), and, hene, E satis�es the laim.

{ E =2 sub(F ). Then there exists an E

0

in sub(C

i

) suh that E an be ob-

tained from E

0

by substituting an ourrene of A

0

in E

0

by F . Obviously,

unfold(E; T ) = unfold(E

0

;T ). Sine E

0

2 sub(C

i

) satis�es the laim by

indution hypothesis, E 2 sub(C

i+1

) does also satisfy the laim.
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� Assume that I is not injetive, i.e., there exist two onepts E;E

0

2 sub(C)

with E 6= E

0

suh that I(E) = I(E

0

) = F . By de�nition of I, this implies

unfold(F; T ) = E and unfold(F; T ) = E

0

. Sine E 6= E

0

and unfolding is deter-

ministi, this is obviously impossible.

❏

We may now establish orretness and termination of the modi�ed algorithm.

Proposition 46. Let satis�ability of D be in NP and (A;T ) be the input to the tbsat

algorithm. Then tbsat terminates after O(2

djT j

) rule appliations returning \satis�-

able" if A is satis�able w.r.t. T and \unsatis�able" otherwise, where d is a onstant.

Proof Let C be the result of unfolding A w.r.t. T . C is in NNF sine T is in simple

form. A run of the tbsat (resp. sat) algorithm on (A;T ) (resp. on C) is a sequene of

ompletion rules as applied by the algorithm if started with input (A;T ) (resp. with

input C). By indution over the number of rule appliations, it is straightforward

to show that the set of runs of tbsat on (A;T ) is idential to the set of runs of sat

on C: at every point in the omputation where a nondeterministi deision has to

be made (deiding whih rule to apply or deiding whih onsequene of the Rt

rule to use), the available hoies are exatly the same for both algorithms. Let

K = (nf(C) + rex(C))

3�rd(C)

. By Proposition 37, the algorithm terminates after at

most O(jsub(C)j �K +K

2

) rule appliations. By Lemma 45, this implies that tbsat

terminates after

O(jT j � (2jT j)

3jT j

+ (2jT j)

6jT j

)

rule appliations whih obviously implies the bound given in the lemma. Furthermore,

soundness and ompleteness are immediate onsequenes of the equivalene of run sets.

❏

Finally, the upper bound for satis�ability and subsumption of ALCRPI(D)-onepts

an be given.

Theorem 47. If satis�ability of the onrete domain D is in NP, satis�ability and

subsumption of ALCRPI(D)-onepts w.r.t. TBoxes an be deided in nondetermin-

isti exponential time.

Proof By Proposition 46, tbsat deides satis�ability of ALCRPI(D)-onepts w.r.t.

TBoxes and terminates after exponentially many rule appliations. During its run,

tbsat onstruts a ompletion system S = (T;P). After eah rule appliation, the

prediate onjuntion �

P

indued by P has to be tested for satis�ability. Sine the

satis�ability test for �nite prediate onjuntions is in NP, it remains to show that

the size of �

P

is at most exponential in the size of the input TBox T . This is, however,

obvious sine eah rule appliation adds at most one tuple to P. ❏

Sine the set of runs tbsat may perform on an input A;T is idential to the set of

runs sat may perform on the result C of unfolding A w.r.t. T , there seems to exist an

alternative way to obtain Theorem 47: Conjeturing that
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� unfolding a onept C w.r.t. a (not neessarily simple) TBox T an be done in

time exponential in jCj+ jT j, and

� the result from Lemma 45 an be generalized in an appropriate way to the

unfolding of (possibly omplex) onepts w.r.t. (not-neessarily simple) TBoxes,

we laim that the same omplexity result an be proved by using unfolding as a prepro-

essing step to the sat algorithm (without de�ning simple TBoxes). This is somewhat

surprising sine unfolding is usually believed to be \harmful" w.r.t. omplexity and it

is well-known that unfolding may lead to an exponential blow-up in onept size. In

our ase, unfolding is nevertheless \harmless" sine it is not the onept size whih

is ruial for the omplexity of the presented algorithm, but the measures given in

Lemma 45. However, we prefer the use of simple TBoxes sine, in our opinion, it is

far more elegant and more losely related to the tehniques used in implementations

of DL systems (see, e.g.,

[

3

℄

).

5 Undeidability of ALCIF

The desription logi ALCF(D) is the extension of ALC(D) with so-alled feature

agreements and feature disagreements. In

[

20

℄

, it is proved that satis�ability of

ALCF(D)-onepts is PSpae-omplete. The algorithm used to establish the up-

per bound shows that it is natural to onsider onrete domains in ombination with

feature (dis)agreements sine the algorithmi treatment is very similar (see also

[

13

℄

).

It is hene also natural to onsider the desription logi ALCRPIF(D) whih is the

extension of ALCRPI(D) with feature (dis)agreements. However, in this setion, we

show that onept satis�ability is already undeidable for the fragment ALCIF , i.e.,

for ALC with inverse roles and feature (dis)agreements.

De�nition 48 (Feature (dis)agreement). Let v

1

= f

(1)

1

� � � f

(1)

n

and v

2

= f

(2)

1

� � � f

(2)

m

be sequenes of abstrat features. A feature agreement is an expression of the form

v

1

#v

2

. A feature disagreement is an expression of the form v

1

"v

2

. The semantis of

feature agreements and disagreements is de�ned as follows:

(v

1

#v

2

)

I

:= fa 2 �

I

j 9b 2 �

I

:v

I

1

(a) = b ^ v

I

2

(a) = bg

(v

1

"v

2

)

I

:= fa 2 �

I

j 9b

1

; b

2

2 �

I

:v

I

1

(a) = b

1

^ v

I

2

(a) = b

2

^ b

1

6= b

2

g

The undeidability of ALCIF if proved by a redution of the well-known, undeidable

domino problem (see, e.g.,

[

5

℄

and

[

18

℄

). A domino problem is given by a �nite set

of tile types. All tile types are of the same size, eah type has a quadrati shape

and olored edges. Of eah type, an unlimited number of tiles is available. The

problem is to arrange these tiles to over the �rst quadrant of the plane without holes

or overlapping, suh that adjaent tiles have idential olors on their touhing edge

(rotation of the tiles is not allowed).

De�nition 49 (Domino System). Let D = (D;H; V ) be a domino system, where

D is a �nite set of tile types and H;V � D�D. A mapping � : N

2

! D is a solution

of D if
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Grid = 9f

�

:> u 8f

�

:xy#yx u 8f

�

:(f#xf u f#yf u f#xyf)

Tiling = ( t

d2D

D

d

) u u

d2D

u

d

0

2Dnfdg

:(D

d

uD

d

0

)

u

d2D

(D

d

! 9x: t

(d;d

0

)2H

D

d

0

)

u

d2D

(D

d

! 9y: t

(d;d

0

)2V

D

d

0

)

C

D

= Grid u 8f

�

:Tiling

Figure 14: The ALCIF redution onept C

D

.
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............

x

y

xx

yy

y y

f

f

f

f

f

x

x

Figure 15: Clipping from a model of C

D

.

� if �(x; y) = d and �(x+ 1; y) = d

0

then (d; d

0

) 2 H, and

� if �(x; y) = d and �(x; y + 1) = d

0

then (d; d

0

) 2 V .

In the following, we redue the domino problem to satis�ability of ALCIF-onepts.

Given a domino system D, the redution onept C

D

is suh that (i) models of C

D

have the form of a two-side in�nite grid, (ii) every node of the grid is an instane of

exatly one of the onept names D

d

with d 2 D (representing tile types), and (iii) the

horizontal and vertial onditions V and H are satis�ed. The redution onept an

be found in Figure 14 and a sample C

D

model an be found in Figure 15. Again, the

equalities in the �gure are used as an abbreviation and are not intended to denote

onept de�nitions. The symbols x, y, and f denote (abstrat) features. In the

redution, the Grid onept generates the grid and the Tiling onept ensures that

the ondition listed as (ii) and (iii) are satis�ed. We now formally proof orretness.

Lemma 50. C

D

is satis�able i� D has a solution � .

Proof Assume that C

D

has a model I = (�

I

; �

I

). We de�ne a solution � for D. Let
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a 2 C

I

D

and let b 2 (f

�

)

I

(a) (suh a and b exist due to the �rst onjunt of th Grid

onept). De�ne the funtion � from N

2

to �

I

indutively as follows.

1. �(0; 0) = b

2. if �(i; j) =  and x

I

() = d, then �(i+ 1; j) = d

3. if �(i; j) =  and y

I

() = d, then �(i; j + 1) = d

The Grid onept ensures that this funtion is total, i.e., that x

I

and y

I

are always

de�ned. Finally, we de�ne �(i; j) as the d 2 D for whih �(i; j) 2 D

I

d

. Note that,

due to the �rst line of Tiling, there exists exatly one suh d for eah �(i; j). It is

straightforward to hek that � is well-de�ned and a solution for D.

Conversely, assume that � is a solution for D. We de�ne a model I for C

D

as

follows:

� �

I

= N

2

[ f�g

� x

I

= f((i; j); (i + 1; j)) j i; j 2 Ng

� y

I

= f((i; j); (i; j + 1)) j i; j 2 Ng

� f

I

= f((i; j); �) j i; j 2 Ng

� D

I

d

= �

�1

(d) for all d 2 D

Again, it is straightforward to verify that I is a model for D. ❏

The following theorem is an immediate onsequene of Lemma 50 and the undeid-

ability of the domino problem.

Theorem 51. Satis�ability of ALCIF-onepts is undeidable.

6 Conlusion

In this paper, we investigate the omplexity of various extensions of the Desription

LogiALC(D). The lower bounds are established using aNExpTime-omplete variant

of the Post Correspondene Problem together with a (rather natural) onrete domain

P for whih reasoning an be done in PTime. More preisely, we prove the following

problems to be NExpTime-hard:

1. satis�ability of ALC(P)-onepts w.r.t. TBoxes,

2. satis�ability of ALCI(P)-onepts, and

3. satis�ability of ALCRP(P)-onepts.
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As a orresponding upper bound, we show that, if reasoning with a onrete do-

main D is in NP, then satis�ability and subsumption of ALCRPI(D)-onepts w.r.t.

TBoxes is in NExpTime. Finally, we prove that ALCRPI(D) annot be extended by

feature (dis)agreements without loosing deidability sine the satis�ability of ALCIF-

onepts is already undeidable.

As future work, it would be interesting to extend the obtained logis by further

onstrutors suh as transitive roles

[

24

℄

and qualifying number restritions

[

12

℄

. There

are at least two approahes: Sine reasoning with ALCF(D) is known to be in PSpae

[

20

℄

, one ould de�ne extensions of ALCF(D) trying to obtain an expressive logi

with onrete domains for whih reasoning is still in PSpae. The seond approah

is to de�ne extensions of ALCI(D) whih means that the obtained logis are at least

NExpTime-hard for \interesting" onrete domains and that feature (dis)agreements

annot be inluded without loosing deidability.
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