RWTH LTCS-Report

Aachen University of Technology Research group for Theoretical Computer Science

NExpTime-complete Description Logics with Concrete Domains

Carsten Lutz

LTCS-Report 00-01

NExpTime-complete Description Logics with Concrete Domains

Carsten Lutz
RWTH Aachen, LuFG Theoretical Computer Science
Ahornstr. 55, 52074 Aachen
lutz@informatik.rwth-aachen.de
August 22, 2001

Contents

1 Introduction 2
2 Description Logics 3
2.1 The Description Logic $\mathcal{A L C I}(\mathcal{D})$ 3
2.2 The Description Logic $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{I}(\mathcal{D})$ 6
3 Lower Complexity Bounds 8
3.1 Post's Correspondence Problem 8
3.2 A Concrete Domain for Encoding the PCP 13
3.3 Satisfiability of $\mathcal{A L C}(\mathcal{P})$-concepts w.r.t. TBoxes 18
3.4 Satisfiability of $\mathcal{A L C I}(\mathcal{P})$-Concepts 24
3.5 Satisfiability of $\mathcal{A L C} \mathcal{R} \mathcal{P}(\mathcal{P})$-Concepts 29
4 Upper Complexity Bound 33
4.1 A Completion Algorithm for $\mathcal{A L C} \mathcal{R P I}(\mathcal{D})$ 34
4.2 Acyclic TBoxes and Complexity 46
5 Undecidability of $\mathcal{A L C I F}$ 50
6 Conclusion 52

1 Introduction

Description logics (DLs) are a family of logical formalisms well-suited for the representation of and reasoning about conceptual knowledge on an abstract logical level. However, for many knowledge representation applications, it is essential to integrate the abstract logical knowledge with knowledge of a more concrete nature. As an example, consider the modeling of manufacturing processes, where it is necessary to represent "abstract" entities like subprocesses and workpieces and also "concrete" knowledge, e.g., about the duration of processes and physical dimensions of the manufactured objects [2; 25].

The standard technique for extending Description Logics to allow for the representation of concrete knowledge is to use so-called concrete domains which have been introduced by Baader and Hanschke in [1]. Baader and Hanschke define the description logic $\mathcal{A L C}(\mathcal{D})$, i.e., the extension of the basic propositionally complete description logic $\mathcal{A L C}$ with concrete domains. More precisely, $\mathcal{A L C}(\mathcal{D})$ can be parameterized with a concrete domain \mathcal{D}, where \mathcal{D} provides a set of predicates over a given domain like, e.g., the real numbers or the set of time intervals. The concrete domain predicates can then be used inside a concrete domain concept constructor. For example, the $\mathcal{A L C}(\mathcal{D})$-concept

\forall subprocess.Drilling $\sqcap \exists$ workpiece diameter. $\leq 5 \mathrm{~cm}$

describes a process all of whose subprocesses are drilling processes and which is related to a workpiece whose diameter is at most 5 centimeters. In the example, Drilling is a concept name (unary predicate), subprocess, workpiece, and diameter are roles (binary predicates), and $\leq 5 \mathrm{~cm}$ is a predicate from the concrete domain. The second conjunct demonstrates the use of the concrete domain concept constructor. More information on concrete domains can, e.g., be found in $[4 ; 11 ; 17]$.

In this paper, we are interested in the complexity of reasoning with DLs which provide concrete domains, where "reasoning" refers to testing satisfiability and subsumption of concepts. In [20], we proved that reasoning with $\mathcal{A \mathcal { L C }}(\mathcal{D})$ is PSpace-complete provided that reasoning with the concrete domain \mathcal{D} (i.e., testing the satisfiability of finite conjunctions of predicates from \mathcal{D}) is in PSPACE. However, for many applications, the expressivity of $\mathcal{A L C}(\mathcal{D})$ is not su cient and one wants to extend this logic with additional concept- and role-constructors, and with so-called TBoxes. We investigate several such extensions and show that, in the extended logics, reasoning becomes considerably harder. More precisely, we consider the extension of $\mathcal{A L C}(\mathcal{D})$ with

1. acyclic TBoxes,
2. inverse roles (and inverse features), and
3. a role-forming concrete domain constructor.

We prove that reasoning with $\mathcal{A L C}(\mathcal{D})$ and general TBoxes is undecidable which explains why we extend $\mathcal{A L C}(\mathcal{D})$ with the weaker acyclic TBoxes (see, e.g., [21] for acyclic TBoxes and $[7 ; 15]$ for general TBoxes).

By introducing a NExpTime-complete variant of the Post Correspondence Problem [23; 14], we show that there exists a concrete domain \mathcal{P} for which reasoning is in PTime such that reasoning with each of the above three extensions of $\mathcal{A L C}(\mathcal{D}$) (parameterized with the concrete domain \mathcal{P}) is NExpTime-hard. This dramatic increase in complexity is rather surprising since, from a computational point of view, all of the proposed extensions look harmless. For example, in [19], we show that the extension of "many" PSpace Description Logics with acyclic TBoxes does not increase the complexity of reasoning. Moreover, it is well-known that $\mathcal{A L C}$ extended with inverse roles is still in PSPACE (see, e.g., [16]).

As a corresponding upper bound, we show that, if reasoning with a concrete domain \mathcal{D} is in NP, then reasoning with the DL $\operatorname{ALCR} \mathcal{P I}(\mathcal{D})$ with acyclic TBoxes is in NExpTime. The logic $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{P}(\mathcal{D})$ is the extension of $\mathcal{A L C}(\mathcal{D})$ with inverse roles and role-forming concrete domain constructors. Finally, we investigate whether $\mathcal{A} \mathcal{L C R P I}(\mathcal{D})$ can be augmented by so-called feature agreement and feature disagreement constructors. This step is rather natural since the mentioned constructors are closely related to concrete domains and amenable to a similar algorithmic treatment [1; 20]. We can, however, show that reasoning with the logic $\mathcal{A L C \mathcal { L F }}$ is already undecidable.

2 Description Logics

In this section, we introduce the description logics which we are concerned with in the remainder of this paper. We first introduce the logic $\mathcal{A L C I}(\mathcal{D})$ which extends $\mathcal{A L C}(\mathcal{D})$ with inverse roles and then extend it to the logic $\mathcal{A} \mathcal{L C} \mathcal{P} \mathcal{P}(\mathcal{D})$. This two-step approach is pursued since the definition of $\mathcal{A L C} \mathcal{R P I}(\mathcal{D})$ involves some rather unusual syntactic restrictions which we like to keep separated from the more straightforward syntax of $\mathcal{A L C \mathcal { L }}(\mathcal{D})$.

2.1 The Description Logic $\mathcal{A} \mathcal{L C} \mathcal{I}(\mathcal{D})$

In this section, the Description Logic $\mathcal{A L C I}(\mathcal{D})$ is introduced. We start by defining concrete domains which were first introduced by Baader and Hanschke [1].

Definition 1 (Concrete Domain). A concrete domain \mathcal{D} is a pair $\left(\Delta_{\mathcal{D}}, \Phi_{\mathcal{D}}\right)$, where $\Delta_{\mathcal{D}}$ is a set called the domain, and $\Phi_{\mathcal{D}}$ is a set of predicate names. Each predicate name $P \in \Phi_{\mathcal{D}}$ is associated with an arity n and an n-ary predicate $P^{\mathcal{D}} \subseteq \Delta_{\mathcal{D}}^{n}$. A predicate conjunction of the form

$$
c=\bigwedge_{1 \leq i \leq k}\left(x_{0}^{(i)}, \ldots, x_{n_{i}}^{(i)}\right): P_{i},
$$

where P_{i} is an n_{i}-ary predicate for $1 \leq i \leq k$ and the $x_{j}^{(i)}$ are variables, is called satisfiable iff there exists a function mapping the variables in c to elements of $\Delta_{\mathcal{D}}$ such that $\left(\left(x_{0}^{(i)}\right), \ldots,\left(x_{n_{i}}^{(i)}\right)\right) \in P_{i}^{\mathcal{D}}$ for $1 \leq i \leq k$. Such a function is called a solution for c. A concrete domain \mathcal{D} is called admissible iff

1. the set of its predicate names is closed under negation and contains a name $\top_{\mathcal{D}}$ for $\Delta_{\mathcal{D}}$ and
2. the satisfiability problem for finite conjunctions of predicates is decidable.

With \bar{P}, we denote the negation of the predicate P, i.e., the predicate with the exten$\operatorname{sion} \bar{P}^{\mathcal{D}}=\Delta_{\mathcal{D}} \backslash P^{\mathcal{D}}$.

We will only consider concrete domains which are admissible. Based on concrete domains, we introduce the syntax of $\mathcal{A L C \mathcal { I }}(\mathcal{D})$.

Definition 2 (Syntax). Let N_{C}, N_{R}, and $N_{c F}$ be mutually disjoint sets of concept names, role names, and concrete feature names, respectively, and let $N_{a F}$ be a subset of N_{R}. Elements of $N_{a F}$ are called abstract features. The set of $\mathcal{A L C \mathcal { L }}(\mathcal{D})$ roles $\widehat{N_{R}}$ is $N_{R} \cup\left\{R^{-} \mid R \in N_{R}\right\}$. An expression $f_{1} \cdots f_{n} g$, where $f_{1}, \ldots, f_{n} \in N_{a F}$ and $g \in N_{c F}$, is called a path. ${ }^{1}$ The set of $\mathcal{A L C I}(\mathcal{D})$-concepts is the smallest set such that

1. every concept name is a concept
2. if C and D are concepts, R is a role, g is a concrete feature, $P \in \Phi$ is a predicate name with arity n, and u_{1}, \ldots, u_{n} are paths, then the following expressions are also concepts:
(a) $\neg C, C \sqcap D, C \sqcup D$,
(b) $\exists R . C, \forall R . C$,
(c) $\exists u_{1}, \ldots, u_{n} . P$, and
(d) $g \uparrow$.

An $\mathcal{A L C \mathcal { I }}(\mathcal{D})$-concept which uses only roles from N_{R} is called an $\mathcal{A L C}(\mathcal{D})$-concept. With $\operatorname{sub}(C)$, we denote the set of subconcepts of a concept C which is defined in the obvious way such that $C \in \operatorname{sub}(C)$.

In the following, we denote concept names with A and B, concepts with C and D, roles with R, abstract features with f, concrete features with g, paths with u, and predicates with P. As usual, we use the following abbreviations:

- $\exists f_{1} \cdots f_{n} . C$ for $\exists f_{1} \cdots \exists f_{n} . C$,
- $\forall f_{1} \cdots f_{n} . C$ for $\forall f_{1} \cdots \forall f_{n} . C$, and
- $\left(f_{1} \cdots f_{n} g\right) \uparrow$ for $\forall f_{1} . \cdots \forall f_{n} . g \uparrow$.

The syntactical part of a description logic is usually given by a concept language and a so-called TBox formalism. The TBox formalism is used to represent the terminological knowledge of an application domain and is introduced in the following.

Definition 3 (TBoxes). Let A be a concept name and C be a concept. Then $A \doteq C$ is a concept definition. Let \mathcal{T} be a finite set of concept definitions.

[^0]- A concept name A directly uses a concept name B in \mathcal{T} if there is a concept definition $A \doteq C$ in \mathcal{T} such that B appears in C. Let uses be the transitive closure of "directly uses".
- \mathcal{T} is called acyclic if there is no concept name A such that A uses itself in \mathcal{T}.
- If \mathcal{T} is acyclic, and the left-hand sides of all concept definitions in \mathcal{T} are unique, then \mathcal{T} is called a $T B o x$.

TBoxes can be thought of as sets of macro definitions, i.e., the left-hand side of every concept definition is an abbreviation for the right-hand side of the concept definition. In the DL literature, researchers often consider TBox formalisms which are more expressive than the one just introduced. For example, one may admit cyclic TBoxes [22; 26] or so called general TBoxes in which the left-hand sides of concept definitions may be arbitrary concepts instead of just concept names [7; 15]. However, we will see that admitting general TBoxes makes reasoning with $\mathcal{A L C}(\mathcal{D})$ (and hence also $\mathcal{A L C \mathcal { L }}(\mathcal{D})$) undecidable. We now define the semantics of $\mathcal{A L C I}(\mathcal{D})$.
Definition 4 (Semantics). An interpretation \mathcal{I} is a pair $\left(\Delta_{\mathcal{I}},{ }^{\mathcal{I}}\right)$, where $\Delta_{\mathcal{I}}$ is a set called the domain and ${ }^{\mathcal{I}}$ the interpretation function. The interpretation function maps

- each concept name C to a subset $C^{\mathcal{I}}$ of $\Delta_{\mathcal{I}}$,
- each role name R to a subset $R^{\mathcal{I}}$ of $\Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$,
- each abstract feature f to a partial function $f^{\mathcal{I}}$ from $\Delta_{\mathcal{I}}$ to $\Delta_{\mathcal{I}}$, and
- each concrete feature g to a partial function $g^{\mathcal{I}}$ from $\Delta_{\mathcal{I}}$ to $\Delta_{\mathcal{D}}$.

If $u=f_{1} \cdots f_{n} g$ is a path, then $u^{\mathcal{I}}(a)$ is defined as $f_{1}^{\mathcal{I}} \cdots f_{n}^{\mathcal{I}} \quad g^{\mathcal{I}}$, where denotes function composition and $f_{1} \quad f_{2}(a)=f_{2}\left(f_{1}(a)\right)$ for f_{1} and f_{2} functions. The interpretation function is extended to arbitrary roles and concepts as follows:

$$
\begin{aligned}
\left(R^{-}\right)^{\mathcal{I}} & :=\left\{(a, b) \mid(b, a) \in R^{\mathcal{I}}\right\} \\
(C \sqcap D)^{\mathcal{I}} & :=C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & :=C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\neg C)^{\mathcal{I}} & :=\Delta_{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(\exists R . C)^{\mathcal{I}} & :=\left\{a \in \Delta_{\mathcal{I}} \mid\left\{b \mid(a, b) \in R^{\mathcal{I}}\right\} \cap C^{\mathcal{I}} \neq \emptyset\right\} \\
(\forall R . C)^{\mathcal{I}} & :=\left\{a \in \Delta_{\mathcal{I}} \mid\left\{b \mid(a, b) \in R^{\mathcal{I}}\right\} \subseteq C^{\mathcal{I}}\right\} \\
\left(\exists u_{1}, \ldots, u_{n} . P\right)^{\mathcal{I}} & :=\left\{a \in \Delta_{\mathcal{I}} \mid u_{i}^{\mathcal{I}}(a)=x_{i} \text { for } 1 \leq i \leq n \text { and }\left(x_{1}, \ldots, x_{n}\right) \in P^{\mathcal{D}}\right\} \\
(g \uparrow)^{\mathcal{I}} & :=\left\{a \in \Delta_{\mathcal{I}} \mid g^{\mathcal{I}}(a) \text { undefined }\right\}
\end{aligned}
$$

Let C be a concept and \mathcal{T} be a TBox. If $C^{\mathcal{I}} \neq \emptyset$, then \mathcal{I} is called a model for C. If $A^{\mathcal{I}}=D^{\mathcal{I}}$ for all $A \doteq D \in \mathcal{T}$, then \mathcal{I} is called a model for \mathcal{T}. If R is a role $(g$ a concrete feature) and we have $(a, b) \in R^{\mathcal{I}}\left(g^{\mathcal{I}}(x)=y\right)$, then b is called R-filler of a (y g-filler of x) in \mathcal{I}.

Throughout this paper, we will call elements from $\Delta_{\mathcal{I}}$ abstract objects and elements from $\Delta_{\mathcal{D}}$ concrete objects. Our definition of $\mathcal{A L C}(\mathcal{D})$ differs slightly from the original version which was introduced in [1]. Instead of separating concrete and abstract features, Baader and Hanschke define only one type of feature which is interpreted as a partial function from $\Delta_{\mathcal{I}}$ to $\Delta_{\mathcal{I}} \cup \Delta_{\mathcal{P}}$. Obviously, Baader and Hanschke's logic is slightly more expressive than ours. However, in knowledge representation it seems rather hard to find any cases in which the additional expressiveness is really needed. Furthermore, separating concrete and abstract features allows a clearer algorithmic treatment and clearer proofs.

To avoid considering roles such as R^{--}, we define a function Inv which returns the inverse of a role. More precisely, $\operatorname{Inv}(R)=R^{-}$if R is a role name, and $\operatorname{Inv}(R)=S$ if $R=S^{-}$. We generally assume that concepts contain only roles of the form R and R^{-}(where R is a role name) which can obviously be done without loss of generality. The basic reasoning problems on concepts are defined as follows.

Definition 5 (Inference Problems). Let C and D be concepts. C subsumes D w.r.t. a TBox \mathcal{T} (written $D \sqsubseteq \mathcal{T} C$) iff

$$
D^{\mathcal{I}} \subseteq C^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathcal{T}
$$

C is satisfiable w.r.t. a TBox \mathcal{T} iff there exists a model of both \mathcal{T} and C. Both inferences are also considered without reference to TBoxes: C subsumes D iff C subsumes D w.r.t. the empty TBox. C is satisfiable iff it is satisfiable w.r.t. the empty TBox.

It is well-known that (un)satisfiability and subsumption can be mutually reduced to each other, i.e., $C \sqsubseteq \mathcal{T} D$ iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{T} and C is satisfiable w.r.t. \mathcal{T} iff we do not have $C \sqsubseteq \mathcal{T} \perp$ (where \perp abbreviates $A \sqcap \neg A$ for an arbitrary concept name $A)$. We prove decidability of satisfiability and subsumption of $\mathcal{A L C \mathcal { L }}(\mathcal{D})$-concepts in Section 4. Throughout this paper, we call two concepts C and D equivalent iff C subsumes D and D subsumes C.

2.2 The Description Logic $\mathcal{A L C R} \mathcal{P} \mathcal{I}(\mathcal{D})$

The Description Logic $\mathcal{A L C} \mathcal{R} \mathcal{P}(\mathcal{D})$ was introduced in [11] and extends $\mathcal{A L C}(\mathcal{D})$ with a role-forming concrete domain constructor, i.e., it allows the definition of roles with reference to the concrete domain. In this section, we extend the logic $\mathcal{A L C \mathcal { L }}(\mathcal{D})$ with this role-forming constructor.

Definition 6 (Predicate Roles). A predicate role is an expression of the form

$$
\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) \cdot P
$$

where P is an $n+m$-ary predicate. The semantics is given as follows:

$$
\begin{aligned}
& \left(\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) \cdot P\right)^{\mathcal{I}}:= \\
& \quad\left\{(a, b) \in \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}} \mid u_{i}^{\mathcal{I}}(a)=x_{i} \text { for } 1 \leq i \leq n,\right. \\
& \left.v_{i}^{\mathcal{I}}(b)=y_{i} \text { for } 1 \leq i \leq m, \text { and }\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in P^{\mathcal{D}}\right\}
\end{aligned}
$$

With \mathcal{R}, we denote the set of predicate roles. The set of $\mathcal{A L C R P I}(\mathcal{D})$ roles $\widehat{\mathcal{R}}$ is defined as $\widehat{N_{R}} \cup \mathcal{R} \cup\left\{R^{-} \mid R \in \mathcal{R}\right\}$. An $\operatorname{ALCR} \mathcal{P}(\mathcal{D})$-concept is an $\mathcal{A L C I}(\mathcal{D})$ concept whose roles are from $\widehat{\mathcal{R}}$. Hence, in $\mathcal{A L C} \mathcal{R} \mathcal{I}(\mathcal{D})$, predicate roles may be used everywhere where a role name from $N_{R} \backslash N_{a F}$ is allowed in $\mathcal{A L C I}(\mathcal{D})$. An $\mathcal{A} \mathcal{L C} \mathcal{P} \mathcal{I}(\mathcal{D})$-concept which does not contain the converse constructor on roles is called an $\mathcal{A L C} \mathcal{R} \mathcal{P}(\mathcal{D})$-concept. In the following, a role which is either a predicate role or the inverse of a predicate role is called complex role.
$\mathcal{A} \mathcal{C} \mathcal{R} \mathcal{P}(\mathcal{D})$ TBoxes are defined in the obvious way. For example, the following concept is an $\mathcal{A L C R P I}(\mathcal{D})$-concept:

$$
A \sqcap \exists g, f g \cdot P \sqcap \forall f . \forall(\exists(g),(g) . P)^{-} . \neg A
$$

This concept is unsatisfiable since every domain object satisfying it would have to be in both A and $\neg A$ which is impossible. In [10], it is proved that satisfiability and subsumption of $\mathcal{A} \mathcal{C} \mathcal{R} \mathcal{P}(\mathcal{D})$-concepts is undecidable. Furthermore, as shown in [11], there exists a decidable fragment of the logic $\operatorname{ALC} \mathcal{R} \mathcal{P}(\mathcal{D})$ which contains $\mathcal{A L C}(\mathcal{D})$ as a sublogic. In the following, we introduce an analogous fragment of the $\operatorname{logic} \mathcal{A L C R P I}(\mathcal{D})$. To do this, we fist need to define the negation normal form for concepts and describe how concepts can be converted into this form.

Definition 7 (NNF). An $\mathcal{A L C R} \mathcal{P} \mathcal{I}(\mathcal{D})$-concept is said to be in negation normal form (NNF) if negation occurs in front of concept names, only. The following rewrite rules preserve equivalence. Exhaustive rule application yields a concept which is in NNF.

$$
\begin{aligned}
\neg(C \sqcap D) & \Longrightarrow \neg C \sqcup \neg D \quad \neg(C \sqcup D) \Longrightarrow \neg C \sqcap \neg D \quad \neg \neg C \Longrightarrow C \\
\neg(\exists R \cdot C) & \Longrightarrow(\forall R . \neg C) \quad \neg(\forall R . C) \Longrightarrow(\exists R . \neg C) \\
\neg\left(\exists u_{1}, \ldots, u_{n} \cdot P\right) & \Longrightarrow \exists u_{1}, \ldots, u_{n} . \bar{P} \sqcup u_{1} \uparrow \sqcup \cdots \sqcup u_{n} \uparrow \\
\neg(g \uparrow) & \Longrightarrow \exists g . \top_{\mathcal{D}}
\end{aligned}
$$

We may now define restricted concepts.
Definition 8 (Restricted $\mathcal{A L C} \mathcal{R} \mathcal{I}(\mathcal{D})$-concept). An $\mathcal{A} \mathcal{L} \mathcal{R} \mathcal{P} \mathcal{I}(\mathcal{D})$-concept C is called restricted iff the result C^{\prime} of converting C to NNF satisfies the following conditions:

1. For any $\forall R . D \in \operatorname{sub}\left(C^{\prime}\right)$, where R is a complex role, $\operatorname{sub}(D)$ does not contain any concepts of the form $\exists u_{1}, \ldots, u_{n} . P$ or $\exists S$. E, where S is a complex role.
2. For any $\exists R . D \in \operatorname{sub}\left(C^{\prime}\right)$, where R is a complex role, $\operatorname{sub}(D)$ does not contain any concepts of the form $\exists u_{1}, \ldots, u_{n} . P$ or $\forall S$. E, where S is a complex role.

All $\mathcal{A} \mathcal{L C} \mathcal{R P I}(\mathcal{D})$-concepts we use in this paper (also inside TBoxes) are restricted. Hence, we will in the following write " $\mathcal{A L C R} \mathcal{P I}(\mathcal{D})$-concept" for "restricted $\mathcal{A L C R} \mathcal{Z} \mathcal{I}(\mathcal{D})$ concept". Note that the et of restricted $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{I}(\mathcal{D})$-concepts is closed negation, and, hence, subsumption of restricted $\mathcal{A} \mathcal{L} \mathcal{R} \mathcal{P} \mathcal{I}(\mathcal{D})$-concepts can be reduced to satisfiability of restricted $\mathcal{A L C R} \mathcal{I} \mathcal{I}(\mathcal{D})$-concepts.

The restrictions given in [11] for the logic $\operatorname{ALCR} \mathcal{P}(\mathcal{D})$ are slightly less restrictive than the ones given here. They additionally admit concepts of the form $\exists u_{1}, \ldots, u_{n} . P$ "inside" universal restrictions of the form $\forall R . D$, where R is a predicate role, provided that (i) the feature chains u_{1}, \ldots, u_{n} do not contain any abstract features and (ii) the $\exists u_{1}, \ldots, u_{n} . P$ concept is not nested inside additional value or exists restrictions in $\forall R . D$. For example, the concept $\forall(\exists(g),(g) . P) .(A \sqcap \exists g . P)$ is restricted in the sense of [11] but not in our sense. The concepts $\forall(\exists(g),(g) . P) . \exists S$. $(A \sqcap \exists g . P)$ with S a role name and $\forall(\exists(g),(g) . P) .(A \sqcap \exists f g . P)$ are not restricted in either sense. The reason for the more restricted definition given above is the presence of the inverse role constructor. When constructing a tableau algorithm for $\mathcal{A L C R} \mathcal{P} \mathcal{I}(\mathcal{D})$ with the weaker restrictions given in [11], one runs into termination problems. ${ }^{2}$ Consider, for example, the concept

$$
\exists g . \top_{\mathcal{D}} \sqcap \exists f^{-} g . \top_{\mathcal{D}} \sqcap \forall\left(\exists(g),(f g) . P_{2}\right) .\left(\exists g . \top_{\mathcal{D}} \sqcap \exists f^{-} . \top\right)
$$

where $P_{2}^{\mathcal{D}}=\Delta_{\mathcal{D}} \times \Delta_{\mathcal{D}}$. A straightforward tableau algorithm would generate an infinite " f - -path" of objects, each of which has a "concrete g-successor". In fact, it seems rather easy to prove undecidability of $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{I}(\mathcal{D})$ with the weaker restrictions using a technique similar to the one used in [10] to show undecidability of unrestricted $\mathcal{A L C R} \mathcal{P}(\mathcal{D})$.

In Section 4, we prove that satisfiability and subsumption of restricted $\mathcal{A L C R} \mathcal{R} \mathcal{I}(\mathcal{D})$ concepts (as defined above) are decidable in nondeterministic exponential time. Before we do this, we establish several lower bounds for the complexity of reasoning with concrete domains.

3 Lower Complexity Bounds

In this section, we define a NExpTime-complete variant of Post's Correspondence Problem (PCP) and a concrete domain \mathcal{P}. We then reduce the NExpTimE-complete variant of the PCP to the satisfiability of $\mathcal{A L C}(\mathcal{P})$-concepts w.r.t. TBoxes, the satisfiability of $\mathcal{A L C I}(\mathcal{P})$-concepts, and the satisfiability of $\operatorname{ALC} \mathcal{R} \mathcal{P}(\mathcal{P})$-concepts (the latter two without reference to TBoxes).

3.1 Post's Correspondence Problem

Post's Correspondence Problem was introduced by Emil Post [23] and is a very useful undecidable problem which is defined as follows.

Definition 9 (PCP). A Post Correspondence Problem (PCP) P is given by a finite, non-empty list $\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ of pairs of non-empty words over some alphabet $\Sigma .^{3}$ A sequence of integers i_{1}, \ldots, i_{m}, with $m \geq 1$, is called a solution for P iff

$$
\ell_{i_{1}} \cdots \ell_{i_{m}}=r_{i_{1}} \cdots r_{i_{m}}
$$

[^1]Let $f(n)$ be a mapping from \mathbb{N} to \mathbb{N} and let $|P|$ denote the sum of the lengths of all words in the PCP P, i.e.,

$$
|P|=\sum_{1 \leq i \leq k}\left|\ell_{i}\right|+\left|r_{i}\right| .
$$

A solution i_{1}, \ldots, i_{m} is called an $f(n)$-solution iff $m \leq f(|P|)$. With $f(n)-P C P$, we denote the version of the PCP that admits only $f(n)$-solutions.

In the following, when talking of "the PCP" (as opposed to "a PCP"), we refer to the problem of deciding whether a given PCP P has a solution. Undecidability of the (general) PCP was first proved in [23] and later reproved by Hopcroft and Ullman in [14]. In [9], a variant of the PCP is listed as an NP-complete problem (problem number [SR11]). In this variant, a PCP is given by a finite lists of word pairs $\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ and a positive integer $K \leq k$. As solutions, only sequences of length at most K are admitted. Inspired by this result, we prove NExpTimecompleteness of the $2^{n}+1-\mathrm{PCP}$. The main di culty is proving NExPTime-hardness. First, we introduce another variant of the PCP.

Definition 10 (MPCP). Let $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ be a PCP. A solution i_{1}, \ldots, i_{m} for P is called an $M P C P$-solution iff $i_{1}=1$. With $M P C P$, we denote the version of the PCP that admits only MPCP-solutions.

For a function $f(n)$ from \mathbb{N} to \mathbb{N}, we define $f(n)$-MPCPs and $f(n)$-MPCP-solutions in the obvious way. The next lemma illustrates the relationship between the 2^{n}-PCP and the 2^{n}-MPCP.

Lemma 11. If the 2^{n} - $M P C P$ is NExpTime-hard, then the $2^{n}+1-P C P$ is NExpTimehard.

Proof It has to be shown that the 2^{n}-MPCP reduces to the $2^{n}+1-\mathrm{PCP}$. Hopcroft and Ullman give a reduction from the MPCP to the PCP [14], i.e., they define a translation γ which maps MPCPs to PCPs such that P has an MPCP-solution iff $\gamma(P)$ has a solution. A close examination reveals that P has an MPCP-solution of length at most i iff $\gamma(P)$ has a solution of length at most $i+1$.

By the lemma just proved, it is su cient to show that the 2^{n}-MPCP is NExPTiMEhard. Before we do this, we give a lemma showing the relationship between different variants of the MPCP.
Lemma 12. Let $g(n)=2^{a * n^{d}}$, where $a \in \mathbb{N}_{+}$and $d \in \mathbb{N}_{+}$are constants. ${ }^{4}$ If the $g(n)-M P C P$ is NEXPTime-hard, then the $2^{n}-M P C P$ is NEXPTime-hard.

Proof We need to show that the $g(n)$-MPCP reduces to the 2^{n}-MPCP. Let $P=$ $\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ be an MPCP with $|P|=n$. W.l.o.g., we may assume $n>2$ since the claim is trivial if $n=2$.

For the reduction, augment P by new Σ^{+}-words ℓ_{k+1} and r_{k+1} yielding P^{\prime} such that $\left|P^{\prime}\right|=a * n^{d}$ and ℓ_{k+1} and r_{k+1} do not appear in solutions of P^{\prime}. It is easy to

[^2]see that this is possible: We need to increase the size of P by $m=a * n^{d}-n$. Pick a symbol σ not appearing in P (it is not important whether $\sigma \in \Sigma$ since we may just change the underlying alphabet). We set $\ell_{k+1}:=\sigma^{m-1}$ and $r_{k+1}:=\sigma$. Since $n>2$, we have $m>2$ and hence it is obvious that ℓ_{k+1} and r_{k+1} do not appear in solutions of P^{\prime}. Furthermore, P has a $g(x)$-solution iff P^{\prime} has a 2^{n}-solution.

In order to do show that the 2^{n}-MPCP is NExPTIME-hard, we use a reduction of the acceptance problem of Turing Machines.

Definition 13 (Turing Machine). A nondeterministic Turing Machine is given by a tuple $M:=\left(Q, \Gamma,, q_{0}, Q_{f}\right) . Q$ is a finite set of states where $q_{0} \in Q$ is the initial state and $Q_{f} \subseteq Q$ is a set of final states. Γ is a finite set of symbols with $\Gamma \cap Q=\emptyset$ which always contains the special symbol B called the blank symbol. Finally, is a transition function which maps $Q \times \Gamma$ to the power set of $Q \times \Gamma \times\{$ left, right, stay $\}$. Let $M=\left(Q, \Gamma,, q_{0}, Q_{f}\right)$ be a (nondeterministic) Turing Machine. An $I D$ uqv of M is a word in $\Gamma^{*} Q \Gamma^{*}$. An ID has the usual interpretation, i.e., it describes the inscription of the infinite tape (all tape cells "before u " and "behind v " are labeled with B), the current state q, and the head position of M, which is on the rightmost symbol of u. The usual transition relation on IDs is denoted by \vdash. Intuitively. $u q v \vdash u^{\prime} q^{\prime} v^{\prime}$ if a single step of M in ID $u q v$ may result in ID $u^{\prime} q^{\prime} v^{\prime}$. An exact definition is omitted and can be found in any book on recursion theory, see e.g. [14]. By \vdash^{*}, we denote the reflexive transitive closure of \longmapsto.
M accepts an input w (given as an initial tape inscription) iff there exists a $q_{f} \in Q_{f}$ such that $q_{0} w \vdash^{*} u q_{f} v$ for some $u, v \in \Gamma^{*}$.
We now give a transformation from Turing Machines and their inputs to MPCPs which is crucial for proving the central result of this section. The transformation is identical to the one used by Hopcroft and Ullman to prove undecidability of the general PCP [14]. We repeat it for the sake of completeness. Let $M=\left(Q, \Gamma,, q_{0}, Q_{f}\right)$ be a Turing Machine and fix an input w for M. We now define the corresponding $\operatorname{MPCP} P_{w}^{M}=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$. The first pair $\left(\ell_{1}, r_{1}\right)$ is defined as

$$
\ell_{1}:=\sharp \quad r_{1}:=\sharp q_{0} w \sharp .
$$

The set of remaining pairs $\left(\ell_{i}, r_{i}\right)$ is partitioned into 4 groups and can be found in Figure 1. As stated by Hopcroft and Ullman, if P_{w}^{M} has a solution, then this solution corresponds to a word starting with $\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n} q_{n} v_{n}$, where subwords between successive $\#$'s are successive IDs in a computation of M with input w and q_{n} is a final state.

In the following, we fix a turing machine M and a word w and prove several properties of the PCP P_{w}^{M}. We call a pair of words (x, y) a partial solution iff x is a prefix of y and there exists a sequence of integers i_{1}, \ldots, i_{m} such that $x=\ell_{i_{1}} \cdots \ell_{i_{m}}$ and $y=r_{i_{1}} \cdots r_{i_{m}}$. Hopcroft and Ullman prove the following lemma.

Lemma 14. Suppose that there exists a sequence of IDs $q_{0} w \longmapsto u_{1} q_{1} v_{1} \longmapsto \cdots \vdash u_{n} q_{n} v_{n}$. Then there exists a partial solution

$$
\begin{aligned}
(x, y)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp\right) .
\end{aligned}
$$

Group I

Left word	Right word	
X	X	for each $X \in \Gamma$
\sharp	\sharp	

Group II. For each $q \in Q \backslash Q_{f}, p \in Q$, and $X, Y, Z \in \Gamma$:
Left word Right word

$q X$	$Y p$	if $\quad(q, X)=(p, Y, R)$
$Z q X$	$p Z Y$	if $(q, X)=(p, Y, L)$
$q \sharp$	$Y p \sharp$	if $(q, B)=(p, Y, R)$
$Z q \sharp$	$p Z Y \sharp$	if $\quad(q, B)=(p, Y, L)$

Group III. For each $q \in Q_{f}$ and $X, Y \in \Gamma$:
Left word Right word

$X q Y$	q
$X q$	q
$q Y$	q

Group IV.

$$
\begin{array}{ccc}
\text { Left word } & \text { Right word } \\
q \sharp \sharp & \sharp & \text { for each } q \in Q_{f}
\end{array}
$$

Figure 1: The MPCP translation.

In the following, we denote the length of a word w with $|w|$.
Lemma 15. If there exists a partial solution

$$
\begin{aligned}
(x, y)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp\right),
\end{aligned}
$$

with $q_{n} \in Q_{f}$, and $\left|u_{i} v_{i}\right| \leq n+|w|$ for $1 \leq i \leq n$, then there exists a (partial) solution

$$
\begin{aligned}
\left(x^{\prime}, y^{\prime}\right)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp \cdots \sharp u_{r} q_{r} v_{r} \sharp \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp \cdots \sharp u_{r} q_{r} v_{r} \sharp \sharp\right)
\end{aligned}
$$

with $r \leq 2 n+|w|$ and $\left|u_{i} v_{i}\right| \leq n+|w|$ for all $1 \leq i \leq r$.
Proof By induction over $\max \left(\left|u_{n}\right|,\left|v_{n}\right|\right)$, it can be shown that each partial solution

$$
\begin{aligned}
(x, y)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp\right),
\end{aligned}
$$

with $q_{n} \in Q_{f}$ and $\max \left(\left|u_{n}\right|,\left|v_{n}\right|\right)>0$ can be extended to a partial solution

$$
\begin{aligned}
(x, y)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp u_{n+1} q_{n} v_{n+1} \sharp\right),
\end{aligned}
$$

where $\max \left(\left|u_{n}\right|,\left|v_{n}\right|\right)>\max \left(\left|u_{n+1}\right|,\left|v_{n+1}\right|\right)$. Both the induction start and step can easily be shown by using (at most) $\left|u_{n}\right|+\left|v_{n}\right|$ concatenations of pairs from Group I and a single concatenation of a pair from Group III.

Obviously, the induction needs at most $\left|u_{n}\right|+\left|v_{n}\right|$ steps, and, hence, it follows that (x, y) can be extended to a partial solution

$$
\begin{aligned}
\left(x^{\prime \prime}, y^{\prime \prime}\right)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp \cdots \sharp u_{r-1} q_{n} v_{r-1} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp \cdots \sharp u_{r-1} q_{n} v_{r-1} \sharp q_{n} \sharp\right)
\end{aligned}
$$

where $q_{n} \in Q_{f}$ and $r \leq n+\left|u_{n} v_{n}\right|$. Since $\left|u_{n} v_{n}\right| \leq n+|w|$, we have (i) $r \leq 2 n+|w|$ and (ii) $\left|u_{i} v_{i}\right| \leq n+|w|$ for all $1 \leq i \leq r$ by construction of $\left(x^{\prime \prime}, y^{\prime \prime}\right)$. A single concatenation with the pair from Group IV yields the desired solution $\left(x^{\prime}, y^{\prime}\right)$.

We now establish the lower bound for the 2^{n}-MPCP.
Proposition 16. It is NExpTime-hard to decide whether a $2^{n}-M P C P$ has a solution.
Proof Let M be a Turing Machine which solves a NExpTime-complete problem and stops after at most $2^{|w|^{d}}$ steps on any input w. W.l.o.g., we assume that M makes at least $\max \{|w|, 2\}$ steps on w before stopping. ${ }^{5}$ The reason for this will become clear later. We show that

$$
\begin{equation*}
M \text { accepts } w \text { iff } P_{w}^{M} \text { has a } 2^{a *\left|P_{w}^{M}\right|^{d}} \text {-solution } \tag{*}
\end{equation*}
$$

for some integer $a>2$. It then remains to apply Lemma 12 to obtain NExpTimehardness.

First for the "only if" direction. Let w be an input to M and assume that M accepts w in n steps, where $n \leq 2^{|w|^{d}}$. Then there exists a sequence of IDs $q_{0} w \longmapsto u_{1} q_{1} v_{1} \longmapsto \cdots \vdash u_{n} q_{n} v_{n}$ such that $q_{n} \in Q_{f}$. By Lemma 14, there exists a partial solution

$$
\begin{aligned}
(x, y)= & \left(\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp,\right. \\
& \left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp\right),
\end{aligned}
$$

for P_{w}^{M}. Since a Turing Machine writes at most one symbol per step, we obviously have $\left|u_{i} v_{i}\right| \leq n+|w|$ for $1 \leq i \leq n$. By Lemma 15 , there exists a solution $I=i_{1}, \ldots, i_{m}$ corresponding to a word

$$
w_{I}=\ell_{i_{1}} \cdots \ell_{i_{m}}=r_{i_{1}} \cdots r_{i_{m}}=\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{r} q_{r} v_{r} \sharp \sharp
$$

with $r \leq 2 n+|w|$ and $\left|u_{i} v_{i}\right| \leq n+|w|$ for all $1 \leq i \leq r$. Since, by assumption, M makes at least $|w|$ steps if started on w, it follows that $r \leq 3 n$ and $\left|u_{i} v_{i}\right| \leq 2 n$ for all $1 \leq i \leq r$. We need an estimation for the length m of the solution i_{1}, \ldots, i_{m}. Obviously, we have $m \leq r *(2 n+2)+2$ since m is clearly bounded by the number of symbols in w_{I}, and the length of each subword of w_{I} of the form $\sharp u_{1} q_{i} v_{i}$ is bounded by $2 n+2$. It follows that $m \leq 6 n^{2}+6 n+2$ and hence $m \leq n^{6}$ since M makes at least

[^3]2 steps before stopping, i.e., $n>2$. Since $m \leq n^{6}$ and $n \leq 2^{|w|^{d}}$, we have $m \leq 2^{6 *|w|^{d}}$, and, since $|w| \leq\left|P_{w}^{M}\right|$, we have $m \leq 2^{6 *\left|P_{w}^{M}\right|^{d}}$.

Now for the "if" direction. Assume that M does not accept w, i.e., no computation of M on w reaches a final state. We claim that, for each partial solution (x, y) of P_{w}^{M}, there exists a sequence of IDs $q_{0} w \longmapsto u_{1} q_{1} v_{1} \longmapsto \cdots \longmapsto-u_{n} q_{n} v_{n}$ such that x is a prefix of

$$
\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n},
$$

and y is a prefix of

$$
\left.\sharp q_{0} w \sharp u_{1} q_{1} v_{1} \sharp \cdots \sharp u_{n-1} q_{n-1} v_{n-1} \sharp u_{n} q_{n} v_{n} \sharp u_{n}\right) .
$$

It is straightforward to prove this by induction on the length m of the sequence of integers i_{1}, \ldots, i_{m} corresponding to the partial solution (x, y). Obviously, this implies that the pair from Group IV do not appear in partial solutions since this pair refers to final states and final states are never reached by computations of M on w. It follows that, for all partial solutions $(x, y), x$ contains strictly more \sharp symbols than y which implies $|x|>|y|$. Hence, there exists no solution for P_{w}^{M}.

The main result of this section is now easily obtained.
Theorem 17. It is NEXPTIME-complete to decide whether a $2^{n}+1-P C P$ has a solution.

Proof NExpTime-hardness is an immediate consequence of Proposition 16 and Lemma 11. To decide the $2^{n}+1-\mathrm{PCP}$, a nondeterministic Turing Machine may simply "guess" a $2^{n}+1$-solution and then check its validity. Since it is not hard to see that this can be done in exponential time, the $2^{n}+1-\mathrm{PCP}$ is in NExpTime.

3.2 A Concrete Domain for Encoding the PCP

In this section, we introduce a concrete domain that will allow to reduce the $2^{n}+1$ PCP to concept satisfiability.

Definition 18 (Concrete Domain \mathcal{P}). Let Σ be an alphabet. The concrete domain \mathcal{P} is defined by setting $\Delta_{\mathcal{P}}:=\Sigma^{*}$ and defining $\Phi_{\mathcal{P}}$ as the smallest set containing the following predicates:

- unary predicates word and nword with word $^{\mathcal{P}}=\Delta_{\mathcal{P}}$ and $n w o r d^{\mathcal{P}}=\emptyset$,
- unary predicates $={ }_{\epsilon}$ and $\neq{ }_{\epsilon}$ with $={ }_{\epsilon}^{\mathcal{P}}=\{\epsilon\}$ and $\not \neq_{\epsilon}^{\mathcal{P}}=\Sigma^{+}$,
- a binary equality predicate $=$ and a binary inequality predicate \neq, and
- for each $w \in \Sigma^{+}$, two binary predicates conc_{w} and nconc c_{w} with

$$
\operatorname{conc}_{w}^{\mathcal{P}}=\{(u, v) \mid v=u w\} \text { and } n \operatorname{conc} c_{w}^{\mathcal{P}}=\{(u, v) \mid v \neq u w\}
$$

Since the definition of \mathcal{P} depends on Σ, it would be more precise to define a concrete domain \mathcal{P}_{Σ} for each alphabet Σ. For simplicity, we assume Σ to be fixed. It is obvious that $\Phi_{\mathcal{P}}$ is closed under negation. To show that \mathcal{P} is admissible, we need to show that the satisfiability of finite predicate conjunctions is decidable. We do this by developing an appropriate algorithm.

We start by introducing a normal form for predicate conjunctions. Let c be a predicate conjunction. Then there exists a predicate conjunction c^{\prime} which is satisfiable iff c is satisfiable and which contains only predicates from the set $\left\{\right.$ nword, $={ }_{\epsilon}, \neq$, conc $\left._{w}\right\}$. The conjunction c^{\prime} can be computed from c by applying the following normalization steps.

1. Eliminate all occurrences of the word predicate from c and call the result c_{1}.
2. Let x be a variable not appearing in c_{1}. Augment c_{1} by the conjunct $={ }_{\epsilon}(x)$ and then replace every occurrence of $\neq \epsilon(y)$ in c_{1} with $\neq(x, y)$ calling the result c_{2}.
3. Let $\beta_{1}, \ldots, \beta_{k}$ be all conjuncts in c_{2} which are of the form $n \operatorname{con} c_{w}(x, y)$ and let x_{1}, \ldots, x_{k} be variables not appearing in c_{2}. For each i with $1 \leq i \leq k$ and $\beta_{i}=\operatorname{conc}_{w}(y, z)$, augment c_{2} by the conjuncts $\operatorname{conc}_{w}\left(y, x_{i}\right)$ and $\neq\left(x_{i}, z\right)$. Then delete the conjunct β_{i} from c_{2}. Call the result c_{3}.
4. Remove occurrences of the $=$ predicate from c_{3} by "filtration": Let \sim be the equivalence relation induced by occurrences of the $=$ predicate in c_{3}. For each variable x occurring in c_{3}, substitute every occurrence of x in c_{3} by $[x]_{\sim}$, i.e., by the equivalence class of x w.r.t. \sim. Then delete all occurrences of the $=$ predicate from c_{3}. The result of this step is the normal form c^{\prime} of c.

Obviously, the normalization process preserves satisfiability, i.e., a predicate conjunction c is satisfiable iff its normal form c^{\prime} is satisfiable. The blowup of the size of c produced by the normalization is at most linear.

Before the algorithm itself can be given, we introduce some notions. Let c be a predicate conjunction (not necessarily in normal form). With $V(c)$, we denote the set of variables used in c. The conc-graph $G(c)=(V, E)$ of c is the directed graph described by occurrences of conc_{w} predicates in c, i.e., $V=V(c)$ and $(x, y) \in E$ iff $\operatorname{conc}_{w}(x, y)$ is a conjunct of c for some word w. A conjunction c is said to have a conc-cycle if $G(c)$ has a cycle. The distance $\operatorname{dist}\left(v, v^{\prime}\right)$ of two variables $v, v^{\prime} \in V$ in c is the length of the longest path leading from v to v^{\prime} in $G(c)$. With $\operatorname{lev}(v)$, we denote

$$
\max \left\{k \mid \operatorname{dist}\left(v, v^{\prime}\right)=k \text { and } v^{\prime} \text { is a } \operatorname{sink}\right\}
$$

where a sink is a node which has no outgoing edges. Let $w, w^{\prime} \in \Sigma^{+}$. The function pre is defined as follows:

$$
\operatorname{pre}\left(w, w^{\prime}\right)= \begin{cases}v & \text { if } w=v w^{\prime} \text { with } v \neq \epsilon \\ \text { undefined } & \text { if no such } v \text { exists }\end{cases}
$$

The algorithm for deciding the satisfiability of conjunctions of predicates in normal

```
define procedure sat-\mathcal{P}(c)
    if c contains the nword predicate or norm(c)= inconsistent then
        return inconsistent
    for i}=1\mathrm{ to }|V(c)|\mathrm{ do
        while there exist }x,y,\mp@subsup{y}{}{\prime}\inV(c)\mathrm{ with lev (x) =i
                    and w, w'\in \Sigma \Sigma
                    conc
            if neither w is a su x of w' not vice versa then
                    return inconsistent
                w.l.o.g., assume that w' is a su x of w.
                // since norm was just applied, we have w=v\mp@subsup{w}{}{\prime}\mathrm{ for a }v\not=\epsilon\mathrm{ .}
                replace conc}\mp@subsup{w}{w}{}(y,x) by conc cre(w,\mp@subsup{w}{}{\prime})(y,\mp@subsup{y}{}{\prime})\mathrm{ in c
                if norm(c) = inconsistent then
                    return inconsistent
    if there exist }x,y\inV(c)\mathrm{ and a }w\in\mp@subsup{\Sigma}{}{+}\mathrm{ such that
                conc
        return inconsistent
    if there are }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{},\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{k}{}\inV(c
                and }\mp@subsup{w}{1}{},\ldots,\mp@subsup{w}{k-1}{}\in\mp@subsup{\Sigma}{}{+}\mathrm{ such that
                (=}\mp@subsup{\epsilon}{\epsilon}{}(\mp@subsup{x}{1}{}),=\mp@subsup{=}{\epsilon}{}(\mp@subsup{y}{1}{})\mathrm{ are in c or }\mp@subsup{x}{1}{}=\mp@subsup{y}{1}{})\mathrm{ , and }\not=(\mp@subsup{x}{k}{},\mp@subsup{y}{k}{})\mathrm{ is in c and
                conc}\mp@subsup{w}{\mp@subsup{w}{i}{}}{}(\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{})\mathrm{ and }\mp@subsup{\operatorname{conc}}{\mp@subsup{w}{i}{}}{(}(\mp@subsup{y}{i}{},\mp@subsup{y}{i+1}{})\mathrm{ are in c for 1}\leqi\leqk-1 then
        return inconsistent
    return consistent
define procedure norm(c) // c is passed "by reference" (see text)
    while there exist }x,y,\mp@subsup{y}{}{\prime}\inV(c)\mathrm{ with }y\not=\mp@subsup{y}{}{\prime}\mathrm{ and a }w\in\mp@subsup{\Sigma}{}{+}\mathrm{ such that
                conc}w(y,x) and \mp@subsup{\operatorname{conc}}{w}{}(\mp@subsup{y}{}{\prime},x) are in c do
        replace every occurrence of }\mp@subsup{y}{}{\prime}\mathrm{ in c by }
    if c contains a conc-cycle then
        return inconsistent
    if there exist }x,y\inV(c)\mathrm{ and }w,\mp@subsup{w}{}{\prime}\in\mp@subsup{\Sigma}{}{+}\mathrm{ with }w\not=\mp@subsup{w}{}{\prime}\mathrm{ such that
                conc}\mp@subsup{c}{w}{}(y,x)\mathrm{ and }\mp@subsup{\operatorname{conc}}{\mp@subsup{w}{}{\prime}}{}(y,x) are in c then
        return inconsistent
    return consistent
```

Figure 2: The \mathcal{P} satisfiability algorithm.
form can be found in Figure 2. Note that the parameter to norm is passed "by reference", i.e., changes made to c in norm are also effective in the calling procedure. Before the correctness of the algorithm is proved formally, we explain the underlying intuitions. Assume that the satisfiability of a conjunction c_{0} is to be decided. The algorithm repeatedly performs several normalization steps and inconsistency checks. If all normalization is done and no inconsistencies were found, the resulting conjunction is satisfiable. Since the normalization is satisfiability-preserving, this implies satisfia-
bility of c_{0}. The normalizations in the algorithm are concerned with situations of the form

$$
\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)
$$

where several cases can be distinguished:
A1. $y \neq y^{\prime}$ and $w=w^{\prime}$. In this case, y and y^{\prime} describe the same word and can be identified.

A2. $y=y^{\prime}$ and $w \neq w^{\prime}$. In this case, c is unsatisfiable.
A3. $y \neq y^{\prime}$ and neither w is a su x of w^{\prime} nor vice versa. In this case, c is unsatisafiable.

A4. $y \neq y^{\prime}$ and w^{\prime} is a su x of w. We may replace the above situation by $\operatorname{conc}_{\text {pre }\left(w, w^{\prime}\right)}\left(y, y^{\prime}\right), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$.

These cases and several additional inconsistencies checked by the algorithm (e.g., conc-cycles) are discussed in detail in the correctness proof. If all normalization was performed and no inconsistency is found, we have obtained a conjunction c for which the corresponding conc-graph is a forest, i.e., a collection of trees, and which satisfies some additional properties guaranteeing that we can construct a solution for c. We now formally prove correctness and termination of the algorithm. For a conjunction c, let $|c|$ denote the number of conjuncts in c.

Lemma 19 (Correctness and Termination). Let c be an input to sat- \mathcal{P}. The algorithm terminates after $\mathcal{O}\left(|c|^{k}\right)$ steps (where $k \in \mathbb{N}$ is constant) returning consistent if c has a solution and inconsistent otherwise.

Proof We first prove correctness, i.e., that c has a solution if sat- \mathcal{P} returns consistent and that c has no solution if sat- \mathcal{P} returns inconsistent. After doing this, we establish termination. To prove correctness, we walk through the algorithm and examine the performed steps in detail.

If the algorithm returns unsatisfiable in the first if statement, this is either because c contains the nword predicate (in this case, c is obviousy unsatisfiable) or because norm returned unsatisfiable. Hence, let us examine the norm procedure. The while loop eliminates situations of the form $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w}\left(y^{\prime}, x\right)$ with $y \neq y^{\prime}$. In this situation, we clearly have that $(y)=\left(y^{\prime}\right)$ for all solutions for c and hence it is a satisfiability-preserving operation to identify y and y^{\prime}. After this normalization step, norm checks if c contains a conc-cycle or if there is a situation of the form $\operatorname{conc}_{w}(y, x)$, conc $_{w^{\prime}}(y, x)$ with $w \neq w^{\prime}$. Obviously, c is unsatisfiable in both cases.

We now return to the main procedure. The for loop iterates from 1 to $|V(c)|$. The while loop inside the for loop examines situations of the form $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$ with $w \neq w^{\prime}$ and $\operatorname{lev}(x)=i$. Since norm was just applied (note that it is also applied at the end of the while loop), we have $y \neq y^{\prime}$. In the following, we call a situation $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$ with $w \neq w^{\prime}$ and $y \neq y^{\prime}$ a fork for x. If neither w is a su x of w^{\prime} nor vice versa, c is obviously unsatisfiable. If w^{\prime} is a su x of w, replacing $\operatorname{conc}_{w}(y, x)$ by $\operatorname{conc}_{\text {pre }\left(w, w^{\prime}\right)}\left(y, y^{\prime}\right)$ is a satisfiability-preserving operation. Since, in
doing so, we may have created any of the situations that norm checks for, the norm procedure needs to be re-applied. Note that both the elimination of a fork and the application of norm may create new forks $\operatorname{conc}_{\tilde{\tilde{w}}}(\tilde{y}, \tilde{x}), \operatorname{conc}_{\tilde{w}^{\prime}}\left(\tilde{y}^{\prime}, \tilde{x}\right)$. However, it is not hard to see that (in both cases) $\operatorname{lev}(\tilde{x})>\operatorname{lev}(x)$ and hence the newly generated forks will be eliminated during a later step of the for loop. Finally, situations of the form $\operatorname{conc}_{w}(y, x),=_{\epsilon}(x)$ and certain situations involving the \neq predicate are checked for whose existence imply unsatisfiability of c.

We need to show that c has a solution if the algorithm returns consistent. By the above considerations, c has the following properties if consistent is returned:

1. c contains no conc-cycles,
2. c contains no situations of the form $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$ with $y \neq y^{\prime}$,
3. if $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}(y, x)$ are in c, then $w=w^{\prime}$, and
4. if $=_{\epsilon}(x)$ is in c, then there exist no $y \in V(c)$ and $w \in \Sigma^{+}$such that $\operatorname{conc}_{w}(y, x)$ is in c.

Properties 1 and 2 imply that the conc-graph $G(c)=(V, E)$ of c is a forest. We define a solution for c inductively. Our strategy is to start defining (v) for the variables v which are the root of a tree in the forest $G(c)$ and then "move downwards the trees" to define $\left(v^{\prime}\right)$ for all remaining variables v^{\prime}. Since the edges in the trees correspond to conc_{w}-predicates, our choice of (v) for the root v of a tree determines $\left(v^{\prime}\right)$ for all remaining nodes v^{\prime} in the same tree. We must, however, carefully choose (v) for the roots v of the trees to guarantee that all $=_{\epsilon}$ and \neq predicates in c are satisfied. Let t be the number of trees in $G(c)$ and let w_{1}, \ldots, w_{t} be words from Σ^{+}such that

$$
\left|w_{i+1}\right|-\left|w_{i}\right| \geq|V| * \max \left\{w \mid \operatorname{conc}_{w} \text { is used in } c\right\} \text { for } 1 \leq i<t .
$$

For the induction start, fix an ordering on the trees in $G(c)$ and let $x_{1}, \ldots, x_{t} \in V$ such that x_{i} is the root of the i^{\prime} th tree in $G(c)$. For all $1 \leq i \leq t$, set

- $\left(x_{i}\right)=\epsilon$ if $=_{\epsilon}\left(x_{i}\right)$ is in c and
- $\left(x_{i}\right)=w_{i}$ otherwise.

For the induction step, if x is a node with $(x)=w$ and $\operatorname{conc}_{w}^{\prime}(x, y)$ is in c, then set $(y)=w w^{\prime} . \quad$ is well-defined since $G(c)$ is a forest and Property 3 from above holds. Obviously, satisfies all conc_{w} predicates in c. Property 4 from above implies that, if $==_{\epsilon}(x)$ is in c, then x is the root of a tree and hence also satisfies all $=_{\epsilon}(x)$ predicates in c. Now for $\neq(x, y)$ predicates. We make a case distinction:

- x and y are in the same tree. By definition of and since the last if clause in the main procedure did not apply, $\neq(x, y)$ is satisfied.
- x and y are in different trees, and both trees have a root z with $(z)=\epsilon$, i.e., $={ }_{\epsilon}(z)$ is in c. Identical to the above case.
- x and y are in different trees and at least one of the trees has a root z with $(z) \neq \epsilon$. Let z and z^{\prime} be the roots of the two trees. By definition of , we have

$$
\operatorname{abs}\left(|(z)|-\left|\left(z^{\prime}\right)\right|\right) \geq|V| * \max \left\{w \mid \operatorname{conc}_{w} \text { is used in } c\right\}
$$

where $\operatorname{abs}(x)$ denotes the absolute value of x. This implies that, for any two nodes x^{\prime} and y^{\prime}, where x^{\prime} is in the tree with root z and y^{\prime} is in the tree with root z^{\prime}, we have $\left(x^{\prime}\right) \neq\left(y^{\prime}\right)$.

It remains to show termination after at most polynomially many steps. This amounts to showing that the two while loops terminate after at most polynomially many steps since it is easy to see that all the tests (in the if clauses) and operations (node and conjunction replacements) can be performed in polynomial time.

Termination after polynomially many steps is obvious for the loop in the norm procedure since, in every iteration, the number of variables in c decreases and the algorithm never introduces new variables. Now for the while loop in the main procedure. If a fork $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$ is found, then $\operatorname{conc}_{w}(y, x)$ is replaced by conc $_{\text {pre }}\left(w, w^{\prime}\right)\left(y, y^{\prime}\right)$. As was already noted, this and the application of norm may generate new forks $\operatorname{conc}_{\tilde{w}}(\tilde{y}, \tilde{x}), \operatorname{conc}_{\tilde{w}^{\prime}}\left(\tilde{y}^{\prime}, \tilde{x}\right)$ but only with the restriction $\operatorname{lev}(\tilde{x})>\operatorname{lev}(x)$. Hence the newly generated fork will not be considered during the current iteration step of the for loop. We conclude that the while loop terminates after polynomially many steps since the number of forks $\operatorname{conc}_{w}(y, x), \operatorname{conc}_{w^{\prime}}\left(y^{\prime}, x\right)$ with $\operatorname{lev}(x)=i$ is clearly bounded by $|c|$.

The following proposition is an immediate consequence of the lemma just proved and the fact that the blowup produced by the normalization is at most linear.

Proposition 20. It is decidable in deterministic polynomial time whether a finite conjunction of predicates from \mathcal{P} has a solution.

Corollary 21. The concrete domain \mathcal{P} is admissible.

3.3 Satisfiability of $\mathcal{A L C}(\mathcal{P})$-concepts w.r.t. TBoxes

In this section, we show that the satisfiability of $\mathcal{A L C}(\mathcal{P})$-concepts w.r.t. TBoxes is NExpTime-hard. This result is rather surprising since (1) satisfiability of $\mathcal{A L C}(\mathcal{D})$ concepts without reference to TBoxes is known to be PSPACE-complete if reasoning with the concrete domain \mathcal{D} is in PSpace [20], and (2) admitting acyclic TBoxes does "usually" not increase the complexity of reasoning [19].

The proof is by a reduction of the $2^{n}+1-\mathrm{PCP}$ using the concrete domain \mathcal{P} introduced in the previous section. Given a $2^{n}+1-\mathrm{PCP} P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$, we define a TBox $\mathcal{T}[P]$ of size polynomial in $|P|$ and a concept (name) C such that C is satisfiable w.r.t. $\mathcal{T}[P]$ iff P has a solution. Figure 3 contains the reduction TBox and Figure 4 an example model for $|P|=2$. In the figures, l, r, x, and y denote abstract features. The first equality in Figure 3 is not meant as a concept definition but as an abbreviation: Replace every occurrence of $C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ in the lower three concept definitions by the right-hand side of the first identity substituting u_{1}, \ldots, u_{4}

$$
\begin{aligned}
& C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]=\left(\exists\left(u_{1}, u_{2}\right) .=\sqcap \exists\left(u_{3}, u_{4}\right) .=\right) \\
& \sqcup \underset{\left(\ell_{i}, r_{i}\right) \text { in } P}{\sqcup}\left(\exists\left(u_{1}, u_{2}\right) \cdot c o n c_{\ell_{i}} \sqcap \exists\left(u_{3}, u_{4}\right) \cdot \operatorname{conc}_{r_{i}}\right) \\
& C_{0} \doteq \exists \ell . C_{1} \sqcap \exists r \cdot C_{1} \\
& \sqcap C h\left[\ell r^{n-1} g_{\ell}, r \ell^{n-1} g_{\ell}, \ell r^{n-1} g_{r}, r \ell^{n-1} g_{r}\right] \\
& \vdots \\
& C_{n-2} \doteq \exists \ell . C_{n-1} \sqcap \exists r \cdot C_{n-1} \\
& \sqcap C h\left[\ell r g_{\ell}, r \ell g_{\ell}, \ell r g_{r}, r \ell g_{r}\right] \\
& C_{n-1} \doteq C h\left[\ell g_{\ell}, r g_{\ell}, \ell g_{r}, r g_{r}\right] \\
& C C_{0} \\
& \sqcap \exists \ell^{n} g_{\ell} .={ }_{\epsilon} \sqcap \exists \ell^{n} g_{r} .={ }_{\epsilon} \\
& \sqcap \exists r^{n} y \cdot \exists g_{\ell}, g_{r} .=\sqcap \exists r^{n} y g_{\ell} \cdot \neq \epsilon \\
& \sqcap C h\left[r^{n} g \ell, r^{n} x g_{\ell}, r^{n} g_{r}, r^{n} x g_{r}\right] \\
& \sqcap C h\left[r^{n} x g_{\ell}, r^{n} y g_{\ell}, r^{n} x g_{r}, r^{n} y g_{r}\right] \\
& \hline
\end{aligned}
$$

Figure 3: The $\mathcal{A L C}(\mathcal{P})$ reduction TBox $\mathcal{T}[P](n=|P|)$.
appropriately. We first informally explain the intuition underlying the reduction and then give a formal proof of its correctness.

The general idea is to define $\mathcal{T}[P]$ such that models of C and $\mathcal{T}[P]$ have the form of a binary tree of depth $|P|$ whose edges are connected by two "chains" of conc $_{w}$ predicates. Pairs of corresponding objects (x_{i}, y_{i}) on the chains represent partial solutions of the PCP P. More precisely, the first line of the definitions of the C_{0}, \ldots, C_{n-1} concepts ensures that models \mathcal{I} of C and $\mathcal{T}[P]$ have the form of a binary tree of depth n (with $n=|P|$) whose left edges are labeled with the abstract feature ℓ and whose right edges are labeled with the abstract feature r (not to be confused with pairs $\left.\left(\ell_{i}, r_{i}\right) \in P\right)$. Let the abstract objects $a_{n, 0}, \ldots a_{n, 2^{n}-1}$ be the leaves of this tree (see Figure 4 for the naming scheme). By the second line of the definitions of the C_{0}, \ldots, C_{n-1} concepts, every $a_{n, i}\left(0 \leq i<2^{n}\right)$ has a filler x_{i} for the concrete feature g_{ℓ} and a filler y_{i} for the concrete feature g_{r}. These second lines also ensure that the x_{i} and y_{i} objects are connected via two "predicate chains" where the predicates on the chains are either equality or conc_{w} predicates. More precisely, for $0 \leq i<2^{n}-1$, either $x_{i}=x_{i+1}$ and $y_{i}=y_{i+1}$ or there exists a $j \in\{1, \ldots, k\}$ such that $\left(x_{i}, x_{i+1}\right) \in$ conc $_{\ell_{j}}^{\mathcal{P}}$ and $\left(y_{i}, y_{i+1}\right) \in \operatorname{conc}_{r_{j}}^{\mathcal{P}}$. Furthermore, by the second line of the definition of C, we have $x_{1}=y_{1}=\epsilon$. Hence, pairs $\left(x_{i}, y_{i}\right)$ are partial solutions for P. Since we must consider solutions of a length up to $2^{n}+1$, the 2^{n} objects on the fringe of the tree with their $2^{n}-1$ connecting predicate edges are not su cient, and we need to "add" two more

Figure 4: An example model of C for $n=2$.
objects $a_{n, 2^{n}}$ and $a_{n, 2^{n}+1}$ which behave analogously to the objects $a_{n, 0}, \ldots a_{n, 2^{n}-1}$, i.e., have associated concrete objects $x_{2^{n}}, y_{2^{n}}$ and $x_{2^{n}+1}, y_{2^{n}+1}$, respectively. This is done by the last two lines of the definition of C. Finally, the third line of the definition of C ensures that $x_{2^{n}+1}=y_{2^{n}+1} \neq \epsilon$ and hence that $\left(x_{2^{n}+1}, y_{2^{n}+1}\right)$ is in fact a full solution.

Lemma 22. Let $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ be a $P C P$. Then P has a solution iff the concept (name) C is satisfiable w.r.t. the TBox $\mathcal{T}[P]$.

Proof During the proof, we abbreviate $|P|$ by n. First assume that $C[P]$ is satisfiable. Using induction over n and considering the definitions of the C_{i} concepts, it is easy to show that there exist objects $a_{i, j}$ for $0 \leq i \leq n$ and $0 \leq j<2^{i}$ such that $a_{0,0} \in C^{\mathcal{I}}$,

1. $\ell^{\mathcal{I}}\left(a_{i, j}\right)=a_{(i+1), 2 j}$ and $r^{\mathcal{I}}\left(a_{i, j}\right)=a_{(i+1),(2 j+1)}$ for $0 \leq i<n$ and $0 \leq j<2^{i}$, and
2. $a_{i, j} \in\left(C h\left[\ell r^{n-(i+1)} g_{\ell}, r \ell^{n-(i+1)} g_{\ell}, \ell_{r}{ }^{n-(i+1)} g_{r}, r \ell^{n-(i+1)} g_{r}\right]\right)^{\mathcal{I}}$ for $0 \leq i<n$.

The first Property implies that the $a_{i, j}$ form a binary tree in which edges connecting left successors are labeled with ℓ, edges connecting right successors are labeled with r, and nodes are not necessarily distinct. The naming scheme for nodes is as indicated in Figure 4.

We now establish a certain property for every two neighbouring fringe nodes $a_{n, j}$ and $a_{n,(j+1)}$ which will then allow us to deduce the existence of two sequences of concrete objects related by conc_{w} predicates and the equality predicate. Corresponding nodes from the two sequences represent partial solutions of P. Fix two nodes $a_{n, j}$ and $a_{n,(j+1)}$ with $0 \leq j<2^{n}-1$. By induction over n, it is straightforward to prove that there exists a common ancestor $a_{m, r}$ of $a_{n, j}$ and $a_{n,(j+1)}$ such that

$$
\left(\ell r^{n-(m+1)}\right)^{\mathcal{I}}\left(a_{m, r}\right)=a_{n, j} \text { and }\left(r \ell^{n-(m+1)}\right)^{\mathcal{I}}\left(a_{m, r}\right)=a_{n, j+1}
$$

By Property 2 from above, we have

$$
a_{m, r} \in\left(C h\left[\ell r^{n-(m+1)} g_{\ell}, r \ell^{n-(m+1)} g_{\ell}, \ell r^{n-(m+1)} g_{r}, r \ell^{n-(m+1)} g_{r}\right]\right)^{\mathcal{I}} .
$$

Since this holds independently from the choice of j, we may use the definition of the $C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ concept to conclude that there exist concrete objects $x_{0}, \ldots, x_{2^{n}-1}$ and $y_{0}, \ldots, y_{2^{n}-1}$ and indexes $i_{1}, \ldots, i_{2^{n}-1} \in\{1, \ldots, k\} \cup\{\boldsymbol{\phi}\}$ such that

1. $g_{\ell}^{\mathcal{I}}\left(a_{n, j}\right)=x_{j}$ and $g_{r}^{\mathcal{I}}\left(a_{n, j}\right)=y_{j}$ for $0 \leq j<2^{n}$, and
2. for all $1 \leq j \leq 2^{n}-1$,

- if $i_{j}=\boldsymbol{\&}$ then $x_{j-1}=x_{j}$ and $y_{j-1}=y_{j}$, and
- $\left(x_{j-1}, x_{j}\right) \in \operatorname{conc}_{\ell_{i_{j}}}^{\mathcal{P}}$ and $\left(y_{j-1}, y_{j}\right) \in \operatorname{conc}_{r_{i_{j}}}^{\mathcal{P}}$ otherwise.

Analogously, by the last two lines of the definition of C, there exist abstract objects $a_{n, 2^{n}}, a_{n,\left(2^{n}+1\right)}$, concrete objects $x_{2^{n}}, x_{2^{n}+1}, y_{2^{n}}, y_{2^{n}+1}$, and indexes $i_{2^{n}}, i_{2^{n}+1} \in$ $\{1, \ldots, k\} \cup\{\boldsymbol{\phi}\}$ such that

1. $x^{\mathcal{I}}\left(a_{n, 2^{n}-1}\right)=a_{n, 2^{n}}$ and $y^{\mathcal{I}}\left(a_{n, 2^{n}-1}\right)=a_{n,\left(2^{n}+1\right)}$,
2. $g_{\ell}^{\mathcal{I}}\left(a_{n, i}\right)=x_{i}$ and $g_{r}^{\mathcal{I}}\left(a_{n, i}\right)=y_{i}$ for $i \in\left\{2^{n}, 2^{n}+1\right\}$,
3. for all $j \in\left\{2^{n}, 2^{n}+1\right\}$,

- if $i_{j}=\boldsymbol{\&}$ then $x_{j-1}=x_{j}$ and $y_{j-1}=y_{j}$, and
- $\left(x_{j-1}, x_{j}\right) \in \operatorname{conc}_{\ell_{i_{j}}}^{\mathcal{P}}$ and $\left(y_{j-1}, y_{j}\right) \in \operatorname{conc}_{r_{i_{j}}}^{\mathcal{P}}$ otherwise.

Moreover, by the second and third line of the definition of C, we have $x_{0}=y_{0}=\epsilon$ and $x_{2^{n}+1}=y_{2^{n}+1} \neq \epsilon$. Taking together these observations, it is clear that the sequence $i_{1}^{\prime}, \ldots, i_{p}^{\prime}$, which can be obtained from $i_{1}, \ldots, i_{2^{n}+1}$ by eliminating all i_{j} with $i_{j}=\boldsymbol{\phi}$, is a solution for P. Furthermore, we obviously have $1<p \leq 2^{n}+1$.

Now for the "only if" direction. Assume that P has a solution i_{1}, \ldots, i_{m} with $m \leq 2^{|P|}+1$. With L_{j} (resp. R_{j}), we denote the concatenation $\ell_{i_{1}} \cdots \ell_{i_{j}}$ (resp. $r_{i_{1}} \cdots r_{i_{j}}$) for $1 \leq j \leq m$ and set $L_{0}=R_{0}=\epsilon$ and $L_{j}=L_{m}\left(\right.$ resp. $\left.R_{j}=R_{m}\right)$ for all $j>m$. We define a model \mathcal{I} for $\mathcal{T}[P]$ with the form of a binary tree of depth n such that $C^{\mathcal{I}} \neq \emptyset$. Again, the object names in Figure 4 indicate the naming scheme used.

$$
\Delta^{\mathcal{I}}:=\left\{a_{i, j} \mid 0 \leq i \leq n, 0 \leq j<2^{i}\right\} \cup\left\{a_{n, 2^{n}}, a_{n,\left(2^{n}+1\right)}\right\}
$$

For all i, j with $0 \leq i<n$ and $0 \leq j<2^{i}$ set

$$
\ell^{\mathcal{I}}\left(a_{i, j}\right):=a_{(i+1),(2 j)} \text { and } r^{\mathcal{I}}\left(a_{i, j}\right):=a_{(i+1),(2 j+1)} .
$$

Set $x^{\mathcal{I}}\left(a_{n,\left(2^{n}-1\right)}\right):=a_{n, 2^{n}}$ and $y^{\mathcal{I}}\left(a_{n,\left(2^{n}-1\right)}\right):=a_{n,\left(2^{n}+1\right)}$.
For all i with $0 \leq i \leq 2^{n}+1$ set

$$
g_{\ell}^{\mathcal{I}}\left(a_{n, i}\right):=L_{i} \text { and } g_{r}^{\mathcal{I}}\left(a_{n, i}\right):=R_{i} .
$$

It is not hard to verify that \mathcal{I} is a model for $\mathcal{T}[P]$ and that $a_{0,0} \in C^{\mathcal{I}}$.

$$
\begin{aligned}
C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]= & \left(\exists\left(u_{1}, u_{2}\right) .=\sqcap \exists\left(u_{3}, u_{4}\right) .=\right) \\
& \sqcup \underset{\left(\ell_{i}, r_{i}\right) \text { in } P}{\sqcup}\left(\exists\left(u_{1}, u_{2}\right) \cdot \operatorname{conc}_{\ell_{i}} \sqcap \exists\left(u_{3}, u_{4}\right) \cdot \operatorname{conc}_{r_{i}}\right) \\
\text { Tree }= & \exists(R \sqcap \ell) \cdot \top \sqcap \exists(R \sqcap r) \cdot \top \\
& \sqcap C h\left[\ell r^{n-1} g_{\ell}, r \ell^{n-1} g_{\ell}, \ell r^{n-1} g_{r}, r \ell^{n-1} g_{r}\right] \\
& \sqcap \forall R \cdot(\exists(R \sqcap \ell) \cdot \top \sqcap \exists(R \sqcap r) . \top \\
& \left.\sqcap C h\left[\ell r^{n-2} g_{\ell}, r \ell^{n-2} g_{\ell}, \ell r^{n-2} g_{r}, r \ell^{n-2} g_{r}\right]\right) \\
& \vdots \\
& \sqcap \forall R^{n-2} \cdot(\exists(R \sqcap \ell) \cdot \top \sqcap \exists(R \sqcap r) . \top \\
& \left.\sqcap C h\left[\ell r g_{\ell}, r \ell g_{\ell}, \ell r g_{r}, r \ell g_{r}\right]\right) \\
& \sqcap \forall R^{n-1} \cdot C h\left[\ell g_{\ell}, r g_{\ell}, \ell g_{r}, r g_{r}\right] \\
C[P]= & T r e e \\
& \sqcap \exists \ell^{n} g_{\ell} \cdot={ }_{\epsilon} \sqcap \exists \ell^{n} g_{r} .={ }_{\epsilon} \\
& \sqcap \exists r^{n} y \cdot \exists g_{\ell}, g_{r} .=\sqcap \exists r^{n} y g_{\ell} . \neq \epsilon \\
& \sqcap C h\left[r^{n} g_{\ell}, r^{n} x g_{\ell}, r^{n} g_{r}, r^{n} x g_{r}\right] \\
& \sqcap C h\left[r^{n} x g_{\ell}, r^{n} y g_{\ell}, r^{n} x g_{r}, r^{n} y g_{r}\right]
\end{aligned}
$$

Figure 5: The $\mathcal{A L C R}(\mathcal{P})$ reduction concept $\mathrm{C}[\mathrm{P}]$.

Obviously, the size of $\mathcal{T}[P]$ is polynomial in $|P|$ and $\mathcal{T}[P]$ can be constructed in time polynomial in $|P|$. Since subsumption can be reduced to satisfiability, we obtain the following theorem.

Theorem 23. There exists an admissible concrete domain \mathcal{D} for which satisfiability is in PTime such that satisfiability and subsumption of $\mathcal{A L C}(\mathcal{D})$-concepts w.r.t TBoxes are NExpTimE-hard.

On first sight, the concrete domain employed for the reduction may look somewhat unnatural since it operates on words. However, it is straightforward to encode words as natural numbers and to define the operations on words as rather simple operations on the naturals [2]: Words over an alphabet Σ can be interpreted as numbers written at base $|\Sigma|+1$ (assuming that the empty word represents 0); the concatenation of two words v and w can then be expressed as $v w=v *(|\Sigma|+1)^{|w|}+w$, where $|w|$ denotes the length of the word w. Hence, a concrete domain which provides the natural numbers, (in)equality, (in)equality to zero, addition, and multiplication is also appropriate for the reductions.

As already noted, there exist other variants of TBoxes than the ones introduced in Section 2. A popular one are so-called general TBoxes which are formally defined

Figure 6: An example model of C w.r.t. \mathcal{T}
as follows.
Definition 24 (General TBox). A general concept inclusion (GCI) has the form $C \sqsubseteq D$, where both C and D are (possibly complex) concepts. An interpretation \mathcal{I} is a model for a GCI $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$. Sets of GCIs are called general TBoxes. An interpretation \mathcal{I} is a model for a general TBox \mathcal{T} iff \mathcal{I} is a model for all GCIs in \mathcal{T}.

Similar to the main result presented in this section, the following theorem can be obtained.

Theorem 25. There exists an admissible concrete domain \mathcal{D} such that satisfiability and subsumption of $\mathcal{A L C}(\mathcal{D})$-concepts w.r.t. general TBoxes is undecidable.

Proof Let P be an instance of the PCP and consider a concept C and a general TBox \mathcal{T} as follows:

$$
\begin{aligned}
& C:=\exists g .=\epsilon_{\epsilon} \sqcap \exists f g .={ }_{\epsilon} \\
& \mathcal{T}[P]:=\left\{\exists f . \top \sqsubseteq \sqcap_{\left(\ell_{i}, r_{i}\right) \in P} \exists g, f_{i} g \cdot \text { conc }_{\ell_{i}} \sqcap \exists f g, f_{i} f g . \operatorname{conc}_{r_{i}}\right. \\
&\left.\mathrm{T} \sqsubseteq \exists g .={ }_{\epsilon} \sqcup \neg \exists g, f g .=\right\}
\end{aligned}
$$

Here, $C \rightarrow D$ is used as an abbreviation for $\neg C \sqcup D$. The first two GCIs ensure that models of C and \mathcal{T} represent all possible solutions of the PCP P. Additionally, the last GCI ensures that no potential solution is a solution. It is hence straightforward to prove that C is satisfiable w.r.t. \mathcal{T} iff P has no solution, i.e., we have reduced the general, undecidable PCP to the satisfiability of $\mathcal{A L C}(\mathcal{D})$-concepts w.r.t. general TBoxes. An example model of C w.r.t. \mathcal{T} can be found in Figure 6. It remains to remind the reader that satisfiability reduces to subsumption.

The reduction technique employed to show the lower bound is a rather general one and there surely exist more description logics with concrete domains to which they can

Figure 7: Predicate chains in models of $C[P]$.
be applied. As an example, consider $\operatorname{ALCR}(\mathcal{D})$, i.e., $\mathcal{A L C}(\mathcal{D})$ with role conjunction (see, e.g., [8]). We conjecture that NExpTime-hardness of this logic can be proved analogously to the proof of Theorem 29. The reduction concept $C[P]$ can be found in Figure 5.

3.4 Satisfiability of $\mathcal{A L C I}(\mathcal{P})$-Concepts

In this section, we show that satisfiability of $\mathcal{A L C I}(\mathcal{P})$-concepts (without reference to TBoxes) is NExpTime-hard. As in the previous section, it is surprising that a rather small change in the logic, i.e., adding inverse roles, causes a dramatic increase in complexity.

We employ a reduction that is similar to the one used in the previous section, i.e., it is a reduction of the $2^{n}+1$-PCP and uses the concrete domain \mathcal{P}. Given a PCP $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$, we define a concept $C[P]$ of size polynomial in $|P|$ which has a model iff P has a solution. The concept $C[P]$ can be found in Figure 8. In the figure, $h_{\ell}, h_{r}, x_{\ell}, x_{r}, y_{\ell}, y_{r}, z_{\ell}$, and z_{r} are concrete features. Note that the equalities are not concept definitions but abbreviations. As in the previous section, replace every occurrence of $C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ in the lower three concept definitions by the right-hand side of the first identity substituting u_{1}, \ldots, u_{4} appropriately and similarly for every occurrence of X. We first informally explain the structure of models of $C[P]$ and then give a formal proof of the correctness of the reduction.

In the reduction given in the previous section, the models of $\mathcal{T}[P]$ are binary trees of depth $|P|$ whose leaves are connected by two chains of concrete domain predicates such that pairs of corresponding nodes (x, y) represent partial solutions of the PCP P. In the $\mathcal{A L C \mathcal { L }}(\mathcal{P})$ reduction, due to the first line in the definition of $C[P]$ and the $\exists f^{-}$quantifiers in the definition of X, models of $C[P]$ have the form of a tree of depth $|P|-1$ in which all edges are labeled with f^{-}. This edge labelling scheme is possible since the inverse of an abstract feature is not a feature. As in the previous reduction, we define two chains of concrete domain predicates, only this time they do not connect the leaves of the tree but emulate the structure of the tree following the scheme indicated in Figure 7. Again, corresponding objects on the two chains represent partial solutions of the PCP P. A more detailed clipping from a model of $C[P]$ can be found in Figure 9. The existence of the chains is ensured by the definition of X and the second line in the definition of $C[P]$. The concept X establishes the

$$
\left.\begin{array}{rl}
C h\left[u_{1}, u_{2}, u_{3}, u_{4}\right]= & \left(\exists\left(u_{1}, u_{2}\right) .=\sqcap \exists\left(u_{3}, u_{4}\right) .=\right) \\
\sqcup & \sqcup \\
\left(\ell_{i}, r_{i}\right) \text { in } P
\end{array} \exists\left(u_{1}, u_{2}\right) \cdot \operatorname{conc}_{\ell_{i}} \sqcap \exists\left(u_{3}, u_{4}\right) \cdot \operatorname{conc}_{r_{i}}\right)
$$

Figure 8: The $\mathcal{A L C I}(\mathcal{P})$ reduction concept $C[P](n=|P|-1)$.
edges of the predicate chains as depicted in Figure 9 (more precisely, Figure 9 is a model of the concept X) while the second line of $C[P]$ establishes the edges "leading around" the fringe nodes. Edges of the latter type and the dotted edges in Figure 9 are labeled with the equality predicate. To see why this is the case, let us investigate the length of the chains.

The length of the two predicate chains is twice the length of the number of edges in the tree plus the number of fringe nodes, i.e., $2 *\left(2^{|P|}-2\right)+2^{|P|-1}$. To eliminate the factor 2 and the summand $2^{|P|-1}, C[P]$ is defined such that every edge in the predicate chains leading "up" in the tree and every edge "leading around" a fringe node is labeled with the equality predicate. To extend the chains to length $2^{|P|}+1$, we need to add three additional edges (definition of $C[P]$, lines three, four, and five). Finally, the last two lines in the definition of $C[P]$ ensure that the first concrete object on both chains represents the empty word and that the last objects on the chains represent a (non-empty) solution for P.

Lemma 26. Let $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ be a $P C P$. Then P has a solution iff the concept $C[P]$ is satisfiable.

Proof Let $n=|P|-1$ during the proof (this implies $n \geq 1$). First assume that $C[P]$ is satisfiable, i.e., that there exists an interpretation $\mathcal{I}=\left(\Delta_{\mathcal{I}},{ }^{\mathcal{I}}\right)$ and an $a \in \Delta^{\mathcal{I}}$ such that $a \in C[P]^{\mathcal{I}}$. We show that \mathcal{I} has the form of a binary tree of depth n. Using induction over n and considering the first line of the definition of $C[P]$ and the definition of X, it is easy to show that there exist abstract objects $b_{i, j}$ for $0 \leq i \leq n$ and $0 \leq j<2^{i}$ such that $b_{0,0} \in C[P]^{\mathcal{I}}$ and, for $0 \leq i<n$ and $0 \leq j<2^{i}$,

Figure 9: A clipping from a model of $C[P]$.

1. $\left\{\left(b_{i, j}, b_{(i+1), 2 j}\right),\left(b_{i, j}, b_{(i+1),(2 j+1)}\right)\right\} \subseteq\left(f^{-}\right)^{\mathcal{I}}$,
2. $b_{(i+1), 2 j} \in\left(C h\left[f g_{\ell}, g_{\ell}, f g_{r}, g_{r}\right]\right)^{\mathcal{I}}$, and
3. $b_{(i+1),(2 j+1)} \in\left(C h\left[f p_{\ell}, g_{\ell}, f p_{r}, g_{r}\right]\right)^{\mathcal{I}}$.

Obviously, the first property implies that the $b_{i, j}$ form a binary tree of depth n whose edges are labelled with f^{-}. However, for the remaining proof, it is more convenient to number the nodes in the tree in a different way. For doing this, we define three auxiliary functions.

Let T be a binary tree of depth n whose nodes are labeled with natural numbers in preorder (this tree is independent of the $b_{i, j}$ and of \mathcal{I} in general). ${ }^{6}$ With $\operatorname{sucl}(n)$ and $\operatorname{sucr}(n)$ we denote the node label of the left resp. right successor of the node labeled with n in $T(\operatorname{sucl}(n)$ and $\operatorname{sucr}(n)$ are undefined if the given node has no successors). Furthermore, for $n \in \mathbb{N}$, $\operatorname{lev}(n)$ denotes the level of the node in T labeled with n and is undefined if no such node exists. By "renaming" the nodes $b_{i, j}$, it is easy to show that there exist abstract objects $a_{1}, \ldots, a_{2^{n+1}-1}$ such that, for all $1 \leq i \leq 2^{n+1}-1$ with $\operatorname{lev}(i)<n$,

1. $f^{\mathcal{I}}\left(a_{\text {sucl(} i)}\right)=a_{i}$ and $f^{\mathcal{I}}\left(a_{\text {sucr }(i)}\right)=a_{i}$,
2. $a_{\text {sucl }(i)} \in\left(C h\left[f g_{\ell}, g_{\ell}, f g_{r}, g_{r}\right]\right)^{\mathcal{I}}$, and
3. $a_{\text {sucr }(i)} \in\left(C h\left[f p_{\ell}, g_{\ell}, f p_{r}, g_{r}\right]\right)^{\mathcal{I}}$.

Note that the a_{i} form a binary tree of depth n labeled in preorder whose edges are labeled with f^{-}and whose nodes are not necessarily distinct. Hence, when we in the following talk of the nodes of the tree, we mean the objects $a_{1}, \ldots, a_{2^{n+1}-1}$. By the second

[^4]line of $C[P]$ and definition of X, there exist concrete objects $x_{1}, \ldots, x_{2^{n+1}-1}, y_{1}, \ldots, y_{2^{n+1}-1}$ such that $g_{\ell}^{\mathcal{I}}\left(a_{i}\right)=x_{i}$ and $g_{r}^{\mathcal{I}}\left(a_{i}\right)=y_{i}$ for all $1 \leq i<2^{n+1}$. Next, we prove the following claim:
Claim: For all $1 \leq j<2^{n+1}-1$, we have either $x_{j}=x_{j+1}$ and $y_{j}=y_{j+1}$ or there exists an $i \in\{1, \ldots, k\}$ such that $\left(x_{j}, x_{j+1}\right) \in \operatorname{conc}_{\ell_{i}}^{\mathcal{P}}$ and $\left(y_{j}, y_{j+1}\right) \in \operatorname{conc} c_{r_{i}}^{\mathcal{P}}$.
Fix a j with $1 \leq j<2^{n+1}-1$. From the preorder numbering scheme, it follows that two cases need to be distinguished:

1. $i+1=\operatorname{sucl}(i)$. By Property 2 from above, we have $a_{i+1} \in\left(C h\left[f g_{\ell}, g_{\ell}, f g_{r}, g_{r}\right]\right)^{\mathcal{I}}$. By definition of $C h$, this implies the claim.
2. There exists a node a_{t} and nodes $a_{s_{0}}, \ldots, a_{s_{m}}(m \geq 0)$ such that

- $i+1=\operatorname{sucr}(t)$,
- $s_{0}=\operatorname{sucl}(t)$,
- for all ℓ with $0 \leq \ell<m, s_{\ell+1}=\operatorname{sucr}\left(s_{\ell}\right)$, and
- $s_{m}=i$

By the Properties given above, we have $a_{i+1}, a_{s_{1}}, \ldots, a_{s_{m}} \in\left(C h\left[f g_{\ell}, g_{\ell}, f g_{r}, g_{r}\right]\right)^{\mathcal{I}}$ and $a_{s_{0}} \in\left(C h\left[f p_{\ell}, g_{\ell}, f p_{r}, g_{r}\right]\right)^{\mathcal{I}}$. Furthermore, from the numbering scheme, it follows that $\operatorname{lev}(i)=n$, and, by the second line of $C[P]$,

$$
\left.a_{i} \in\left(\exists\left(g_{\ell}, h_{\ell}\right) .=\sqcap \exists\left(g_{r}, h_{r}\right) .=\right)\right)^{\mathcal{I}}
$$

Using the definition of $C h$, it is now straightforward to prove the claim.
It is an immediate consequence of the claim that there exist indexes $i_{1}, \ldots, i_{2^{n+1}-2} \in$ $\{1, \ldots, k\} \cup\{\boldsymbol{\phi}\}$ such that, for all $1 \leq j<2^{n+1}-1$,

- if $i_{j}=\boldsymbol{\&}$ then $x_{j}=x_{j+1}$ and $y_{j}=y_{j+1}$, and
- $\left(x_{j}, x_{j+1}\right) \in \operatorname{conc} c_{\ell_{i_{j}}}^{\mathcal{P}}$ and $\left(y_{j}, y_{j+1}\right) \in \operatorname{conc} c_{r_{i_{j}}}^{\mathcal{P}}$ otherwise.

Similarly, by the third, fourth, and fifth line of the definition of $C[P]$, there exist objects $x_{2^{n+1}}, x_{2^{n+1}+1}, x_{2^{n+1}+2}, y_{2^{n+1}}, y_{2^{n+1}+1}, y_{2^{n+1}+2}$ and indexes $i_{2^{n+1}-1}, i_{2^{n+1}}, i_{2^{n+1}+1} \in$ $\{1, \ldots, k\} \cup\{\boldsymbol{\phi}\}$ such that

1. $x_{\ell}^{\mathcal{I}}\left(a_{0}\right)=x_{2^{n+1}}$ and $x_{r}^{\mathcal{I}}\left(a_{0}\right)=y_{2^{n+1}}$,
$y_{\ell}^{\mathcal{I}}\left(a_{0}\right)=x_{2^{n+1}+1}$ and $y_{r}^{\mathcal{I}}\left(a_{0}\right)=y_{2^{n+1}+1}$,
$z_{\ell}^{\mathcal{I}}\left(a_{0}\right)=x_{2^{n+1}+2}$ and $z_{r}^{\mathcal{I}}\left(a_{0}\right)=y_{2^{n+1}+2}$, and
2. for all $j \in\left\{2^{n+1}-1,2^{n+1}, 2^{n+1}+1\right\}$

- if $i_{j}=\boldsymbol{\&}$ then $x_{j}=x_{j+1}$ and $y_{j}=y_{j+1}$, and
- $\left(x_{j}, x_{j+1}\right) \in \operatorname{conc}_{\ell_{i_{j}}}^{\mathcal{P}}$ and $\left(y_{j}, y_{j+1}\right) \in \operatorname{conc}{\underset{r_{i}}{ }}_{\mathcal{P}}$ otherwise.

Moreover, by the last two lines of the definition of $C[P]$, we have $x_{0}=y_{0}=\epsilon$ and $x_{2^{n+1}+1}=y_{2^{n+1}+1} \neq \epsilon$. Taking together these observations, it is clear that the sequence $i_{1}^{\prime}, \ldots, i_{p}^{\prime}$, which can be obtained from $i_{1}, \ldots, i_{2^{n+1}+1}$ by eliminating all i_{j} with $i_{j}=\boldsymbol{\phi}$, is a solution for P. Furthermore, since $n=|P|-1$, we have $0<p \leq 2^{|P|}+1$.

Now for the "only if" direction. Assume that P has a solution i_{1}, \ldots, i_{m} with $m \leq 2^{|P|}+1=2^{n+1}+1$. With K_{j}^{ℓ} (resp. K_{j}^{r}), we denote the concatenation $\ell_{i_{1}}, \cdots, \ell_{i_{j}}$ (resp. $r_{i_{1}}, \cdots, r_{i_{j}}$) for $1 \leq j \leq m$ and set $K_{0}^{\ell}=K_{0}^{r}=\epsilon$ and $K_{j}^{\ell}=K_{m}^{\ell}\left(\right.$ resp. $\left.K_{j}^{r}=K_{m}^{r}\right)$ for all $j>m$. We define a model for $C[P]$ with the form of a binary tree of depth n.

$$
\Delta^{\mathcal{I}}:=\left\{a_{i} \mid 1 \leq i<2^{n+1}\right\}
$$

For all i with $1 \leq i<2^{n+1}$ and $\operatorname{lev}(i)<n$ set

$$
f^{\mathcal{I}}\left(a_{\text {sucl }(i)}\right)=a_{i} \text { and } f^{\mathcal{I}}\left(a_{\text {sucr }(i)}\right)=a_{i} .
$$

It remains to set up the concrete features. We first set up only some of the features.

1. $g_{\ell}^{\mathcal{I}}\left(a_{i}\right)=K_{i-1}^{\ell}$ and $g_{r}^{\mathcal{I}}\left(a_{i}\right)=K_{i-1}^{r}$ for $1 \leq i<2^{n+1}$
2. $x_{t}^{\mathcal{I}}\left(a_{0}\right)=K_{2^{n+1}-1}^{t}$ for $t \in\{\ell, r\}$
3. $y_{t}^{\mathcal{I}}\left(a_{0}\right)=K_{2^{n+1}}^{t}$ for $t \in\{\ell, r\}$
4. $z_{t}^{\mathcal{I}}\left(a_{0}\right)=K_{2^{n+1}+1}^{t}$ for $t \in\{\ell, r\}$

Based on this, we now define the interpretation of the remaining concrete features. With suc $j^{j}(i)$, we denote the j-fold composition of sucl. For $i \in\left\{1, \ldots, 2^{n+1}-1\right\}$ and $t \in\{\ell, r\}$, we set

$$
\begin{aligned}
& h_{t}^{\mathcal{T}}\left(a_{i}\right):= \begin{cases}g_{t}^{\mathcal{T}}\left(a_{i}\right) & \text { if } \operatorname{lev}(i)=n \\
g_{t}^{\mathcal{T}}\left(a_{\text {sucr } n-\operatorname{lev}(i)}(i)\right. & \text { otherwise }\end{cases} \\
& p_{t}^{\mathcal{T}}\left(a_{i}\right):= \begin{cases}g_{t}^{\mathcal{T}}\left(a_{\text {sucl }(i)}\right) & \text { if } \operatorname{lev}(i)=n-1 \\
g_{t}^{\tau}\left(a_{\text {sucr }^{n-\operatorname{lev}(i)-1}(\operatorname{sucl}(i))}\right. & \text { if } \operatorname{lev}(i)<n-1\end{cases}
\end{aligned}
$$

Note that nodes a_{i} with $\operatorname{lev}(i)=n$ do not need to have fillers for the concrete feature p. It is straightforward to check that \mathcal{I} is well-defined and that $a_{0} \in C[P]^{\mathcal{I}}$.

Obviously, the size of $C[P]$ is polynomial in $|P|$ and $C[P]$ can be constructed in time polynomial in $|P|$. Since subsumption can be reduced to satisfiability, we obtain the following theorem.

Theorem 27. There exists an admissible concrete domain \mathcal{D} for which satisfiability is in PTime such that satisfiability and subsumption of $\mathcal{A L C I}(\mathcal{D})$-concepts are NExpTime-hard.

3.5 Satisfiability of $\operatorname{ALC} \mathcal{R} \mathcal{P}(\mathcal{P})$-Concepts

In this section, we prove that satisfiability of $\mathcal{A L C} \mathcal{R} \mathcal{P}(\mathcal{P})$-concepts is NExpTimehard. Hence, adding the role-forming concrete domain constructor yields another extension of $\mathcal{A L C}(\mathcal{D})$ in which reasoning is considerably harder than in $\mathcal{A L C}(\mathcal{D})$ itself.

As in the previous two sections, we give a reduction of the $2^{n}+1-\mathrm{PCP}$ using the concrete domain \mathcal{P}. Given a PCP $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$, we define a concept $C[P]$ of size polynomial in $|P|$ which has a model iff P has a solution. The concept $C[P]$ can be found in Figure 10, where X and Y denote concept names, x and y denote abstract features, and p denotes a predicate. The equalities in the figure are not concept definitions but serve as abbreviations (c.f. Section 3.4). Note that $S[g, p]$ is a predicate role and not a concept, i.e., $S[g, p]$ is an abbreviation for the role-forming concrete domain constructor $\exists(g),(g) . \bar{p}$ (a lowercase p is used for predicates to avoid confusion with the PCP P). $C \rightarrow D$ is used as an abbreviation for $\neg C \sqcup D$. We informally explain the structure of models of $C[P]$ before giving a formal proof of its correctness.

Figure 11 contains an example model of $C[P]$ with $|P|=n=2$. Obviously, the structure of models of $C[P]$ is rather similar to the structure of models of the $\mathcal{A L C}(\mathcal{D})$ reduction TBox $\mathcal{T}[P]$ from Section 3.3: Models have the form of a binary tree of depth n whose fringe nodes (together with two "extra" nodes) are connected by two predicate chains of length $2^{n}+1$. Corresponding nodes on the two chains represent words x and y from partial solutions (x, y) of the PCP P. The Tree concept ensures the existence of the binary tree. The concept names B_{0}, \ldots, B_{n-1} are used for a binary numbering (from 0 to $2^{n}-1$) of the fringe nodes of the tree. More precisely, for a domain object $a \in \Delta^{\mathcal{I}}$, set

$$
\operatorname{pos}(a)=\Sigma_{i=0}^{n-1} \beta_{i}(a) * 2^{i}
$$

where

$$
\beta_{i}(a)= \begin{cases}1 & \text { if } a \in B_{i}^{\mathcal{I}} \\ 0 & \text { otherwise },\end{cases}
$$

i.e, the number $\operatorname{pos}(a)$ is binarily coded by the concept names B_{0}, \ldots, B_{n-1}. The Tree and DistB concepts ensure that, for two fringe nodes a and a^{\prime} with $a \neq a^{\prime}$, we have $\operatorname{pos}(a) \neq \operatorname{pos}\left(a^{\prime}\right)$. Due to the first line of the $C[P]$ concept, every fringe node has (concrete) successors for the g_{ℓ} and g_{r} features. The last two lines of $C[P]$ guarantee the existence of the two extra nodes such that (i) both nodes have concrete $g_{\ell^{-}}$and g_{r}-fillers, and (ii) one of the extra nodes is in $X^{\mathcal{I}}$ while the other is in $Y^{\mathcal{I}}$. It remains to describe how the edges of the two predicate chains are established.

For the sake of simplicity, let us start with describing how the edges ending at the extra nodes are generated. W.l.o.g., we concentrate on the extra node b with $b \in X^{\mathcal{I}}$ and on edges between g_{ℓ}-fillers. Let a be the fringe node with $\operatorname{pos}(a)=2^{n}-1, x$ be the g_{ℓ}-successor of a, and y be the g_{ℓ}-successor of b (both concrete objects exist according to the definition of $C[P]$). By the fifth line of the definition of $C[P]$, we have $a \in E x t[X]^{\mathcal{I}}$. The concept $\operatorname{Ext}[X]$ has the form of a disjunction where each disjunct establishes a different "type" of edge between x and y (and another edge between the corresponding g_{r}-fillers). We exemplarily use the subconcept $\forall S\left[g_{\ell},=\right] . \neg X$ of $E x t[X]$

$$
\begin{aligned}
& \operatorname{Dist}[\mathrm{k} k]=\prod_{i=0}^{k}\left(\left(B_{i} \rightarrow \forall R . B_{i}\right) \sqcap \neg B_{i} \rightarrow \forall R . \neg B_{i}\right) \\
& \text { Tree }=\exists R . B_{0} \sqcap \exists R . \neg B_{0} \\
& \sqcap \forall R .\left(\text { Dist } B[0] \sqcap \exists R . B_{1} \sqcap \exists R . \neg B_{1}\right) \\
& \vdots \\
& \sqcap \forall R^{n-1} .\left(\operatorname{Dist} B[n-1] \sqcap \exists R . B_{n-1} \sqcap \exists R . \neg B_{n-1}\right) \\
& S[g, p]=\exists(g),(g) \cdot \bar{p} \\
& \text { Edge }[g, p]=\left(\begin{array}{l}
n-1 \\
k=0 \\
\left.\bigcup_{j=0}^{k-1} \neg B_{j}\right)
\end{array}\right) \sqcap\left(B_{k} \rightarrow \forall S[g, p] . \neg B_{k}\right) \sqcap\left(\neg B_{k} \rightarrow \forall S[g, p] . B_{k}\right) \\
& \left.\sqcup \bigcup_{k=0}^{n-1}\left(\prod_{j=0}^{k-1} B_{j}\right) \sqcap\left(B_{k} \rightarrow \forall S[g, p] \cdot B_{k}\right) \sqcap\left(\neg B_{k} \rightarrow \forall S[g, p] . \neg B_{k}\right)\right) \\
& \operatorname{DEdge}[P]=\left(E d g e\left[g_{\ell},=\right] \sqcap \operatorname{Edge}\left[g_{r},=\right]\right) \sqcup \\
& \underset{\left(\ell_{i}, r_{i}\right) \text { in } P}{\sqcup}\left(E d g e\left[g_{\ell}, \text { conc }_{\ell_{i}}\right] \sqcap E d g e\left[g_{r}, \text { conc }_{r_{i}}\right]\right) \\
& \operatorname{Ext}[D]=\left(\forall S\left[g_{\ell},=\right] . \neg D \sqcap \forall S\left[g_{r},=\right] . \neg D\right) \sqcup \\
& \underset{\left(\ell_{i}, r_{i}\right)}{\sqcup} \text { in }\left(\forall S\left[g_{\ell}, \text { conc }_{\ell_{i}}\right] . \neg D \sqcap \forall S\left[g_{r}, \text { conc }_{r_{i}}\right] . \neg D\right. \\
& C[P]=\text { Tree } \Pi \forall R^{n} \cdot \exists g_{\ell} \cdot \text { word } \Pi \forall R^{n} \cdot \exists g_{r} \text {.word } \\
& \sqcap \forall R^{n} \cdot\left[\left(\neg B_{0} \sqcap \cdots \sqcap \neg B_{n-1}\right) \rightarrow\left(\exists g_{\ell} .={ }_{\epsilon} \sqcap \exists g_{r} .={ }_{\epsilon}\right)\right. \\
& \sqcap \neg\left(B_{0} \sqcap \cdots \sqcap B_{n-1}\right) \rightarrow \text { DEdge }[P] \\
& \sqcap\left(B_{0} \sqcap \cdots \sqcap B_{n-1}\right) \rightarrow \\
& (E x t[X] \sqcap \forall x . E x t[Y] \\
& \sqcap \exists x .\left(X \sqcap \exists g_{\ell} \text {.word } \sqcap \exists g_{r} \text {.word }\right) \\
& \left.\left.\sqcap \exists y .\left(Y \sqcap \exists g_{\ell}, g_{r} .=\sqcap \exists g_{\ell} \cdot \mathcal{F}_{\epsilon}\right)\right)\right]
\end{aligned}
$$

Figure 10: The $\mathcal{A L C R} \mathcal{P}(\mathcal{P})$ reduction concept $C[P](n=|P|)$.

Figure 11: An example model of $C[P]$ with $|P|=2$.
to demonstrate how the edge between x and y is established. From the fact that $a \in\left(\forall S\left[g_{\ell},=\right] . \neg X\right)^{\mathcal{I}}$ and $b \in X^{\mathcal{I}}$, it follows that $(a, b) \notin S\left[g_{\ell},=\right]^{\mathcal{I}}$, i.e., $(a, b) \notin$ $\left(\exists\left(g_{\ell}\right),\left(g_{\ell}\right) . \neq\right)^{\mathcal{I}}$ and thus $(x, y) \notin \not \mathcal{}^{\mathcal{D}}$, which obviously implies that $(x, y) \in=^{\mathcal{D}}$. In the case $a \in\left(\forall S\left[g_{\ell}, \text { conc }_{\ell_{i}}\right] \cdot \neg X\right)^{\mathcal{I}}$, an analogous argument leads to $(x, y) \in \operatorname{conc}_{\ell_{i}}^{\mathcal{P}}$.

The edges which do not end at extra nodes are established in a similar way by the DEdge and Edge concepts. The DEdge concept is just a disjunction over the various edge types while the Edge concept actually establishes the edges. The Edge concept is essentially the negation of the well-known propositional formula

$$
\bigwedge_{k=0}^{n-1}\left(\bigwedge_{j=0}^{k-1} x_{j}=1\right) \rightarrow\left(x_{k}=1 \leftrightarrow x_{k}^{\prime}=0\right) \wedge \bigwedge_{k=0}^{n-1}\left(\bigvee_{j=0}^{k-1} x_{j}=0\right) \rightarrow\left(x_{k}=x_{k}^{\prime}\right)
$$

which encodes incrementation modulo 2^{n}, i.e., if k is the number binarly encoded by the propositional variables x_{0}, \ldots, x_{n-1} and k^{\prime} is the number binarly encoded by the propositional variables $x_{0}^{\prime}, \ldots, x_{n-1}^{\prime}$, then we have $k^{\prime}=k+1$ modulo 2^{n} (see, e.g., [6]). Assume $a \in\left(E d g e\left[g_{\ell}, p\right]\right)^{\mathcal{I}}$ (where p is either " $=$ " or $\operatorname{conc}_{l_{i}}$) and let b be the fringe node with $\operatorname{pos}(b)=\operatorname{pos}(a)+1, x$ be the g_{ℓ}-successor of a, and y be the g_{ℓ}-successor of b. The Edge concept ensures that, for each $S\left[g_{\ell}, p\right]$-successor c of a, we have $\operatorname{pos}(c) \neq \operatorname{pos}(a)+1$, i.e., there exists an i with $0 \leq i \leq n$ such that c differs from b in the interpretation of B_{i}. It follows that $(a, b) \notin S\left[g_{\ell}, p\right]^{\mathcal{I}}$. As in the case of the edges ending at one of the extra nodes, we can conclude $(x, y) \in p^{\mathcal{I}}$. All remaining issues such as, e.g., ensuring that one of the partial solutions is in fact a solution, are as in the reduction given in Section 3.3.

Lemma 28. Let $P=\left(\ell_{1}, r_{1}\right), \ldots,\left(\ell_{k}, r_{k}\right)$ be a $P C P$. Then P has a solution iff the concept $C[P]$ is satisfiable.

Proof During the proof, we abbreviate $|P|$ by n. First assume that $C[P]$ is satisfiable. Using induction over n and the definitions of the Tree and DistB concepts, it is easy to show that there exist objects $a_{i, j}$ for $0 \leq i \leq n$ and $0 \leq j<2^{i}$ such that

1. $R^{\mathcal{I}}\left(a_{i, j}\right)=\left\{a_{(i+1), 2 j}, a_{(i+1),(2 j+1)}\right\}$ for $0 \leq i<n$ and $0 \leq j<2^{i}$ and
2. $\operatorname{pos}\left(a_{n, j}\right)=j$ for $0 \leq j<2^{n}$.

The first property implies that the $a_{i, j}$ form a binary tree whose edges are labeled by R and whose nodes are not necessarily distinct. ${ }^{7}$ The naming scheme for nodes is as indicated in Figure 4. By the first line of the $C[P]$ concept, there exist concrete objects $x_{0}, \ldots, x_{2^{n}-1}$ and $y_{0}, \ldots, y_{2^{n}-1}$ such that

$$
g_{\ell}^{\mathcal{I}}\left(a_{n, j}\right)=x_{j} \text { and } g_{r}^{\mathcal{I}}\left(a_{n, j}\right)=y_{j} \text { for all } 0 \leq j<2^{n}
$$

By the third line of $C[P]$, we have $a_{n, j} \in(\operatorname{DEdge}[P])^{\mathcal{I}}$ for all $a_{n, j}$ with $\operatorname{pos}\left(a_{n, j}\right) \neq$ $2^{n}-1$, i.e., for all $a_{n, j}$ with $0 \leq j<2^{n}-1$. By definition of $D E d g e[P]$, for each j with $0 \leq j<2^{n}$, we have either

$$
a_{n, j} \in\left(E d g e\left[g_{\ell},=\right] \sqcap \operatorname{Edge}\left[g_{r},=\right]\right)^{\mathcal{I}}
$$

or there exists a pair $\left(\ell_{i}, r_{i}\right) \in P$ such that

$$
a_{n, j} \in\left(E d g e\left[g_{\ell}, \operatorname{conc}_{\ell_{i}}\right] \sqcap E d g e\left[g_{r}, \operatorname{conc}_{r_{i}}\right]\right)^{\mathcal{I}}
$$

As was already shown in the intuitive explanations, the first property implies $x_{j}=x_{j+1}$ and $y_{j}=y_{j+1}$ while the second implies $\left(x_{j}, x_{j+1}\right) \in \operatorname{conc}_{\ell_{i}}^{\mathcal{P}}$ and $\left(y_{j}, y_{j+1}\right) \in \operatorname{conc}_{r_{i}}^{\mathcal{P}}$ (we refrain from repeating the arguments here). Summing up, there exist concrete objects $x_{0}, \ldots, x_{2^{n}-1}$ and $y_{0}, \ldots, y_{2^{n}-1}$ and indexes $i_{1}, \ldots, i_{2^{n}-1} \in\{1, \ldots, k\} \cup\{\boldsymbol{\rho}\}$ such that

1. $g_{\ell}^{\mathcal{I}}\left(a_{n, j}\right)=x_{j}$ and $g_{r}^{\mathcal{I}}\left(a_{n, j}\right)=y_{j}$ for $0 \leq j<2^{n}$, and
2. for all $1 \leq j \leq 2^{n}-1$,

- if $i_{j}=\boldsymbol{\&}$ then $x_{j-1}=x_{j}$ and $y_{j-1}=y_{j}$, and
- $\left(x_{j-1}, x_{j}\right) \in \operatorname{conc} c_{{\ell_{i_{j}}}^{\mathcal{P}}}$ and $\left(y_{j-1}, y_{j}\right) \in \operatorname{conc} c_{r_{i_{j}}}^{\mathcal{P}}$ otherwise.

Analogously, by definition of the $\operatorname{Ext}[D]$ concept and the last four lines of the definition of $C[P]$, there exist abstract objects $a_{n, 2^{n}}, a_{n,\left(2^{n}+1\right)}$, concrete objects $x_{2^{n}}, x_{2^{n}+1}, y_{2^{n}}, y_{2^{n}+1}$, and indexes $i_{2^{n}}, i_{2^{n}+1} \in\{1, \ldots, k\} \cup\{\boldsymbol{\phi}\}$ such that

1. $x^{\mathcal{I}}\left(a_{n, 2^{n}-1}\right)=a_{n, 2^{n}}$ and $y^{\mathcal{I}}\left(a_{n, 2^{n}-1}\right)=a_{n,\left(2^{n}+1\right)}$,
2. $g_{\ell}^{\mathcal{I}}\left(a_{n, i}\right)=x_{i}$ and $g_{r}^{\mathcal{I}}\left(a_{n, i}\right)=y_{i}$ for $i \in\left\{2^{n}, 2^{n}+1\right\}$,
3. for all $j \in\left\{2^{n}, 2^{n}+1\right\}$,

- if $i_{j}=\boldsymbol{\phi}$ then $x_{j-1}=x_{j}$ and $y_{j-1}=y_{j}$, and

[^5]- $\left(x_{j-1}, x_{j}\right) \in \operatorname{conc}{\mathcal{\ell _ { i _ { j } }}}_{\mathcal{P}}$ and $\left(y_{j-1}, y_{j}\right) \in \operatorname{conc}_{r_{i_{j}}}^{\mathcal{P}}$ otherwise.

Moreover, by the second and last line of the definition of $C[P]$, we have $x_{0}=y_{0}=\epsilon$ and $x_{2^{n}+1}=y_{2^{n}+1} \neq \epsilon$. Taking together these observations, it is clear that the sequence $i_{1}^{\prime}, \ldots, i_{p}^{\prime}$, which can be obtained from $i_{1}, \ldots, i_{2^{n}+1}$ by eliminating all i_{j} with $i_{j}=\boldsymbol{\&}$, is a solution for P. Furthermore, we obviously have $1<p \leq 2^{n}+1$.

Now for the "only if" direction. Assume that P has a solution i_{1}, \ldots, i_{m} with $m \leq 2^{|P|}+1$. With L_{j} (resp. R_{j}), we denote the concatenation $\ell_{i_{1}} \cdots \ell_{i_{j}}$ (resp. $r_{i_{1}} \cdots r_{i_{j}}$) for $1 \leq j \leq m$ and set $L_{0}=R_{0}=\epsilon$ and $L_{j}=L_{m}\left(\right.$ resp. $\left.R_{j}=R_{m}\right)$ for all $j>m$. We define a model \mathcal{I} for $C[P]$ with the form of a binary tree of depth n. The object names in Figure 4 indicate the naming scheme used. Set

$$
\Delta^{\mathcal{I}}:=\left\{a_{i, j} \mid 0 \leq i \leq n, 0 \leq j<2^{i}\right\} \cup\left\{a_{n, 2^{n}}, a_{n,\left(2^{n}+1\right)}\right\} .
$$

For all $0 \leq j<n, B_{j}^{\mathcal{T}}$ is the smallest superset S of $\left\{a_{j+1, i} \mid 0 \leq i<2^{j} \wedge i \bmod 2 \neq 0\right\}$ which is closed under the following condition:

$$
a_{i, j} \in S \text { and } i<n \Longrightarrow a_{(i+1),(2 j)}, a_{(i+1),(2 j+1)} \in S
$$

Now for the interpretation of the roles.
For all i, j with $0 \leq i<n$ and $0 \leq j<2^{i}$ set $R^{\mathcal{I}}\left(a_{i, j}\right):=\left\{a_{(i+1),(2 j)}, a_{(i+1),(2 j+1)}\right\}$.
Set $x^{\mathcal{I}}\left(a_{n,\left(2^{n}-1\right)}\right):=a_{n, 2^{n}}$ and $y^{\mathcal{I}}\left(a_{n,\left(2^{n}-1\right)}\right):=a_{n,\left(2^{n}+1\right)}$.
For all i with $0 \leq i \leq 2^{n}+1$ set $g_{\ell}^{\mathcal{I}}\left(a_{n, i}\right):=L_{i}$ and $g_{r}^{\mathcal{I}}\left(a_{n, i}\right):=R_{i}$.
It is not hard to verify that \mathcal{I} is a model for $C[P]$.
Obviously, the size of $C[P]$ is polynomial in $|P|$ and $C[P]$ can be constructed in time polynomial in $|P|$. Since subsumption can be reduced to satisfiability, we obtain the following theorem.

Theorem 29. There exists an admissible concrete domain \mathcal{D} for which satisfiability is in PTime such that satisfiability and subsumption of $\mathcal{A L C R} \mathcal{P}(\mathcal{D})$-concepts are NExpTime-hard.

4 Upper Complexity Bound

In this section, we establish an upper bound corresponding to the lower bounds given in the previous section. We consider concrete domains \mathcal{D} for which satisfiability is in NP and show that satisfiability and subsumption of (restricted) $\mathcal{A} \mathcal{L C R} \mathcal{P I}(\mathcal{D})$-concepts w.r.t. TBoxes is in NExpTime. First, a tableau algorithm for deciding satisfiability of $\mathcal{A L C} \mathcal{R} \mathcal{I}(\mathcal{D})$-concepts without reference to TBoxes is devised. Then, we modify the presented algorithm to take into account TBoxes by using "on the fly unfolding" as proposed in [19].

4.1 A Completion Algorithm for $\operatorname{ALCR} \mathcal{P} \mathcal{I}(\mathcal{D})$

In this section, we prove satisfiability of $\mathcal{A L C \mathcal { R } \mathcal { I }}(\mathcal{D})$-concepts (without reference to TBoxes) to be in NExpTime by devising an appropriate algorithm. The presented algorithm is a so-called tableau algorithm which tries to construct a canonical model for the input concept by repeatedly applying completion rules to a completion system. Input concepts are required to be in negation normal form. We start with introducing completion systems, which are the fundamental data structure of the completion algorithm presented in this section.

Definition 30 (Completion System). Let O_{a} and O_{c} be disjoint sets of abstract nodes and concrete nodes (both countably infinite). A completion tree for an $\mathcal{A L C} \mathcal{R} \mathcal{P} \mathcal{I}(\mathcal{D})$ concept D is a tree whose set of nodes is a subset of $O_{a} \uplus O_{c}$. Each node $a \in O_{a}$ of the tree is labeled with a subset $\mathcal{L}(a)$ of $\operatorname{sub}(D)$, each edge (a, b) with $a, b \in O_{a}$ is labeled with a (possibly complex) role $\mathcal{L}(a, b)$ occurring in D, and each edge (a, x) with $a \in O_{a}$ and $x \in O_{c}$ is labeled with a concrete feature $\mathcal{L}(a, x)$ occurring in $D .{ }^{8}$ The following properties have to be satisfied.

1. concrete nodes have no successors,
2. if b and c are successors of a and $\mathcal{L}(a, b)=\mathcal{L}(a, c)=f$ for an abstract feature f, then $b=c$.
3. if b is successor of a and $\mathcal{L}(a, b)=f^{-}$for an abstract feature f, then for all successors c of b, we have $\mathcal{L}(b, c) \neq f$.
4. if x and y are successors of a and $\mathcal{L}(a, x)=\mathcal{L}(a, y)=g$ for a concrete feature g, then $x=y$.

A completion system for an $\mathcal{A} \mathcal{L C} \mathcal{R P} \mathcal{I}(\mathcal{D})$-concept D is a pair $(\mathbf{T}, \mathcal{P})$, where \mathbf{T} is a completion tree for D and \mathcal{P} is a function mapping each $P \in \Phi_{\mathcal{D}}$ with arity n appearing in D to a subset of $\left(O_{c}\right)^{n}$.

Let \mathbf{T} be a completion tree, $R \in \widehat{\mathcal{R}}$, and $a, b \in O_{a} . b$ is called R-successor of a in \mathbf{T} iff b is a successor of a and $\mathcal{L}(a, b)=R$ (for concrete features g, the notion g-successor is defined analogously). b is called R-neighbor of a iff b is R-successor of a or a is $\operatorname{Inv}(R)$-successor of b. The notion R-neighbor is extended to paths in the obvious way: Let $u=f_{1} \cdots f_{n} g$ be a path and $x \in O_{c} ; x$ is u-neighbor of a in \mathbf{T} if there exist nodes $b_{1}, \ldots, b_{n} \in O_{a}$ such that b_{1} is f_{1}-neighbor of a, b_{i} is f_{i}-neighbor of b_{i-1} for $1<i \leq n$, and x is g-successor of b_{n} (resp. if x is a g-successor of a in the case that $u=g$). With neighb $\mathbf{T}_{\mathbf{T}}(a, u)$, we denote the u-neighbor of a in \mathbf{T} (which is unique due to Properties 2 to 4 of completion trees). The index \mathbf{T} is omitted if clear from the context. If R is a predicate role, then b is a virtual R-successor of a if

1. $R=\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right) \cdot P$,
2. there exist concrete nodes x_{1}, \ldots, x_{n} such that $x_{i}=\operatorname{neighb}\left(a, u_{i}\right)$ for $1 \leq i \leq n$,

[^6]3. there exist concrete nodes y_{1}, \ldots, y_{m} such that $y_{i}=\operatorname{neigh} b\left(b, v_{i}\right)$ for $1 \leq i \leq m$, and
4. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathcal{P}(P)$.

If $R=S^{-}$and S is a predicate role, then b is a virtual R-successor of a if a is a virtual S-successor of b. A node $a \in O_{a}$ is a general R-neighbor of a node $b \in O_{a}$ if b is an R-neighbor of a or b is a virtual R-successor of a.

If the satisfiability of a concept D is to be decided, the completion algorithm is started with the initial completion system $S_{D}=\left(\mathbf{T}_{D}, \mathcal{P}_{\emptyset}\right)$, where \mathbf{T}_{D} is the tree consisting of a single node a with $\mathcal{L}(a)=\{D\}$ and \mathcal{P}_{\emptyset} maps each $P \in \Phi_{\mathcal{D}}$ to \emptyset. The algorithm repeatedly applies the (yet to be defined) completion rules until (1) it finds a completion system to which no more rules are applicable or (2) it finds a completion system containing a contradiction. If the final completion system contains a contradiction (be it complete or not), D is not satisfiable. Otherwise, the final completion system represents a model for D. Before the completion rules are defined, we introduce a bit of notation.

Definition 31 ("+" operation). An abstract or concrete node is called fresh w.r.t. a completion tree \mathbf{T} if it does not appear in \mathbf{T}. Let $S=(\mathbf{T}, \mathcal{P})$ be a completion system. By $S+a R b$ (resp. $S+a g x$), where a is a node in \mathbf{T} and b (resp. x) is fresh in S, we denote the completion system S^{\prime} which can be obtained from S as follows:

- If $R \in N_{a F}$ and a has an R-neighbor b^{\prime} (resp. $g \in N_{c F}$ and a has a g-successor $\left.x^{\prime}\right)$, then rename b^{\prime} in \mathbf{T} with b (resp. x^{\prime} in \mathbf{T} and \mathcal{P} with $\left.x\right)$.
- Otherwise, augment \mathbf{T} by a new successor b of $a($ resp. x of a) and set $\mathcal{L}(a, b)=R$ (resp. $\mathcal{L}(a, x)=g)$.

When nesting the + -operation, we ommit brackets writing, e.g., $S+a R b+b R c$ for $(S+a R b)+b R c$. Let $u=f_{1} \cdots f_{n} g$ be a path. By $S+a u x$, where x is fresh in S, we denote the completion system S^{\prime} which can be obtained from S as follows: Let b_{1}, \ldots, b_{n} be distinct objects which are fresh in S. Set

$$
S^{\prime}:=S+a f_{1} b+b_{1} f_{2} b_{2}+\cdots+b_{n-1} f_{n} b_{n}+b_{n} g x .
$$

The completion rules can be found in Figure 12. With roles (D) in the Rch rule, we denote the set of role names and predicate roles used (directly or as inverse) in the input concept D. The R \sqcup rule is nondeterministic, i.e., it has more than one possible outcome. The algorithm returns unsatisfiable only if there is no way to apply the completion rules such that a complete and clash-free completion system is obtained. Intuitively, the algorithm can be thought of as "guessing" the "right" outcome of the R \sqcup rule. The notion "clash" formalizes what it means for a completion system to be contradictory.

Definition 32 (Clash). Let $S=(\mathbf{T}, \mathcal{P})$ be a completion system for a concept $D . S$ is concrete domain satisfiable iff the conjunction

$$
\zeta_{\mathcal{P}}=\bigwedge_{P \text { used in } D\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}(P)}\left(x_{1}, \ldots, x_{n}\right): P
$$

$\mathbf{R} \sqcap \quad$ if $C_{1} \sqcap C_{2} \in \mathcal{L}(a), C_{1} \notin \mathcal{L}(a)$, or $C_{2} \notin \mathcal{L}(a)$
then $\mathcal{L}(a):=\mathcal{L}(a) \cup\left\{C_{1}, C_{2}\right\}$
R $\sqcup \quad$ if $C_{1} \sqcup C_{2} \in \mathcal{L}(a)$ and $C_{1} \notin \mathcal{L}(a)$ or $C_{2} \notin \mathcal{L}(a)$
then $\mathcal{L}(a):=\mathcal{L}(a) \cup\{C\}$ for some $C \in\left\{C_{1}, C_{2}\right\}$
$\mathbf{R} \exists \quad$ if $\exists R . C \in \mathcal{L}(a)$ and, for all general R-neighbors b of $a, C \notin \mathcal{L}(b)$ then set $S:=S+a R b$ for a fresh $b \in O_{a}$ and set $\mathcal{L}(b):=\{C\}$
$\mathbf{R} \forall \quad$ if $\forall R . C \in \mathcal{L}(a), b$ is general R-neighbor of a, and $C \notin \mathcal{L}(b)$
then set $\mathcal{L}(b):=\mathcal{L}(b) \cup\{C\}$
$\mathbf{R c} \quad$ if $\exists u_{1}, \ldots, u_{n} . P \in \mathcal{L}(a)$ and there exist no $x_{1}, \ldots, x_{n} \in O_{c}$ such that $x_{i}=n e i g h b\left(a, u_{i}\right)$ for $1 \leq i \leq n$ and $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}(P)$ then augment S as follows:

Set $S_{0}:=S$ and, for each $1 \leq i \leq n$, set $S_{i}=S_{i-1}+a u_{i} x_{i}$ with x_{i} fresh in S_{i-1}.
Finally, set $S:=S_{n}$ and $\mathcal{P}(P):=\mathcal{P}(P) \cup\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}$
$\mathbf{R} \mathcal{R} \quad$ if b is $\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) . P$-neighbor of a and there exist no $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in O_{c}$ such that $x_{i}=\operatorname{neighb}\left(a, u_{i}\right)$ for $1 \leq i \leq n$, $y_{i}=\operatorname{neighb}\left(b, v_{i}\right)$ for $1 \leq i \leq m$, and $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathcal{P}(P)$
then augment S as follows:
$S_{0}:=S ;$ for $1 \leq i \leq n, S_{i}=S_{i-1}+a u_{i} x_{i}$ with x_{i} fresh in S_{i-1}
$S_{0}^{\prime}:=S_{n}$; for $1 \leq i \leq m, S_{i}^{\prime}=S_{i-1}^{\prime}+b v_{i} y_{i}$ with y_{i} fresh in S_{i-1}^{\prime}.
Set $S:=S_{m}^{\prime}$ and $\mathcal{P}(P):=\mathcal{P}(P) \cup\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right\}$
$\mathbf{R} c h \quad$ if $\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) . P \in \operatorname{roles}(D)$, $x_{i}=n \operatorname{eigh} b\left(a, u_{i}\right)$ for $1 \leq i \leq n, y_{i}=n \operatorname{eigh} b\left(b, v_{i}\right)$ for $1 \leq i \leq m$, and $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \notin \mathcal{P}(P) \cup \mathcal{P}(\bar{P})$
then $\mathcal{P}\left(P^{\prime}\right):=\mathcal{P}\left(P^{\prime}\right) \cup\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right\}$ for a $P^{\prime} \in\{P, \bar{P}\}$
Figure 12: Completion rules for $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{I}(\mathcal{D})$ on input C_{0}.

```
define procedure sat(S)
    if S contains a clash then
        return unsatisfiable
    if S is complete then
        return satisfiable
    Apply a (possibly nondeterministic) completion rule to S yielding S'
    return sat(S')
```

Figure 13: The sat algorithm.
is satisfiable. S is said to contain a clash iff there occurs a node $a \in O_{a}$ in \mathbf{T} such that

1. $\{A, \neg A\} \subseteq \mathcal{L}(a)$ for a concept name A,
2. $g \uparrow \in \mathcal{L}(a)$ and there exists an $x \in O_{c}$ such that x is g-successor of a, or
3. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. S is called complete iff no completion rule is applicable to S.

The completion algorithm (called sat from now on) itself can be found in Figure 13 in a pseudo code notation.

In the following, we introduce some notions needed for proving termination of the algorithm. A completion system S^{\prime} is derived from a completion system S if S^{\prime} can be obtained from S by repeatedly applying completion rules. For a node a in \mathbf{T}, let $\ell(a)$ denote the level of a in \mathbf{T}, i.e., its distance to the root node. With $|C|$, we denote the size of a concept C which is defined as the number of symbols (constructors, concept names, role names, concrete feature names, and predicate names) in C. With $r d(C)$, we denote the role depth of a concept C which is defined inductively as follows (for technical reasons, we also define the role depth of roles):

1. $r d(A)=r d(\neg A)=0$ for concept names A,
2. $r d(R)=1$ for role names R,
3. $\operatorname{rd}\left(\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) . P\right)$ is the length of the longest path in the set $\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m}\right\}$ (where the length of a path $u=f_{1} \cdots f_{n} g$ is $n+1$),
4. $r d\left(C_{1} \sqcap C_{2}\right)=r d\left(C_{1} \sqcup C_{2}\right)=\max \left(r d\left(C_{1}\right), r d\left(C_{2}\right)\right)$,
5. $r d(\exists R . C)=r d(\forall R . C)=\max (r d(R), 1+r d(C))$,
6. $r d\left(\exists u_{1}, \ldots, u_{n} . P\right)$ is the length of the longest path in $\left\{u_{1}, \ldots, u_{n}\right\}$, and
7. $r d(g \uparrow)=0$.

Let C be a concept. With $n f(C)$, we denote the number of distinct abstract features used in C. Furthermore, $\operatorname{rex}(C)$, denotes the number of concepts in $\operatorname{sub}(C)$ of the form $\exists R$. D with $R \in N_{R} \backslash N_{a F}$. Let \mathcal{C} be a set of concepts. With $\operatorname{rd}(\mathcal{C})$, we denote the maximum role depth of all concepts in \mathcal{C}. We set
$\left.\mathcal{C}\right|_{\exists c R}:=\{C \in \mathcal{C} \mid \operatorname{sub}(C)$ contains a concept of the form $\exists R . E$ with R complex role $\}$ and

$$
\left.\mathcal{C}\right|_{\exists P}:=\left\{C \in \mathcal{C} \mid \operatorname{sub}(C) \text { contains a concept of the form } \exists u_{1}, \ldots, u_{n} . P\right\} .
$$

For showing termination, we that the depth and outdegree of completion trees constructed by the algorithm is bounded. In order to show the bound on the depth, we prove that the level of abstract nodes having concrete g-successors (for some $g \in N_{c F}$) is bounded. This is important since it implies that, if a node b is a virtual successor
of a node a, then the depth of b is bounded. It is not hard to see that this fact is crucial for the boundedness of the depth of completion trees. To show the mentioned bound on the level of objects with concrete successors, we prove that, if $\mathcal{L}(a)$ contains a concept of the form $\exists u_{1}, \ldots, u_{n} . P$ or $\exists S . C$ with S complex role, then the level of the node a is bounded. We start with establishing this latter two bounds (one for each concept type).

Lemma 33. Let $S=(\mathbf{T}, \mathcal{P})$ be a completion system derived from an initial completion system S_{D}. For all abstract nodes a in \mathbf{T}, we have $\operatorname{rd}\left(\left.\mathcal{L}(a)\right|_{\exists c R}\right) \leq r d(D)-\ell(a)$.

Proof The proof is by induction over the number of rule applications. The lemma is obviously true for the initial completion system S_{D}. For the induction step, we make a case distinction according to the rule applied. $\mathrm{R} \sqcap$ and $\mathrm{R} \sqcup$ are straightforward since they only add concepts C to labels $\mathcal{L}(a)$ with $r d(C) \leq r d(\mathcal{L}(a))$. $\mathrm{R} c, \mathrm{R} \mathcal{R}$, and $\mathrm{R} c h$ are trivial since they do not change node labels at all. Hence, the only interesting cases are $R \exists$ and $R \forall$.

- Assume $\mathrm{R} \exists$ is applied to a concept $\exists R . C \in \mathcal{L}(a)$ where $\operatorname{sub}(C)$ contains a concept of the form $\exists S . E$ with S complex role. The rule application generates an R-successor b of a and sets $\mathcal{L}(b)=\{C\}$. By induction hypothesis, we have $r d(\exists R . C) \leq r d(D)-\ell(a)$. It follows that $r d(C) \leq r d(D)-\ell(b)$ since $r d(\exists R . C) \geq r d(C)+1(" \geq$ " since R may be a complex role) and $\ell(b)=\ell(a)+1$.
- Assume $\mathrm{R} \forall$ is applied to a concept $\forall R . C \in \mathcal{L}(a)$ adding C to $\mathcal{L}(b)$ where $\operatorname{sub}(C)$ contains a concept of the form $\exists S . E$ with S complex role. Since D is in restricted form, $\forall R . C$ is also in restricted form, and, hence, R is not a complex role (see Definition 8). This implies that b is R-neighbor of a and hence $\ell(b) \in$ $\{\ell(a)-1, \ell(a)+1\}$ implying $\ell(b) \leq \ell(a)+1$. By induction hypothesis, $r d(\forall R . C) \leq$ $r d(D)-\ell(a)$. It follows that $r d(C) \leq r d(D)-\ell(b)$ since $r d(\forall R . C)=r d(C)+1$ (" $=$ " since R is not a complex role) and $\ell(b) \leq \ell(a)+1$.

Lemma 34. Let $S=(\mathbf{T}, \mathcal{P})$ be a completion system derived from an initial completion system S_{D}. For all abstract nodes a in \mathbf{T}, we have $r d\left(\left.\mathcal{L}(a)\right|_{\exists P}\right) \leq r d(D)-\ell(a)$.

Proof Straightforward by induction on the number of rule applications, employing the definition of restrictedness (similar to the proof of Lemma 33).

Now for the bound on the level of objects having concrete successors.
Lemma 35. Let $S=(\mathbf{T}, \mathcal{P})$ be a completion system derived from an initial completion system S_{D}. Then, for all abstract nodes a and concrete nodes x in \mathbf{T}, if $(a, x) \in g^{\mathcal{I}}$, where g is a concrete feature, then $\ell(a) \leq r d(D)$.

Proof Only the Rc and $\mathrm{R} \mathcal{R}$ rules may introduce successors for concrete features. We first treat the Rc rule. Assume that the rule was applied to a concept $\exists u_{1}, \ldots, u_{n} . P \in$ $\mathcal{L}(a)$ and generates a g-successor x for an abstract node b, where g is a concrete feature. By Lemma 34, we have $\ell(a) \leq r d(D)-r d\left(\exists u_{1}, \ldots, u_{n} . P\right)$. Furthermore, by definition of the $\mathrm{R} c$ rule, we have $\ell(b)<\ell(a)+r d\left(\exists u_{1}, \ldots, u_{n} . P\right)$, and, hence, $\ell(b)<r d(D)$.

Now assume that the $\mathrm{R} \mathcal{R}$ rule was applied to an object a and its S-neighbor b. Then either (i) b is successor of a and $\mathcal{L}(a, b)=S$ or (ii) a is successor of b and $\mathcal{L}(b, a)=S^{-}$. First consider case (i). In this case, $\mathcal{L}(a, b)$ was generated by an application of the $\mathrm{R} \exists$ rule to a concept $\exists S . C \in \mathcal{L}(a)$. From Lemma 33, it follows that $\ell(a) \leq r d(D)-r d(\exists S . C)$. Furthermore, we have $\ell(b)=\ell(a)+1$. Suppose that the rule application generates a g-successor x for an abstract node c, where g is a concrete feature. By definition of the $\mathrm{R} \mathcal{R}$ rule, it is easy to see that we have $\ell(c)<\ell(b)+r d(\exists S . C)$. Since $\ell(b)=\ell(a)+1$, this yields $\ell(c)<\ell(a)+1+r d(\exists S . C)$, and, from $\ell(a) \leq r d(D)-r d(\exists S . C)$, we obtain $\ell(c)<r d(D)-r d(\exists S . C)+1+r d(\exists S . C)$ which clearly implies $\ell(c) \leq r d(D)$. Case (ii) is analogous.

We can now prove the bounds on the size of completion trees.
Lemma 36. Let D be an $\mathcal{A L C R} \mathcal{P} \mathcal{I}(\mathcal{D})$-concept and let $S=(\mathbf{T}, \mathcal{P})$ be a completion system derived from an initial completion system S_{D}.

1. The out-degree of \mathbf{T} is bounded by $n f(D)+\operatorname{rex}(D)$ and
2. the depth of \mathbf{T} is bounded by $3 * r d(D)$.

Proof We first prove Point 1. Only applications of the $\mathrm{R} \exists$, $\mathrm{R} c$, and $\mathrm{R} \mathcal{R}$ rules may generate successors. The $\mathrm{R} c$ and $\mathrm{R} \mathcal{R}$ roles generate only f-successors with f abstract feature. Since, by definition of \mathbf{T}, there can be at most one f-successor per node and abstract feature f, applications of the $\mathrm{R} c$ and $\mathrm{R} \mathcal{R}$ rules may generate at most $n f(D)$ successors per node. Applications of the $\mathrm{R} \exists$ rule may additionally generate R-successors with $R \in N_{R} \backslash N_{a F}$. However, by definition of $\mathrm{R} \exists$, it is easy to see that the number of successors per node generated in this way is bounded by $\operatorname{rex}(D)$.

Now for Point 2. We prove the following claim:

$$
\begin{equation*}
\text { For all abstract nodes } a \text { in } \mathbf{T}, r d(\mathcal{L}(a)) \leq 3 * r d(D)-\ell(a) \tag{1}
\end{equation*}
$$

The claim obviously implies $\ell(a) \leq 3 * r d(D)$. The proof is by induction over the number of rule applications. The claim is obviously true for the initial completion system S_{D}. Now for the induction step. Note that $\operatorname{rd}(\mathcal{L}(a)) \leq r d(D)$ for all abstract nodes a in \mathbf{T}. This implies that the claim holds true for all nodes a with $\ell(a) \leq 2 *$ $r d(D)$. Hence, we will in the following consider only nodes a with $\ell(a)>2 * r d(D)$. We make a case distinction according to the rule applied. $\mathrm{R} \sqcap$ and $\mathrm{R} \sqcup$ are straightforward since they only add concepts C to labels $\mathcal{L}(a)$ with $r d(C) \leq r d(\mathcal{L}(a))$.

- Assume R \exists is applied to a concept $\exists R . C \in \mathcal{L}(a)$ adding C to $\mathcal{L}(b)$. By induction hypothesis, $r d(\exists R . C) \leq 3 * r d(D)-\ell(a)$. It follows that $r d(C) \leq 3 * r d(D)-\ell(b)$ since $r d(\exists R . C)=r d(C)+1$ and $\ell(b)=\ell(a)+1$.
- Assume $\mathrm{R} \forall$ is applied to a concept $\forall R . C \in \mathcal{L}(a)$ adding C to $\mathcal{L}(b)$. As noted above, we may safely assume $\ell(b)>2 * r d(D)$. By Lemma 35 and since the maximum length of paths in D is bounded by $r d(D)$, we have that $u^{\mathcal{I}}(b)$ is
undefined for each path u in $D .{ }^{9}$ It follows that R is not a virtual R-successor of a, and, hence, $\ell(b) \leq \ell(a)+1$. We can now argue as in the $\mathrm{R} \exists$ case.
- If the $\mathrm{R} c$ rule is applied to a concept $\exists u_{1}, \ldots, u_{n} . P \in \mathcal{L}(a)$, then $\ell(a) \leq 3 *$ $r d(D)-r d\left(\exists u_{1}, \ldots, u_{n} . P\right)$ by induction hypothesis. Hence, by definition of the Rc rule, for all (abstract and concrete) nodes b created by the rule application, we have $\ell(b) \leq 3 * r d(D)$. Since Rc does not augment node labels with new concepts, this proves the claim.
- The case of the $\mathrm{R} \mathcal{R}$ rule is similar to the $\mathrm{R} c$ rule.

Using the lemma just established, we can now prove termination.
Proposition 37 (Termination). Let D be an input to the completion algorithm and let $K=(n f(D)+\operatorname{rex}(D))^{3 * r d(D)}$. The algorithm terminates after at most $\mathcal{O}(|\operatorname{sub}(D)| *$ $K+K^{2}$) rule applications.

Proof We first examine the maximum number of applications of the $\mathrm{R} \sqcap, \mathrm{R} \sqcup, \mathrm{R} \exists$, and R \forall rules. Each such application adds a new concept to a node label. By Lemma 36, there exist at most K nodes. Obviously, the size of each node label is bounded by $|\operatorname{sub}(D)|$. Since nodes are never removed from the tree and concepts are never removed from node labels, there may be at most $|\operatorname{sub}(D)| * K$ applications of the mentioned rules. It remains to treat applications of the $\mathrm{R} c, \mathrm{R} \mathcal{R}$, and $\mathrm{R} c h$ rules.
$\mathrm{R} c$ This rule may be applied at most once per concept $\exists u_{1}, \ldots, u_{n} . P$ appearing in a node label. Hence, the above considerations imply that there may be at most $|\operatorname{sub}(D)| * K$ applications.
$R \mathcal{R} R \mathcal{R}$ may be applied at most once per edge and each node has at most one incoming edge. Hence, the number of $\mathrm{R} \mathcal{R}$ applications is bounded by K.

Rch This rule may be be applied at most once per pair of abstract nodes, i.e., at most K^{2} times.

Taking the above observations together, we obtain the bound stated in the lemma: Applications of the $\mathrm{R} \sqcap, \mathrm{R} \sqcup, \mathrm{R} \exists$, and $\mathrm{R} \forall$ rules yield the first summand, applications of $\mathrm{R} c h$ the second, and all remaining applications just yield a constant factor.

We now prove the correctness of the algorithm.
Lemma 38 (Soundness). If there exists a complete and clash-free completion system $S=(\mathbf{T}, \mathcal{P})$ derived from the initial completion system S_{D}, then D is satisfiable.

[^7]Proof Let $S=(\mathbf{T}, \mathcal{P})$ be as in the lemma. Since S is clash-free, there exists a solution for $\zeta_{\mathcal{P}}$, i.e., a mapping from the set of concrete nodes used in \mathbf{T} to $\Delta_{\mathcal{D}}$. Define the interpretation \mathcal{I} by setting $\Delta_{\mathcal{I}}$ to the set of abstract nodes in \mathbf{T},

$$
\begin{aligned}
& A^{\mathcal{I}} \text { to }\{a \mid A \in \mathcal{L}(a)\} \text { for all } A \in N_{C}, \\
& R^{\mathcal{I}} \text { to }\{(a, b) \mid \mathcal{L}(a, b)=R \text { or } \mathcal{L}(b, a)=\operatorname{Inv}(R)\} \text { for all } R \in N_{R}, \text { and } \\
& g^{\mathcal{I}} \text { to }\{(a,(x)) \mid \mathcal{L}(a, x)=g\} \text { for all } g \in N_{c F} .
\end{aligned}
$$

Considering Properties 2 to 4 of completion trees, it is obvious that \mathcal{I} is well-defined.We first show the following claim.
Claim: For all $a, b \in \Delta_{\mathcal{I}}$ and roles $R \in \widehat{\mathcal{R}}$, we have $(a, b) \in R^{\mathcal{I}}$ iff b is general R neighbor of a.

We make a case distinction according to the type of R.

1. $R \in N_{R}$. Then b is a general R-neighbor of a iff b is R-neighbor of a. By definition of \mathcal{I} and of R-neighbors, b is R-neighbor of a iff $(a, b) \in R^{\mathcal{I}}$.
2. $R=S^{-}$with $S \in N_{R}$. Again, b is a general R-neighbor of a iff b is R-neighbor of a. By definition, b is R-neighbor of a iff a is S-neighbor of b. As in Case 1, a is S-neighbor of b iff $(b, a) \in S^{\mathcal{I}}$. By semantics, $(b, a) \in S^{\mathcal{I}}$ iff $(a, b) \in R^{\mathcal{I}}$ which proves the claim.
3. $R=\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) \cdot P$ is a predicate role. If b is R-neighbor of a, then the non-applicability of the $\mathrm{R} \mathcal{R}$ rule ensures that b is also a virtual R successor of a. Hence, b is general R-neighbor of a iff b is virtual R-successor of b. By definition, b is virtual R-successor of b iff (*) there exist concrete nodes $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ such that

- $x_{i}=\operatorname{neighb}\left(a, u_{i}\right)$ for $1 \leq i \leq n$,
- $y_{i}=\operatorname{neighb}\left(b, v_{i}\right)$ for $1 \leq i \leq m$, and
- $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathcal{P}(P)$.

We need to show that this is the case iff $(* *)$ there exist $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m} \in$ $\Delta_{\mathcal{D}}$ such that

- $u_{i}^{\mathcal{I}}(a)=\alpha_{i}$ for $1 \leq i \leq n$,
- $v_{i}^{\mathcal{T}}(b)=\beta_{i}$ for $1 \leq i \leq m$, and
- $\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right) \in P^{\mathcal{D}}$.

This proves the claim, since, by semantics, we have $(* *)$ iff $(a, b) \in R^{\mathcal{I}}$. The direction from (*) to ($* *$) is straightforward by definition of \mathcal{I}. Now for the direction from $(* *)$ to $(*)$. Assume that $(*)$ holds. By Case 1, this implies the existence of concrete nodes $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ such that $x_{i}=\operatorname{neighb}\left(a, u_{i}\right)$ for $1 \leq i \leq n$ and $y_{i}=\operatorname{neighb}\left(b, v_{i}\right)$ for $1 \leq i \leq m$. Since the Rch rule is not applicable to S and $R \in \operatorname{roles}(D)$, we have either $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathcal{P}(P)$ or
$\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in \mathcal{P}(\bar{P})$. The latter implies $\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right) \in$ $\bar{P}^{\mathcal{D}}$ which is a contradiction. Hence, we conclude $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) \in$ $\mathcal{P}(P)$.
4. $R=S^{-}$with S predicate role. As in Case $3, b$ is general R-neighbor of a iff b is virtual R-successor of a. By definition, b is virtual R-successor of a iff a is virtual S-successor of b. As in Case 3, we conclude that this is the case iff $(a, b) \in S^{\mathcal{I}}$. By semantics, $(b, a) \in S^{\mathcal{I}}$ iff $(a, b) \in R^{\mathcal{I}}$.

This finishes the proof of the claim. By induction over the concept structure, we show that $C \in \mathcal{L}(a)$ implies $a \in C^{\mathcal{I}}$ for all $a \in \Delta_{\mathcal{I}}$ and subconcepts C of D. The induction start, i.e., the case that C is a concept name, is an immediate consequence of the definition of \mathcal{I}. For the induction step, we make a case distinction according to the topmost constructor in C.

- $C=\neg E$. Since D is in negation normal form, E is a concept name. Since S is clash-free, $E \notin \mathcal{L}(a)$ and, by definition of $\mathcal{I}, a \notin E^{\mathcal{I}}$. Hence, $a \in(\neg E)^{\mathcal{I}}$.
- $C=C_{1} \sqcap C_{2}$. Since the $\mathrm{R} \sqcap$ rule is not applicable to S, we have $\left\{C_{1}, C_{2}\right\} \subseteq \mathcal{L}(a)$. By induction, $a \in C_{1}^{\mathcal{I}}$ and $a \in C_{2}^{\mathcal{I}}$, which implies $a \in\left(C_{1} \sqcap C_{2}\right)^{\mathcal{I}}$.
- $C=C_{1} \sqcup C_{2}$. Similar to the previous case.
- $C=\exists$ R.E. Since the $\mathrm{R} \exists$ rule is not applicable to S, there exists an abstract node b in \mathbf{T} such that b is general R-neighbor of a in \mathbf{T} and $E \in \mathcal{L}(b)$. The above claim yields $(a, b) \in R^{\mathcal{I}}$. By induction, we have $b \in E^{\mathcal{L}}$. Hence, we conclude $a \in(\exists R . E)^{\mathcal{I}}$.
- $C=\forall R$.E. Let $b \in \Delta_{\mathcal{I}}$ such that $(a, b) \in R^{\mathcal{I}}$. By the above claim, b is a general R-neighbor of a in T. Since the $R \forall$ rule is not applicable to S, we have $E \in \mathcal{L}(b)$. By induction, it follows that $b \in E^{\mathcal{I}}$. Since this holds for all b, we can conclude $a \in(\forall R . E)^{\mathcal{I}}$.
- $C=\exists u_{1}, \ldots, u_{n} . P$. For each i with $1 \leq i \leq n$, the following holds: Since the $\mathrm{R} c$ rule is not applicable to S, there exist abstract nodes b_{1}, \ldots, b_{n} in \mathbf{T} such that b_{1} is f_{1}-neighbor of a, b_{i} is f_{i}-neighbor of b_{i-1} for $1<i \leq n$, and there exists a concrete node x_{i} such that x_{i} is g-successor of b_{n}. By definition of \mathcal{I}, we have $f_{1}^{\mathcal{I}}(a)=b_{1}, g_{i}^{\mathcal{I}}\left(b_{n}\right)=\left(x_{i}\right)$, and $f_{i}^{\mathcal{I}}\left(b_{i-1}\right)=b_{i}$ for $1<i \leq n$. Furthermore, we have $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}(P)$ and since is a solution for $\zeta_{\mathcal{P}}$, $\left(\left(x_{1}\right), \ldots,\left(x_{n}\right)\right) \in P^{\mathcal{D}}$. Summing up, $a \in\left(\exists u_{1}, \ldots, u_{n} . P\right)^{\mathcal{I}}$.
- $C=g \uparrow$. Since S is clash-free, a has no g-successor x in \mathbf{T}. By definition of \mathcal{I}, $g^{\mathcal{I}}(a)$ is undefined and hence $a \in(g \uparrow)^{\mathcal{I}}$.

Since $D \in \mathcal{L}\left(a_{0}\right)$ for the root a_{0} of \mathbf{T}, we have $D^{\mathcal{I}} \neq \emptyset$ and hence \mathcal{I} is a model for D.

It remains to prove completeness.

Lemma 39 (Completeness). For any satisfiable $\mathcal{A L C \mathcal { R P }} \mathcal{I}(\mathcal{D})$-concept D, the expansion rules can be applied such that they yield a complete and clash-free completion system for D.

Proof Let $\mathcal{I}=\left(\Delta_{\mathcal{I}},,^{\mathcal{I}}\right)$ be a model for D. We use this model to "guide" the application of the non-deterministic completion rule R \sqcup such that a complete and clash-free completion system for D is obtained. A completion system $S=(\mathbf{T}, \mathcal{P})$ is called \mathcal{I} compatible iff there exists a mapping π from the abstract nodes in \mathbf{T} to $\Delta_{\mathcal{I}}$ and from the concrete nodes in \mathbf{T} to $\Delta_{\mathcal{D}}$ such that
a) $C \in \mathcal{L}(a) \Rightarrow \pi(a) \in C^{\mathcal{I}}$
b) b is general R-neighbor of $a \Rightarrow(\pi(a), \pi(b)) \in R^{\mathcal{I}}$
c) x is g-successor of $a \Rightarrow g^{\mathcal{I}}(\pi(a))=\pi(x)$
d) $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}(P) \Rightarrow\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right)\right) \in P^{\mathcal{D}}$
for all abstract nodes a, b in \mathbf{T}, subconcepts C of D, roles $R \in \widehat{\mathcal{R}}$, concrete nodes x, x_{1}, \ldots, x_{n} in \mathbf{T}, concrete features g, and predicates $P \in \Phi_{\mathcal{D}}$.
Claim: If a completion system S is \mathcal{I}-compatible and a rule \mathcal{R} is applicable to S, then it can be applied such that it yields an \mathcal{I}-compatible completion system S^{\prime}.
Let S be an \mathcal{I}-compatible completion system, let π be a function satisfying a) to d), and let \mathcal{R} be a completion rule applicable to S. We make a case distinction according to the type of \mathcal{R}.
$\mathrm{R} \sqcap$ Since the rule is applicable, there exists an abstract node a such that $C_{1} \sqcap C_{2} \in$ $\mathcal{L}(a)$. By a), this implies $\pi(a) \in\left(C_{1} \sqcap C_{2}\right)^{\mathcal{I}}$ and hence $\pi(a) \in C_{1}^{\mathcal{I}}$ and $\pi(a) \in C_{2}^{\mathcal{I}}$. Obviously, π satisfies a) to d) w.r.t. the obtained completion system S^{\prime}.

R \sqcup There exists an abstract node a such that $C_{1} \sqcup C_{2} \in \mathcal{L}(a)$. This implies $\pi(a) \in C_{1}^{\mathcal{I}}$ or $\pi(a) \in C_{2}^{\mathcal{I}}$. Hence, the rule can be applied such that π satisfies a) to d) w.r.t. the obtained completion system S^{\prime}.

R \exists There exists an abstract node a such that $\exists R . C \in \mathcal{L}(a)$. By a), this implies $\pi(a) \in(\exists R . C)^{\mathcal{I}}$ and hence, there exists an $s \in \Delta_{\mathcal{I}}$ such that $(\pi(a), s) \in R^{\mathcal{I}}$ and $s \in C^{\mathcal{I}}$.

- First assume that either R is a role or R is a feature and a does not have an R-neighbor in S. The R \exists rule generates a new abstract node b with $\mathcal{L}(b)=\{C\}$ such that b is an R-successor of a yielding a new completion system S^{\prime}. Define π^{\prime} as $\pi \cup\{b \mapsto s\}$. Obviously, π^{\prime} satisfies a), c), and d) w.r.t. S^{\prime}. By definition of general R-neighbors, π^{\prime} satisfies b) w.r.t. S^{\prime}.
- Now assume that R is an abstract feature and a does already have an R neighbor b in S. Then, the $\mathrm{R} \exists$ rule consistently renames b to some new name c (c.f. the "+" operation) and sets $\mathcal{L}(c):=\mathcal{L}(c) \cup\{C\}$. Define π^{\prime} as $\pi \cup\{c \mapsto \pi(b)\}$. Since b) holds for π w.r.t. S and by definition of π^{\prime}, we have
$\left(\pi^{\prime}(a), \pi^{\prime}(c)\right) \in R^{\mathcal{I}}$. Since abstract features are interpreted as functions, we have $\pi^{\prime}(c)=s$ implying $\pi^{\prime}(c) \in C^{\mathcal{I}}$. Hence, π^{\prime} satisfies a) to d) w.r.t. the obtained completion system S^{\prime}.
$\mathrm{R} \forall$ There exist abstract nodes a and b such that $\forall R . C \in \mathcal{L}(a), b$ is a general R neighbor of a, and $C \notin \mathcal{L}(b)$. By a), b), and semantics, this implies $\pi(a) \in$ $(\forall R . C)^{\mathcal{I}},(\pi(a), \pi(b)) \in R^{\mathcal{I}}$, and $\pi(b) \in C^{\mathcal{I}}$. The rule application adds C to $\mathcal{L}(b)$. Obviously, π satisfies a) to d) w.r.t. the obtained completion system S^{\prime}.
$\mathrm{R} c$ There exists an abstract node a such that $\exists u_{1}, \ldots, u_{n} . P \in \mathcal{L}(a)$ with $u_{i}=$ $f_{1}^{(i)} \cdots f_{k_{i}}^{(i)} g_{i}$ for $1 \leq i \leq n$. By a), this implies $\pi(a) \in\left(\exists u_{1}, \ldots, u_{n} . P\right)^{\mathcal{I}}$. Hence, there exist $s_{j}^{(i)} \in \Delta_{\mathcal{I}}$ for $1 \leq i \leq n$ and $1 \leq j \leq k_{i}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \Delta_{\mathcal{D}}$ such that
$-\left(\pi(a), s_{1}^{(i)}\right) \in\left(f_{1}^{(i)}\right)^{\mathcal{I}}$ for $1 \leq i \leq n$,
$-\left(s_{j-1}^{(i)}, s_{j}^{(i)}\right) \in\left(f_{j}^{(i)}\right)^{\mathcal{I}}$ for $1 \leq i \leq n$ and $1<j \leq k_{i}$,
$-g_{i}^{\mathcal{I}}\left(s_{k_{i}}^{(i)}\right)=\alpha_{i}$ for $1 \leq i \leq n$, and
$-\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in P^{\mathcal{D}}$.
After the application of the $\mathrm{R} \exists$ rule, there exist abstract nodes $b_{j}^{(i)}$ for $1 \leq i \leq n$ and $1 \leq j \leq k_{i}$ and concrete nodes x_{1}, \ldots, x_{n} such that
$-b_{1}^{(i)}$ is $f_{1}^{(i)}$-neighbor of a for $1 \leq i \leq n$,
$-b_{j}^{(i)}$ is $f_{j}^{(i)}$-neighbor of $b_{j-1}^{(i)}$ for $1 \leq i \leq n$ and $1<j \leq k_{i}$,
- x_{i} is g_{i}-successor of $b_{k_{i}}^{(i)}$ for $1 \leq i \leq n$, and
$-\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{P}(P)$.
We call the completion system obtained by rule application S^{\prime}. Define π^{\prime} by extending π as follows: (i) for $1 \leq i \leq n$ and $1 \leq j \leq k_{i}$, set $\pi^{\prime}\left(b_{j}^{(i)}\right):=s_{j}^{(i)}$; (ii) for $1 \leq i \leq n$, set $\pi\left(x_{i}\right):=\alpha_{i} .{ }^{10}$ We need to show that π^{\prime} satisfies a) to d) w.r.t. the new completion system S^{\prime}. First, we show the following:

If, during the rule application, an abstract object c is renamed to $b_{j}^{(i)}$ (resp. a concrete object y to x_{i}), then we have $\pi^{\prime}\left(b_{j}^{(i)}\right)=\pi(c)$ (resp.

$$
\begin{equation*}
\left.\pi^{\prime}\left(x_{i}\right)=\pi(y)\right) \tag{*}
\end{equation*}
$$

For assume that an object b is renamed to $b_{j}^{(i)}$. This implies that there exists an object d such that b is $f_{j}^{(i)}$-neighbor of d in $S\left(d\right.$ is either a or $b_{j-1}^{(i)}$). Since (i) s satisfies b) w.r.t. S, (ii) $f^{\mathcal{I}}(\pi(d))=\pi\left(s_{j}^{(i)}\right)$, and (iii) features are interpreted as functions, we have $\pi(b)=s_{j}^{(i)}$. By definition of \mathcal{I}, it follows that $\pi(b)=\pi^{\prime}\left(b_{j}^{(i)}\right)$ (the case with y and x_{i} is analogous).

[^8]Since the rule application adds no new concepts to node labels, (*) implies that π^{\prime} satisfies a) w.r.t. S^{\prime}. Similarly, b) and d) are immediate consequences of (*) and the definition of \mathcal{I}. (note that the rule application may generate new virtual R-successor relationships for some abstract nodes a and b and a complex role R). Property c) is satisfied by π^{\prime} by definition.
$\mathrm{R} \mathcal{R}$ There exist abstract nodes a, b such that b is R-neighbor of a with $R=\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) . P$, i.e., either b is an R-successor of a or a is an R^{-}-successor of b. In any case, b) yields $(\pi(a), \pi(b)) \in R^{\mathcal{I}}$. We proceed analogous to the $\mathrm{R} c$ case.
$\mathrm{R} c h$ There exist abstract nodes a, b and a predicate role

$$
\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{m}\right) \cdot P \in \operatorname{roles}(D)
$$

such that $x_{i}=\operatorname{neighb}\left(a, u_{i}\right)$ for $1 \leq i \leq n$ and $y_{i}=\operatorname{neighb}\left(b, v_{i}\right)$ for $1 \leq i \leq m$. The rule application adds $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ either to $\mathcal{P}(P)$ or to $\mathcal{P}(\bar{P})$. By semantics, we have either

$$
\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right), \pi\left(y_{1}\right), \ldots, \pi\left(y_{m}\right)\right) \in P^{\mathcal{D}}
$$

or

$$
\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{n}\right), \pi\left(y_{1}\right), \ldots, \pi\left(y_{m}\right)\right) \in \bar{P}^{\mathcal{D}}
$$

Hence, the rule R ch can be applied such that π satisfies a) to d) w.r.t. the obtained completion system S^{\prime}.

It remains to show that the lemma is a consequence of the above claim. Let $S_{D}=$ ($\mathbf{T}_{D}, \mathcal{P}_{\emptyset}$) be the initial completion system for D and let a_{0} be the node in \mathbf{T}_{D}. Set $\pi\left(a_{0}\right)$ to s for an $s \in D^{\mathcal{I}}$. Obviously, π satisfies a) to d) and hence S_{D} is \mathcal{I}-compatible. By the claim, the completion rules can be applied such that only \mathcal{I}-compatible completion systems are obtained. By Lemma 37, every sequence of rule applications terminates yielding a complete completion system. Hence, we can obtain a complete and \mathcal{I} compatible completion system $S=(\mathbf{T}, \mathcal{S})$ by rule application. It remains to show that this implies the clash-freeness of S. Let π be a mapping for S satisfying a) to d).

1. S does not contain a clash of the form $\{A, \neg A\} \subseteq \mathcal{L}(a)$ since, together with a), this would imply $\pi(a) \in A^{\mathcal{I}} \cap(\neg A)^{\mathcal{I}}$ which is impossible.
2. It needs to be shown that, whenever $g \uparrow \in \mathcal{L}(a)$, then there exists no g-successor x of a. Assume to the contrary that there exists an abstract object a, a concrete object x, and a concrete feature g such that $g \uparrow \in \mathcal{L}(a)$ and x is g-successor of a in \mathbf{T}. By a), we have $\pi(a) \in(g \uparrow)^{\mathcal{I}}$. By c), we have $g^{\mathcal{I}}(\pi(a))=\pi(x)$ which is a contradiction.
3. It remains to show that S is concrete domain satisfiable, i.e., that the predicate conjunction $\zeta_{\mathcal{P}}$ is satisfiable. However, using d), it is straightforward to show that the "concrete part" of π is a solution for $\zeta_{\mathcal{P}}$.

Satisfiability w.r.t. TBoxes can be reduced to satisfiability without TBoxes by using unfolding [21]. Unfolding a concept C w.r.t. a TBox \mathcal{T} means iteratively replacing concept names in C by their definitions given in \mathcal{T} (unfolding obviously terminates since \mathcal{T} is acyclic). This yields a concept C^{\prime} which is satisfiable w.r.t. \mathcal{T} iff C is satisfiable w.r.t. \mathcal{T}. Together with Lemmas 37,38 , and 39 and the fact that subsumption can be reduced to satisfiability, this gives the following result.

Theorem 40. Satisfiability and subsumption of $\mathcal{A \mathcal { L C } \mathcal { P } \mathcal { I } (\mathcal { D }) \text { -concepts w.r.t. TBoxes }}$ are decidable.

The complexity of the presented algorithm is analyzed in the next section.

4.2 Acyclic TBoxes and Complexity

In this section, we modify the algorithm introduced in the previous section to directly take into account TBoxes (instead of using unfolding) and then analyze the complexity of the modified algorithm. The modification technique we employ was introduced in [19], where it was used to prove that many PSpace tableau algorithms for deciding concept satisfiability (e.g., for $\mathcal{A} \mathcal{L}$ - -concepts) can be modified to decide satisfiability of concepts w.r.t. TBoxes such that their PSpace complexity is preserved. First, the TBox has to be converted to a certain normal form.

Definition 41 (Simple TBoxes). A TBox \mathcal{T} is called simple iff it satisfies the following requirements:

- The right-hand side of each concept definition in \mathcal{T} contains exactly one constructor (i.e., it is of the form $\neg A, A_{1} \sqcap A_{2}, A_{1} \sqcup A_{2}, \exists R . A, \forall R . A, \exists u_{1}, \ldots, u_{n} . P$, or $g \uparrow$, where A, A_{1}, and A_{2} are concept names).
- If the right-hand side of a concept definition in \mathcal{T} is $\neg A$, then A does not occur on the left hand side of any concept definition in \mathcal{T}.

The following lemma is proved in [19].
Lemma 42. Any TBox \mathcal{T} can be converted into a simple one \mathcal{T}^{\prime} in linear time, such that \mathcal{T}^{\prime} is equivalent to \mathcal{T} in the following sense: Any model for \mathcal{T}^{\prime} can be extended to a model for \mathcal{T}, and, vice versa, any model for \mathcal{T} can be extended to a model for \mathcal{T}^{\prime}.

This notion of equivalence is necessary since the translation to simple form may remove concept names and add additional ones. A short comment on what is meant by "extended" is appropriate. Let \mathcal{T} be a TBox, \mathcal{T}^{\prime} the result of converting it to simple form, and \mathcal{I} be a model for \mathcal{T}. We can construct a model for \mathcal{T}^{\prime} from \mathcal{I} by setting $A^{\mathcal{I}}$ to an appropriate value for all concept names A that have been introduced in the conversion of \mathcal{T} to \mathcal{T}^{\prime}. Defining a model for \mathcal{T} from a model of \mathcal{T}^{\prime} works similar (additionally interprete all variables that have been eliminated during the conversion of \mathcal{T} to \mathcal{T}^{\prime}).

We now modify the sat algorithm from Section 4.1 to decide the satisfiability of concept names A w.r.t. simple TBoxes \mathcal{T}. Using the modified algorithm, it is obviously
also possible to decide the satisfiability of arbitrary concepts C w.r.t. TBoxes \mathcal{T} : Add a definition $A \doteq C$ to \mathcal{T} where A is a new concept name in \mathcal{T}, convert the resulting TBox to simple form (the concept name is not eliminated during conversion, see [19]) and start the algorithm with $\left(A, \mathcal{T}^{\prime}\right)$ where \mathcal{T}^{\prime} is the newly obtained TBox. The modified algorithm works on completion trees of a restricted form since node labels may only contain concept names.
Definition 43 (Modified Completion Algorithm). Let A be a concept name and \mathcal{T} be a simple TBox. Making use of the existing sat algorithm, the algorithm tbsat is defined as follows.

1. Modify the completion rules of sat as follows: In the premise of each completion rule, substitute " $C \in \mathcal{L}(a)$ " by " $A \in \mathcal{L}(a)$ and $A \doteq C \in \mathcal{T}$ " and analogously for " $C \notin \mathcal{L}(a)$ ". E.g., in the conjunction rule, " $C_{1} \sqcap C_{2} \in \mathcal{L}(a)$ " is replaced by " $A \in \mathcal{L}(a)$ and $A \doteq C_{1} \sqcap C_{2} \in \mathcal{T}$ ".
2. Start the sat algorithm with the initial completion system $S_{A}=\left(\mathbf{T}_{A}, \mathcal{P}_{\emptyset}\right)$ as defined in Section 4.1. Use the modified rules for the sat run.

In the following, we investigate the soundness, completeness, termination, and complexity of the modified algorithm. To do this, we need to extend the notion of size and of subconcepts to TBoxes: For a TBox $\mathcal{T},|\mathcal{T}|$ denotes the size of \mathcal{T} and is defined as

$$
|\mathcal{T}|=\sum_{A \doteq C \in \mathcal{T}}|C|
$$

Furthermore, $\operatorname{sub}(\mathcal{T})$ denotes the set of subconcepts used in \mathcal{T} and is defined as

$$
\operatorname{sub}(\mathcal{T})=\bigcup_{A \doteq C \in \mathcal{T}} \operatorname{sub}(C)
$$

We argue that the tbsat algorithm started with input A, \mathcal{T} performs exactly the same steps as the sat algorithm started on the concept C which is the result of unfolding A w.r.t. \mathcal{T}. Because of this, we give a precise definition of the notion unfolding. In the following, we generally assume that, if A, \mathcal{T} is an input to tbsat, then $A \in \operatorname{sub}(\mathcal{T})$. This can be done w.l.o.g. since, if $A \notin \operatorname{sub}(\mathcal{T}), \mathcal{T}$ can be extended by a new concept definition $A^{\prime} \doteq A$, where $A^{\prime} \neq A$ and $A^{\prime} \notin \operatorname{sub}(\mathcal{T})$.
Definition 44 (Unfolding). Let \mathcal{T} be a TBox. A concept name A is called defined in \mathcal{T} if A appears on the left-hand side of a concept definition in \mathcal{T} and undefined otherwise. A concept C is called unfolded w.r.t. \mathcal{T} iff every concept name in C is undefined in \mathcal{T}. Given a concept C and a TBox \mathcal{T}, C can be converted to a concept C^{\prime} which is (i) unfolded w.r.t. \mathcal{T} and (ii) satisfiable w.r.t. \mathcal{T} iff C is satisfiable w.r.t. \mathcal{T} by using the following unfolding algorithm:
define procedure unfold (\mathcal{T})
while C contains a concept name A defined in \mathcal{T} do
Let $A \doteq E \in \mathcal{T}$.
Replace each occurrence of A in C with E.
return C

In Section 4.1, we introduced several measures on concpets for proving termination. The following lemma clarifies the relation between these measures and unfolding.

Lemma 45. Let A be a concept name and \mathcal{T} be a simple TBox. If C is the result of unfolding A w.r.t. \mathcal{T}, then

1. $n f(C) \leq|\mathcal{T}|$,
2. $\operatorname{rex}(C) \leq|\mathcal{T}|$,
3. $r d(C) \leq|\mathcal{T}|$, and
4. $|\operatorname{sub}(C)| \leq|\mathcal{T}|$.

Proof Point 1 is trivial and Property 2 is an immediate consequence of Property 4. Hence, we concentrate on the proof of Properties 3 and 4. For Property 3, assume that the role depth of C exceeds $|\mathcal{T}|$. This means that the right hand side of a concept definition $A^{\prime} \doteq \exists R . D$ or $A^{\prime} \doteq \forall R . D$ in \mathcal{T} contributes to the role depth more than once. From this, however, it follows that unfolding D w.r.t. \mathcal{T} yields a concept containing A^{\prime} which is a contradiction to the acyclicity of \mathcal{T}.

Now for Property 5. The property is proved by defining an injection I from $\operatorname{sub}(C)$ to $\operatorname{sub}(\mathcal{T})$. The existence of such an injection implies Property 5 since, obviously, $|\operatorname{sub}(\mathcal{T})| \leq|\mathcal{T}|$. Assume that the concepts in $\operatorname{sub}(\mathcal{T})$ are ordered by a total order \prec. For a concept set $\Psi \subseteq \operatorname{sub}(\mathcal{T}), \min (\Psi)$ denotes the concept in Ψ which is minimal w.r.t. \prec. Define a function I from $\operatorname{sub}(C)$ to $\operatorname{sub}(\mathcal{T})$ as follows:

$$
I(E):=\min \{F \in \operatorname{sub}(\mathcal{T}) \mid \operatorname{unfold}(F, \mathcal{T})=E\}
$$

We show that I is total and injective.

- Let k be the number of steps the while loop in the unfolding algorithm makes to compute C and let $C_{i}(0 \leq i \leq k)$ denote the concept C after the i 'th loop, i.e., $C_{0}=A$ and $C_{k}=C$. To prove totality, we establish the following claim:

Claim: For all $1 \leq i \leq k$, and for all $E \in \operatorname{sub}\left(C_{i}\right)$, there exists an $F \in \operatorname{sub}(\mathcal{T})$ such that $\operatorname{unfold}(E, \mathcal{T})=\operatorname{unfold}(F, \mathcal{T})$.

The claim implies totality since, for all concepts $E \in \operatorname{sub}(C)=\operatorname{sub}\left(C_{k}\right)$, we have $\operatorname{unfold}(E, \mathcal{T})=E$. The proof of the claim is by induction over i. For $i=0$, the claim trivially holds since $C_{0}=A$ and we assume that $A \in \operatorname{sub}(\mathcal{T})$. Now for the induction step. Assume that, in the the i 'th step, a concept name A^{\prime} has been replaced by a concept F. Let $E \in \operatorname{sub}\left(C_{i+1}\right) \backslash \operatorname{sub}\left(C_{i}\right)$. Then we have one of the following two cases:

- $E \in \operatorname{sub}(F)$. This implies $E \in \operatorname{sub}(\mathcal{T})$, and, hence, E satisfies the claim.
$-E \notin \operatorname{sub}(F)$. Then there exists an E^{\prime} in $\operatorname{sub}\left(C_{i}\right)$ such that E can be obtained from E^{\prime} by substituting an occurrence of A^{\prime} in E^{\prime} by F. Obviously, $\operatorname{unfold}(E, \mathcal{T})=\operatorname{unfold}\left(E^{\prime}, \mathcal{T}\right)$. Since $E^{\prime} \in \operatorname{sub}\left(C_{i}\right)$ satisfies the claim by induction hypothesis, $E \in \operatorname{sub}\left(C_{i+1}\right)$ does also satisfy the claim.
- Assume that I is not injective, i.e., there exist two concepts $E, E^{\prime} \in \operatorname{sub}(C)$ with $E \neq E^{\prime}$ such that $I(E)=I\left(E^{\prime}\right)=F$. By definition of I, this implies $\operatorname{unfold}(F, \mathcal{T})=E$ and $\operatorname{unfold}(F, \mathcal{T})=E^{\prime}$. Since $E \neq E^{\prime}$ and unfolding is deterministic, this is obviously impossible.

We may now establish correctness and termination of the modified algorithm.
Proposition 46. Let satisfiability of \mathcal{D} be in NP and (A, \mathcal{T}) be the input to the tbsat algorithm. Then thsat terminates after $\mathcal{O}\left(2^{d|\mathcal{T}|}\right)$ rule applications returning "satisfiable" if A is satisfiable w.r.t. \mathcal{T} and "unsatisfiable" otherwise, where d is a constant.

Proof Let C be the result of unfolding A w.r.t. \mathcal{T}. C is in NNF since \mathcal{T} is in simple form. A run of the tbsat (resp. sat) algorithm on (A, \mathcal{T}) (resp. on C) is a sequence of completion rules as applied by the algorithm if started with input (A, \mathcal{T}) (resp. with input C). By induction over the number of rule applications, it is straightforward to show that the set of runs of tbsat on (A, \mathcal{T}) is identical to the set of runs of sat on C : at every point in the computation where a nondeterministic decision has to be made (deciding which rule to apply or deciding which consequence of the $\mathrm{R} \sqcup$ rule to use), the available choices are exactly the same for both algorithms. Let $K=(n f(C)+\operatorname{rex}(C))^{3 * r d(C)}$. By Proposition 37, the algorithm terminates after at most $\mathcal{O}\left(|\operatorname{sub}(C)| * K+K^{2}\right)$ rule applications. By Lemma 45, this implies that tbsat terminates after

$$
\mathcal{O}\left(|\mathcal{T}| *(2|\mathcal{T}|)^{3|\mathcal{T}|}+(2|\mathcal{T}|)^{6|\mathcal{T}|}\right)
$$

rule applications which obviously implies the bound given in the lemma. Furthermore, soundness and completeness are immediate consequences of the equivalence of run sets.

Finally, the upper bound for satisfiability and subsumption of $\mathcal{A L C R P I}(\mathcal{D})$-concepts can be given.

Theorem 47. If satisfiability of the concrete domain \mathcal{D} is in NP, satisfiability and
 istic exponential time.

Proof By Proposition 46, tbsat decides satisfiability of $\mathcal{A} \mathcal{L C} \mathcal{R P I}(\mathcal{D})$-concepts w.r.t. TBoxes and terminates after exponentially many rule applications. During its run, tbsat constructs a completion system $S=(\mathbf{T}, \mathcal{P})$. After each rule application, the predicate conjunction $\zeta_{\mathcal{P}}$ induced by \mathcal{P} has to be tested for satisfiability. Since the satisfiability test for finite predicate conjunctions is in NP, it remains to show that the size of $\zeta_{\mathcal{P}}$ is at most exponential in the size of the input TBox \mathcal{T}. This is, however, obvious since each rule application adds at most one tuple to \mathcal{P}.

Since the set of runs tbsat may perform on an input A, \mathcal{T} is identical to the set of runs sat may perform on the result C of unfolding A w.r.t. \mathcal{T}, there seems to exist an alternative way to obtain Theorem 47: Conjecturing that

- unfolding a concept C w.r.t. a (not necessarily simple) TBox \mathcal{T} can be done in time exponential in $|C|+|\mathcal{T}|$, and
- the result from Lemma 45 can be generalized in an appropriate way to the unfolding of (possibly complex) concepts w.r.t. (not-necessarily simple) TBoxes,
we claim that the same complexity result can be proved by using unfolding as a preprocessing step to the sat algorithm (without defining simple TBoxes). This is somewhat surprising since unfolding is usually believed to be "harmful" w.r.t. complexity and it is well-known that unfolding may lead to an exponential blow-up in concept size. In our case, unfolding is nevertheless "harmless" since it is not the concept size which is crucial for the complexity of the presented algorithm, but the measures given in Lemma 45. However, we prefer the use of simple TBoxes since, in our opinion, it is far more elegant and more closely related to the techniques used in implementations of DL systems (see, e.g., [3]).

5 Undecidability of $\mathcal{A L C \mathcal { L F }}$

The description logic $\mathcal{A L C \mathcal { F }}(\mathcal{D})$ is the extension of $\mathcal{A L C}(\mathcal{D})$ with so-called feature agreements and feature disagreements. In [20], it is proved that satisfiability of $\mathcal{A} \mathcal{L C} \mathcal{F}(\mathcal{D})$-concepts is PSpAcE-complete. The algorithm used to establish the upper bound shows that it is natural to consider concrete domains in combination with feature (dis)agreements since the algorithmic treatment is very similar (see also [13]). It is hence also natural to consider the description logic $\mathcal{A L C \mathcal { L } \mathcal { P } \mathcal { I } \mathcal { F } (\mathcal { D }) \text { which is the }}$ extension of $\mathcal{A L C} \mathcal{R} \mathcal{P} \mathcal{I}(\mathcal{D})$ with feature (dis)agreements. However, in this section, we show that concept satisfiability is already undecidable for the fragment $\mathcal{A L C} \mathcal{I} \mathcal{F}$, i.e., for $\mathcal{A L C}$ with inverse roles and feature (dis)agreements.

Definition 48 (Feature (dis)agreement). Let $v_{1}=f_{1}^{(1)} \cdots f_{n}^{(1)}$ and $v_{2}=f_{1}^{(2)} \cdots f_{m}^{(2)}$ be sequences of abstract features. A feature agreement is an expression of the form $v_{1} \downarrow v_{2}$. A feature disagreement is an expression of the form $v_{1} \uparrow v_{2}$. The semantics of feature agreements and disagreements is defined as follows:

$$
\begin{aligned}
& \left(v_{1} \downarrow v_{2}\right)^{\mathcal{I}}:=\left\{a \in \Delta_{\mathcal{I}} \mid \exists b \in \Delta_{\mathcal{I}} \cdot v_{1}^{\mathcal{I}}(a)=b \wedge v_{2}^{\mathcal{I}}(a)=b\right\} \\
& \left(v_{1} \uparrow v_{2}\right)^{\mathcal{I}}:=\left\{a \in \Delta_{\mathcal{I}} \mid \exists b_{1}, b_{2} \in \Delta_{\mathcal{I}} \cdot v_{1}^{\mathcal{I}}(a)=b_{1} \wedge v_{2}^{\mathcal{I}}(a)=b_{2} \wedge b_{1} \neq b_{2}\right\}
\end{aligned}
$$

The undecidability of $\mathcal{A L C \mathcal { L } \mathcal { F }}$ if proved by a reduction of the well-known, undecidable domino problem (see, e.g., [5] and [18]). A domino problem is given by a finite set of tile types. All tile types are of the same size, each type has a quadratic shape and colored edges. Of each type, an unlimited number of tiles is available. The problem is to arrange these tiles to cover the first quadrant of the plane without holes or overlapping, such that adjacent tiles have identical colors on their touching edge (rotation of the tiles is not allowed).

Definition 49 (Domino System). Let $\mathcal{D}=(D, H, V)$ be a domino system, where D is a finite set of tile types and $H, V \subseteq D \times D$. A mapping $\tau: \mathbb{N}^{2} \rightarrow D$ is a solution of \mathcal{D} if

$$
\begin{aligned}
\text { Grid }= & \exists f^{-} . \top \sqcap \forall \forall f^{-} . x y \downarrow y x \sqcap \forall \forall f^{-} .(f \downarrow x f \sqcap f \downarrow y f \sqcap f \downarrow x y f) \\
\text { Tiling }= & \left(\sqcup_{d \in \mathcal{D}} D_{d}\right) \sqcap \prod_{d \in D D} \prod_{d^{\prime} \in \mathcal{D} \backslash\{d\}} \neg\left(D_{d} \sqcap D_{d^{\prime}}\right) \\
& \prod_{d \in D}\left(D_{d} \rightarrow \exists x .{ }_{\left(d, d^{\prime}\right) \in H}^{\sqcup} D_{d^{\prime}}\right) \\
& \prod_{d \in D}\left(D_{d} \rightarrow \exists y . \bigsqcup_{\left(d, d^{\prime}\right) \in V} D_{d^{\prime}}\right) \\
C_{\mathcal{D}}= & \text { Grid } \sqcap \forall f^{-} . \text {Tiling }
\end{aligned}
$$

Figure 14: The $\mathcal{A L C I F}$ reduction concept $C_{\mathcal{D}}$.

Figure 15: Clipping from a model of $C_{\mathcal{D}}$.

- if $\tau(x, y)=d$ and $\tau(x+1, y)=d^{\prime}$ then $\left(d, d^{\prime}\right) \in H$, and
- if $\tau(x, y)=d$ and $\tau(x, y+1)=d^{\prime}$ then $\left(d, d^{\prime}\right) \in V$.

In the following, we reduce the domino problem to satisfiability of $\mathcal{A L C I F}$-concepts. Given a domino system \mathcal{D}, the reduction concept $C_{\mathcal{D}}$ is such that (i) models of $C_{\mathcal{D}}$ have the form of a two-side infinite grid, (ii) every node of the grid is an instance of exactly one of the concept names D_{d} with $d \in D$ (representing tile types), and (iii) the horizontal and vertical conditions V and H are satisfied. The reduction concept can be found in Figure 14 and a sample $C_{\mathcal{D}}$ model can be found in Figure 15. Again, the equalities in the figure are used as an abbreviation and are not intended to denote concept definitions. The symbols x, y, and f denote (abstract) features. In the reduction, the Grid concept generates the grid and the Tiling concept ensures that the condition listed as (ii) and (iii) are satisfied. We now formally proof correctness.

Lemma 50. $C_{\mathcal{D}}$ is satisfiable iff \mathcal{D} has a solution τ.
Proof Assume that $C_{\mathcal{D}}$ has a model $\mathcal{I}=\left(\Delta_{\mathcal{I}},{ }^{\mathcal{I}}\right)$. We define a solution τ for \mathcal{D}. Let
$a \in C_{\mathcal{D}}^{\mathcal{I}}$ and let $b \in\left(f^{-}\right)^{\mathcal{I}}(a)$ (such a and b exist due to the first conjunct of th Grid concept). Define the function π from \mathbb{N}^{2} to $\Delta_{\mathcal{I}}$ inductively as follows.

1. $\pi(0,0)=b$
2. if $\pi(i, j)=c$ and $x^{\mathcal{I}}(c)=d$, then $\pi(i+1, j)=d$
3. if $\pi(i, j)=c$ and $y^{\mathcal{I}}(c)=d$, then $\pi(i, j+1)=d$

The Grid concept ensures that this function is total, i.e., that $x^{\mathcal{I}}$ and $y^{\mathcal{I}}$ are always defined. Finally, we define $\tau(i, j)$ as the $d \in D$ for which $\pi(i, j) \in D_{d}^{\mathcal{I}}$. Note that, due to the first line of Tiling, there exists exactly one such d for each $\pi(i, j)$. It is straightforward to check that τ is well-defined and a solution for \mathcal{D}.

Conversely, assume that τ is a solution for \mathcal{D}. We define a model \mathcal{I} for $C_{\mathcal{D}}$ as follows:

- $\Delta_{\mathcal{I}}=\mathbb{N}^{2} \cup\{\lambda\}$
- $x^{\mathcal{I}}=\{((i, j),(i+1, j)) \mid i, j \in \mathbb{N}\}$
- $y^{\mathcal{I}}=\{((i, j),(i, j+1)) \mid i, j \in \mathbb{N}\}$
- $f^{\mathcal{I}}=\{((i, j), \lambda) \mid i, j \in \mathbb{N}\}$
- $D_{d}^{\mathcal{I}}=\tau^{-1}(d)$ for all $d \in D$

Again, it is straightforward to verify that \mathcal{I} is a model for \mathcal{D}.
The following theorem is an immediate consequence of Lemma 50 and the undecidability of the domino problem.

Theorem 51. Satisfiability of $\mathcal{A L C \mathcal { L F }}$-concepts is undecidable.

6 Conclusion

In this paper, we investigate the complexity of various extensions of the Description Logic $\mathcal{A L C}(\mathcal{D})$. The lower bounds are established using a NExpTime-complete variant of the Post Correspondence Problem together with a (rather natural) concrete domain \mathcal{P} for which reasoning can be done in PTime. More precisely, we prove the following problems to be NExpTime-hard:

1. satisfiability of $\mathcal{A L C}(\mathcal{P})$-concepts w.r.t. TBoxes,
2. satisfiability of $\mathcal{A L C I}(\mathcal{P})$-concepts, and
3. satisfiability of $\mathcal{A L C R} \mathcal{P}(\mathcal{P})$-concepts.

As a corresponding upper bound, we show that, if reasoning with a concrete domain \mathcal{D} is in NP, then satisfiability and subsumption of $\mathcal{A} \mathcal{L C} \mathcal{R} \mathcal{I} \mathcal{I}(\mathcal{D})$-concepts w.r.t. TBoxes is in NExpTime. Finally, we prove that $\mathcal{A L C \mathcal { L } \mathcal { P } (\mathcal { D }) \text { cannot be extended by }}$ feature (dis)agreements without loosing decidability since the satisfiability of $\mathcal{A L C I} \mathcal{F}$ concepts is already undecidable.

As future work, it would be interesting to extend the obtained logics by further constructors such as transitive roles [24] and qualifying number restrictions [12]. There are at least two approaches: Since reasoning with $\mathcal{A L C \mathcal { F }}(\mathcal{D})$ is known to be in PSpACE
 with concrete domains for which reasoning is still in PSPACE. The second approach is to define extensions of $\mathcal{A L C \mathcal { I }}(\mathcal{D})$ which means that the obtained logics are at least NExpTime-hard for "interesting" concrete domains and that feature (dis)agreements cannot be included without loosing decidability.

Acknowledgments

My thanks go to Franz Baader, Ulrike Sattler, and Stephan Tobies for inspiring discussions. The work in this paper was supported by the DFG Project BA1122/3-1 "Combinations of Modal and Description Logics".

References

[1] F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept languages. In J. Mylopoulos and R. Reiter, editors, Proceedings of the Twelfth International Joint Conference on Artificial Intelligence IJCAI-91, pages 452-457, Sydney, Australia, August 24-30, 1991. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.
[2] F. Baader and P. Hanschke. Extensions of concept languages for a mechanical engineering application. In Proceedings of the 16th German AI-Conference, GWAI-92, volume 671 of Lecture Notes in Computer Science, pages 132-143, Bonn (Germany), 1993. Springer-Verlag.
[3] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An empirical analysis of optimization techniques for terminological representation systems or: Making kris get a move on. Journal of Applied Intelligence, 4:109-132, 1994. DFKI Research Report RR-93-03, Saarbrücken.
[4] F. Baader and U. Sattler. Description logics with concrete domains and aggregation. In H. Prade, editor, Proceedings of the Thirteenth European Conference on Artificial Intelligence ECAI-98, Brighton, August 23-28, 1998. John Wiley \& Sons, New York, 1998.
[5] R. Berger. The undecidability of the dominoe problem. Memoirs of the American Mathematical Society, 66, 1966.
[6] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1997.
[7] G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive description logics. In Proceedings of the Fifth International Conference on the Principles of Knowledge Representation and Reasoning (KR'96), pages 316-327. Morgan Kaufmann Publishers, 1996.
[8] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. DFKI Research Report RR-95-07, Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1995.
[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.
[10] V. Haarslev, C. Lutz, and R. Möller. Defined topological relations in description logics. In A. Cohn, L. Schubert, and S.C.Shapiro, editors, Principles of Knowledge Representation and Reasoning - Proc. of the Sixth International Conference KR'98, pages 112-124, Trento, Italy, June 2-5, 1998. Morgan Kaufmann Publ. Inc., San Francicso, CA, 1998.
[11] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete domains and role-forming predicates. Journal of Logic and Computation, 9(3), 1999.
[12] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representation and Reasoning - Proc. of the Second International Conference KR'91, pages 335-346, Cambridge, Mass., April 22-25, 1991. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991. DFKI Research Report RR-91-03, Kaiserslautern.
[13] B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. DFKI Research Report RR-90-04, Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1990.
[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Mass., 1979.
[15] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies. Journal of Logic and Computation, 9(3):385-410, 1999.
[16] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR'99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161-180. Springer-Verlag, Sept. 1999.
[17] G. Kamp and H. Wache. CTL - a description logic with expressive concrete domains. Technical Report LKI-M-96/01, Labor für Künstliche Intelligenz, Universität Hamburg, Germany, 1996.
[18] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading, Mass., 1973.
[19] C. Lutz. Complexity of terminological reasoning revisited. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the 6th International Conference on Logic for Programming and Automated Reasoning (LPAR'99), number 1705 in Lecture Notes in Artificial Intelligence, pages 181-200. SpringerVerlag, Sept. 1999.
[20] C. Lutz. Reasoning with concrete domains. In T. Dean, editor, Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence IJCAI-99, pages $90-95$, Stockholm, Sweden, July 31 - August 6, 1999. Morgan-Kaufmann Publishers.
[21] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence, 43:235-249, 1990.
[22] B. Nebel. Terminological cycles: Semantics and computational properties. In J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of Knowledge, pages 331-361. Morgan Kaufmann Publishers, San Mateo (CA), USA, 1991.
[23] E. M. Post. A variant of a recursively unsolvable problem. Bull. Am. Math. Soc., 52:264-268, 1946.
[24] U. Sattler. A concept language extended with different kinds of transitive roles. In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence. Springer Verlag, 1996.
[25] U. Sattler. Terminological knowledge representation systems in a process engineering application. PhD thesis, LuFG Theoretical Computer Science, RWTHAachen, 1998.
[26] K. Schild. Terminological cycles and the propositional μ-calculus. In P. T. Jon Doyle, Erik Sandewall, editor, Proceedings of the 4 th International Conference on Principles of Knowledge Representation and Reasoning, pages 509-520, Bonn, FRG, May 1994. Morgan Kaufmann.

[^0]: ${ }^{1} \mathrm{~A}$ concrete feature is a path of length 1.

[^1]: ${ }^{2}$ Readers not familiar with tableau algorithms may skip this comment or return to it after reading Section 4.
 ${ }^{3}$ Usually, the word lists may also contain the empty word. We use this formulation since, in our case, it allows for simpler proofs.

[^2]: ${ }^{4}$ When writing $2^{n^{d}}$, we mean $2^{\left(n^{d}\right)}$.

[^3]: ${ }^{5}$ To be precise, this implies that we also assume $|w| \geq 1$. This can, however, also be done w.l.o.g.

[^4]: ${ }^{6}$ To label a tree in preorder, first label its root, then inductively label the subtree induced by the root's left successor and finally label the subtree induced by the root's right successor.

[^5]: ${ }^{7}$ The fringe nodes must obvioulsy be distinct because of the B_{i} concepts. However, some "inner" nodes may coincide.

[^6]: ${ }^{8}$ Recall that predicate roles are expressions of the form $\exists\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right) . P$ and a role is called complex if it is either a predicate role or the inverse of a predicate role.

[^7]: ${ }^{9}$ This does not necessarily hold for nodes b with $\ell(b)>r d(D)$. To see this, note that we may, e.g., have $f g$ as a path in $D, \mathcal{L}(a, b)=f^{-}$and $\mathcal{L}(a, x)=g$ with $\ell(a)=r d(D)$ and $\ell(b)=\ell(a)+1$. Obviously, $(f g)^{\mathcal{I}}(b)$ is defined.

[^8]: ${ }^{10}$ Note that existing objects may be renamed due to the use of the " + " operation. We assume that, if the " + " operation renamed an object a to b, then the object name a is never "reintroduced" afterwards (and similar for concrete objects). Hence, π^{\prime} really is an extension of π.

