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Abstrat

Tableaux-based deision proedures for satis�ability of modal and

desription logis behave quite well in pratie, but it is sometimes

hard to obtain exat worst-ase omplexity results using these ap-

proahes, espeially for ExpTime-omplete logis. In ontrast, auto-

mata-based approahes often yield algorithms for whih optimal worst-

ase omplexity an easily be proved. However, the algorithms ob-

tained this way are usually not only worst-ase, but also best-ase

exponential: they �rst onstrut an automaton that is always ex-

ponential in the size of the input, and then apply the (polynomial)

emptiness test to this large automaton. To overome this problem,

one must try to onstrut the automaton \on-the-y" while perform-

ing the emptiness test.

In this paper we will show that Voronkov's inverse method for the

modal logi K an be seen as an on-the-y realization of the empti-

ness test done by the automata approah for K. The bene�ts of this

result are two-fold. First, it shows that Voronkov's implementation of

the inverse method, whih behaves quite well in pratie, is an opti-

mized on-the-y implementation of the automata-based satis�ability

proedure for K. Seond, it an be used to give a simpler proof of

the fat that Voronkov's optimizations do not destroy ompleteness of

the proedure. We will also show that the inverse method an easily

be extended to handle global axioms, and that the orrespondene to

the automata approah still holds in this setting. In partiular, the

inverse method yields an ExpTime-algorithm for satis�ability in K

w.r.t. global axioms.
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1 Introdution

Deision proedures for (propositional) modal logis and desription logis

play an important rôle in knowledge representation and veri�ation. When

developing suh proedures, one is both interested in their worst-ase om-

plexity and in their behavior in pratial appliations. From the theoretial

point of view, it is desirable to obtain an algorithm whose worst-ase om-

plexity mathes the omplexity of the problem. From the pratial point of

view it is more important to have an algorithm that is easy to implement and

amenable to optimizations, suh that it behaves well on pratial instanes

of the deision problem. The most popular approahes for onstruting dei-

sion proedures for modal logis are i) semanti tableaux and related methods

[10, 2℄; ii) translations into lassial �rst-order logis [15, 1℄; and iii) redu-

tions to the emptiness problem for ertain (tree) automata [17, 14℄.

Whereas highly optimized tableaux and translation approahes behave

quite well in pratie [11, 12℄, it is sometimes hard to obtain exat worst-

ase omplexity results using these approahes. For example, satis�ability

in the basi modal logi K w.r.t. global axioms is known to be ExpTime-

omplete [16℄. However, the \natural" tableaux algorithm for this problem

is a NExpTime-algorithm [2℄, and it is rather hard to onstrut a tableaux

algorithm that runs in deterministi exponential time [6℄. In ontrast, it is

folklore that the automata approah yields a very simple proof that satis-

�ability in K w.r.t. global axioms is in ExpTime. However, the algorithm

obtained this way is not only worst-ase, but also best-ase exponential: it

�rst onstruts an automaton that is always exponential in the size of the

input formulae (its set of states is the powerset of the set of subformulae of

the input formulae), and then applies the (polynomial) emptiness test to this

large automaton. To overome this problem, one must try to onstrut the

automaton \on-the-y" while performing the emptiness test. Whereas this

idea has suessfully been used for automata that perform model heking

[9, 5℄, to the best of our knowledge it has not yet been applied to satis�ability

heking.

The original motivation of this work was to ompare the automata and

the tableaux approahes, with the ultimate goal of obtaining an approah

that ombines the advantages of both, without possessing any of the dis-

advantages. As a starting point, we wanted to see whether the tableaux

approah ould be viewed as an on-the-y realization of the emptiness test

done by the automata approah. At �rst sight, this idea was persuasive sine
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a run of the automaton onstruted by the automata approah (whih is a

so-alled looping automaton working on in�nite trees) looks very muh like

a run of the tableaux proedure, and the tableaux proedure does gener-

ate sets of formulae on-the-y. However, the polynomial emptiness test for

looping automata does not try to onstrut a run starting with the root of

the tree, as done by the tableaux approah. Instead, it omputes inative

states, i.e., states that an never our on a suessful run of the automa-

ton, and tests whether all initial states are inative. This omputation starts

\from the bottom" by loating obviously inative states (i.e., states without

suessor states), and then \propagates" inativeness along the transition

relation. Thus, the emptiness test works in the opposite diretion of the

tableaux proedure. This observation suggested to onsider an approah

that inverts the tableaux approah: this is just the so-alled inverse method.

Reently, Voronkov [19℄ has applied this method to obtain a bottom-up de-

ision proedure for satis�ability in K, and has optimized and implemented

this proedure.

In this paper we will show that the inverse method for K an indeed be

seen as an on-the-y realization of the emptiness test done by the automata

approah for K. The bene�ts of this result are two-fold. First, it shows

that Voronkov's implementation, whih behaves quite well in pratie, is

an optimized on-the-y implementation of the automata-based satis�ability

proedure for K. Seond, it an be used to give a simpler proof of the fat

that Voronkov's optimizations do not destroy ompleteness of the proedure.

We will also show how the inverse method an be extended to handle global

axioms, and that the orrespondene to the automata approah still holds in

this setting. In partiular, the inverse method yields an ExpTime-algorithm

for satis�ability in K w.r.t. global axioms.

2 Preliminaries

First, we briey introdue the modal logi K and some tehnial de�nitions

related to K-formulae, whih are used later on to formulate the inverse alu-

lus and the automata approah for K. Then, we de�ne the type of automata

used to deide satis�ability (w.r.t. global axioms) in K. These so-alled loop-

ing automata [18℄ are a speialization of B�uhi tree automata.
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Modal Formulae

We assume the reader to be familiar with the basi notions of modal logi.

For a thorough introdution to modal logis, refer to, e.g., [4℄.

K-formulae are built indutively from a ountably in�nite set P = fp

1

; p

2

; : : :g

of propositional atoms using the Boolean onnetives ^, _, and : and the

unary modal operators 2 and 3. The semantis of K-formulae is de�ne as

usual, based on Kripke models M = (W;R; V ) where W is a non-empty

set, R � W � W is an aessibility relation, and V : P ! 2

W

is a valu-

ation mapping propositional atoms to the set of worlds they hold in. The

relation j= between models, worlds, and formulae is de�ned in the usual

way. Let G;H be K-formulae. Then G is satis�able i� there exists a Kripke

model M = (W;R; V ) and a world w 2 W with M; w j= G. The for-

mula G is satis�able w.r.t. the global axiom H i� there exists a Kripke model

M = (W;R; V ) and a world w 2 W suh M; w j= G and M; w

0

j= H for all

w

0

2 W . K-satis�ability is PSpae-omplete [13℄, and K-satis�ability w.r.t.

global axioms is ExpTime-omplete [16℄.

A K-formula is in negation normal form (NNF) if : ours only in front

of propositional atoms. Every K-formula an be transformed (in linear time)

into an equivalent formula in NNF using de Morgan's laws and the duality

of the modal operators.

For the automata and aluli onsidered here, sub-formulae of G play an

important role and we will often need operations going from a formula to its

super- or sub-formulae. As observed in [19℄, these operations beome easier

when dealing with \addresses" of sub-formulae in G rather than with the

sub-formulae themselves.

De�nition 1 (G-Paths) For a K-formula G in NNF, the set of G-paths

�

G

is a set of words over the alphabet f_

l

;_

r

;^

l

;^

r

;2;3g. The set �

G

and

the sub-formula Gj

�

of G addressed by � 2 �

G

are de�ned indutively as

follows:

� � 2 �

G

and Gj

�

= G

� if � 2 �

G

and

{ Gj

�

= F

1

^ F

2

then �^

l

; �^

r

2 �

G

, Gj

�^

l

= F

1

, Gj

�^

r

= F

2

, and

� is alled ^-path

{ Gj

�

= F

1

_ F

2

then �_

l

; �_

r

2 �

G

, Gj

�_

l

= F

1

, Gj

�_

r

= F

2

, and

� is alled _-path
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Figure 1: The set �

G

for G = 3:p

1

^ (2p

2

^2(:p

2

_ p

1

))

{ Gj

�

= 2F then �2 2 �

G

, Gj

�2

= F and � is alled 2-path

{ Gj

�

= 3F then �3 2 �

G

, Gj

�3

= F and � is alled 3-path

� �

G

is the smallest set that satis�es the previous onditions.

We use of ^

�

and _

�

as plaeholders for ^

l

;^

r

and _

l

;_

r

, respetively. Also,

we use _̂ and 2

�

as plaeholders for ^;_ and 2;3, respetively. If � is an ^-

or and _-path then � is alled _̂-path. If � is a 2- or a 3-path then � is alled

2

�

-path. Figure 1 shows an example of a K-formula G and the orresponding

set �

G

, whih an be read o� the edge labels. For example, ^

r

^

r

is a G-path

and Gj

^

r

^

r

= 2(:p

2

_ p

1

)

Looping Automata

For a natural number n, let [n℄ denote the set f1; : : : ; ng. An n-ary in�nite

tree over the alphabet � is a mapping t : [n℄

�

! �. An n-ary looping tree

automaton is a tuple A = (Q;�; I;�), where Q is a �nite set of states, � is

a �nite alphabet, I � Q is the set of initial states, and � � Q � � � Q

n

is

the transition relation. Sometimes, we will view � as a funtion from Q��

to 2

Q

n

and write �(q; �) for the set fq j (q; �;q) 2 �g. A run of A on a tree

t is a n-ary in�nite tree r over Q suh that

(r(p); t(p); (r(p1); : : : ; r(pn))) 2 �

for every p 2 [n℄

�

. The automaton A aepts t i� there is a run r of A on

t suh that r(�) 2 I. The set L(A) := ft j A aepts tg is the language

aepted by A.
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Sine looping tree automata are speial B�uhi tree automata, emptiness

of their aepted language an e�etively be tested using the well-known

(quadrati) emptiness test for B�uhi automata [17℄. However, for looping

tree automata this algorithm an be speialized into a simpler (linear) one.

Though this is well-known in the automata theory ommunity, there appears

to be no referene for the result.

Intuitively, the algorithm works by omputing inative states. A state

q 2 Q is ative i� there exists a tree t and a run of A on t in whih q ours;

otherwise, q is inative. It is easy to see that a looping tree automaton aepts

at least one tree i� it has an ative initial state. How an the set of inative

states be omputed? Obviously, a state from whih no suessor states are

reahable is inative. Moreover, a state is inative if every transition possible

from that state involves an inative state. Thus, one an start with the set

Q

0

:= fq 2 Q j 8� 2 �:�(q; �) = ;g

of obviously inative states, and then propagate inativeness through the

transition relation. We formalize this propagation proess in a way that

allows for an easy formulation of our main results.

A derivation of the emptiness test is a sequene Q

0

B Q

1

B : : : B Q

k

suh that Q

i

� Q and Q

i

B Q

i+1

i� Q

i+1

= Q

i

[ fqg with

q 2 fq

0

2 Q j 8� 2 �:8(q

1

; : : : ; q

n

) 2 �(q; �):9j:q

j

2 Q

i

g:

We write Q

0

B

�

P i� there is a k 2 N and a derivation Q

0

B : : : B Q

k

with

P = Q

k

. The emptiness test answers \L(A) = ;" i� there exists a set of

states P suh that Q

0

B

�

P and I � P .

Note that Q B P implies Q � P and that Q � Q

0

and Q B P imply

Q

0

B

�

P . Consequently, the losure Q

B

0

of Q

0

under B, de�ned by Q

B

0

=:

S

fP j Q

0

B Pg, an be alulated starting with Q

0

, and suessively adding

states q to the urrent set Q

i

suh that Q

i

B Q

i

[ fqg and q 62 Q

i

, until

no more states an be added. It is easy to see that this losure onsists of

the set of inative states, and thus L(A) = ; i� I � Q

B

0

. As desribed until

now, this algorithm runs in time polynomial in the number of states. By

using lever data strutures and a propagation algorithm similar to the one

for satis�ability of propositional Horn formulae [7℄, one an in fat obtain a

linear emptiness test for looping tree automata.
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3 Automata, Modal Formulae, and the In-

verse Calulus

We �rst desribe how to deide satis�ability in K using the automata ap-

proah and the inverse method, respetively. Then we show that both ap-

proahes are losely onneted.

3.1 Automata and Modal Formulae

Given a K-formulaG, we de�ne an automatonA

G

suh that L(A

G

) = ; i�G is

not satis�able. In ontrast to the \standard" automata approah, the states

of our automaton A

G

will be subsets of �

G

rather than sets of subformulae

of G. Using paths instead of subformulae is mostly a matter of notation.

We also require the states to satisfy additional properties (i.e., we do not

allow for arbitrary subsets of �

G

). This makes the proof of orretness of the

automata approah only slightly more ompliated, and it allows us to treat

some important optimisations of the inverse alulus within our framework.

The next de�nition introdues these properties.

De�nition 2 (Propositionally expanded, lash) Let G be a K-formula

in NNF, �

G

the set of G-paths, and � � �

G

. An ^-path � 2 � is propo-

sitionally expanded in � i� f�^

l

; �^

r

g � �. An _-path � 2 � is proposi-

tionally expanded in � i� f�_

l

; �_

r

g \ � 6= ;. The set � is propositionally

expanded i� every _̂-path � 2 � is propositionally expanded in �. We use

\p.e." as an abbreviation for \propositionally expanded".

The set �

0

is an expansion of the set � if � � �

0

, �

0

is p.e. and �

0

is

minimal w.r.t. set inlusion with these properties. For a set �, we de�ne the

set of its expansions as hh�ii := f�

0

j �

0

is an expansion of �g.

� ontains a lash i� there are two paths �

1

; �

2

2 � suh that Gj

�

1

= p

and Gj

�

2

= :p for a propositional variable p. Otherwise, � is alled lash-

free.

For a set of paths 	, the set hh	ii an e�etively be onstruted by sues-

sively adding paths required by the de�nition of p.e. A formal onstrution

of the losure an be found in the proof of Lemma 4. Note that ; is p.e.,

lash-free, and hh;ii = f;g.

7



De�nition 3 (Formula Automaton) For a K-formula G in NNF, we �x

an arbitrary enumeration f�

1

; : : : ; �

n

g of the 3-paths in �

G

. The n-ary

looping automaton A

G

is de�ned by A

G

:= (Q

G

;�

G

; hhf�gii;�

G

), where Q

G

:=

�

G

:= f� � �

G

j � is p.e.g and the transition relation �

G

is de�ned as

follows:

� �

G

ontains only tuples of the form (�;�; : : : ).

� If � is lash-free, then we de�ne �

G

(�;�) := hh	

1

ii � � � � � hh	

n

ii,

where

	

i

=

(

f�

i

3g [ f�2 j � 2 � is a 2-path g if �

i

2 �

; else

� If � ontains a lash, then �

G

(�;�) = ;, i.e., there is no transition

from �.

Note, that this de�nition implies �

G

(;; ;) = f(;; : : : ; ;)g and only states

with a lash have no suessor states.

Theorem 1 For a K-formula G, G is satis�able i� L(A

G

) 6= ;.

This theorem an be proved by showing that i) every tree aepted by A

G

indues a model of G; and ii) every modelM of G an be turned into a tree

aepted by A

G

by a) unraveling M into a tree model T for G; b) labeling

every world of T with a suitable p.e. set depending on the formulae that

hold in this world; and ) padding \holes" in T with ;.

Proof. Let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in �

G

.

For the if -diretion let L(A

G

) 6= ;, t; r : [n℄

�

! f� � �

G

j � is p.e.g a

tree that is aepted by A

G

and a orresponding run of A

G

. By onstrution

of A

G

, t(w) = r(w) for every w 2 [n℄

�

. We onstrut a Kripke model M =

(W;R; V ) from t by setting

W = fw 2 [n℄

�

j t(w) 6= ;g

R = f(w;wi) 2 W �W j i 2 [n℄g

V = �P:fp 2 W j 9� 2 t(w):Gj

�

= Pg for all propositional atoms P

Claim. For all w 2 W , if � 2 t(w) then M; w j= Gj

�

.
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Proof of the laim. The laim is proved by indution on the struture of K-

formulae. Let w 2 W be a world and � 2 �

G

be a path suh that � 2 t(w).

� if Gj

�

= P is a propositional atom and w 2 W , then w 2 V (P ) and

hene M; w j= Gj

�

.

� if Gj

�

= :P is a negated propositional atom, then, sine t(w) is lash

free, there is no �

0

2 t(w) suh that Gj

�

0

= P . Thus, w 62 V (P ) and

hene M; w j= :P .

� ifGj

�

= F

1

^F

2

then � is an ^-path, and sine t(w) is p.e., f�^

l

; �^

r

g �

t(w). By indution, M; w j= Gj

�^

�

and hene M; w j= Gj

�

.

� if Gj

�

= F

1

_F

2

then � is an _-path, and sine t(w) is p.e., f�_

l

; �_

r

g\

t(w) 6= ;. By indution, M; w j= Gj

�_

l

or M; w j= Gj

�_

r

and hene

M; w j= Gj

�

.

� if Gj

�

= 3F then � is a 3-path and, w.o.l.g., assume � = �

i

. Sine

�

i

2 r(w), �

i

3 2 r(wi) = t(wi) holds and hene wi 2 W and (w;wi) 2

R. By indution, we have thatM; wi j= Gj

�

i

3

and heneM; w j= Gj

�

i

.

� if Gj

�

= 2F and (w;w

0

) 2 R then w

0

= wi for some i 2 [n℄ and t(wi) 6=

; holds and by onstrution of A

G

, this implies �2 2 r(wi) = t(wi).

By indution, this impliesM; wi j= Gj

�2

and sine wi = w

0

and w

0

has

been hosen arbitrarily, M; w j= Gj

�

.

This �nishes the proof of the laim. Sine t(�) = r(�) 2 hhf�gii and hene

� 2 t(�), M; � j= Gj

�

and G = Gj

�

is satis�able.

For the only if -diretion, we �rst show an auxiliary laim: for a set

	 � �

G

we de�ne M; w j= 	 i� M; w j= Gj

�

for every � 2 	.

Claim. If 	 � �

G

and w 2 W suh thatM; w j= 	, then there is a � 2 hh	ii

suh that M; w j= �.

Proof of the laim. Let 	 � �

G

and w 2 W suh that M; w j= 	. We will

show how to onstrut an expansion of 	 with the desired property. If 	 is

already p.e., then 	 2 hh	ii and we are done. If 	 is not p.e. then let � 2 	

be a _̂-path that is not p.e. in 	.

� If � is a ^-path then Gj

�

= F

1

^F

2

and sineM; w j= Gj

�

, alsoM; w j=

F

1

= Gj

�^

l

and M; w j= F

2

= Gj

�^

r

. Hene M; w j= 	 [ f�^

l

; �^

r

g
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and 	

0

= 	 [ f�^

l

; �^

r

g is a set with M; w j= 	

0

that is\one step

loser" to being p.e. than 	.

� If � is a _-path then Gj

�

= F

1

_ F

2

and sine M; w j= Gj

�

, also

M; w j= F

1

= Gj

�_

l

or M; w j= F

2

= Gj

�_

r

. Hene M; w j= 	[ f�_

l

g

or M; w j= 	 [ f�_

r

g and hene an obtain a set 	

0

with M; w j= 	

0

that is again \one step lose" to being p.e. than 	.

Restarting this proess with 	 = 	

0

eventually yields an expansion � of

the initial set 	 with M; w j= �, whih proves the laim.

Let M = (W;R; V ) be a model for G with w 2 W suh that M; w j= G.

From M we onstrut a tree that is aepted by A

G

. Using this laim,

we indutively de�ne a tree t aepted by A

G

. To this purpose, we also

indutively de�ne a funtion f : [n℄

�

! W suh that, if M; f(p) j= t(p) for

all p.

We start by setting f(�) = w for a w 2 W withM; w j= G. and t(�) = �

for a � 2 hhf�gii suh that M; w j= �. From the laim we have that suh a

set � exists beause M; w j= G = Gj

�

.

If f(p) and t(p) are already de�ned, then, for i 2 [n℄, we de�ne f(pi) and

t(pi) as follows:

� if �

i

2 t(p) then M; f(p) j= Gj

�

i

and hene there is a w

0

2 W suh

that (f(p); w

0

) 2 R and M; w

0

j= Gj

�

i

3

. If � 2 t(p) is a 2-path,

then also M; w

0

j= Gj

�2

holds. Hene M; w

0

j= f�

i

3g [ f�2 j � 2

t(p) is a 2-path g. We set f(pi) = w

0

and t(pi) = � for a � 2 hhf�

i

3g[

f�2 j � 2 t(p) is a 2-path gii with M; w

0

j= �, whih exist by the

laim.

� if �

i

62 t(p), then we set f(pi) = w for an arbitrary w 2 W and

t(pi) = ;.

In both ases, we have de�ne f(pi) and t(pi) suh that M; f(pi) j= t(pi). It

is easy to see that t is aepted by A

G

with the run r = t. Hene L(A

G

) 6= ;

whih is what we needed to show.

Together with the emptiness test for looping tree automata, Theorem 1

yields a deision proedure for K-satis�ability. To test a K-formula G for

unsatis�ability, onstrut A

G

and test whether L(A

G

) = ; holds using the

emptiness test for looping tree automata: L(A

G

) = ; i� hhf�gii � Q

B

0

, where

10



Q

0

� Q

G

is the set of states ontaining a lash. The following is a derivation

of a superset of hhf�gii from Q

0

for the example formula from Figure 1:

Q

0

= ff�

5

; �

6

; �

7

; �

8

g; f�

5

; �

6

; �

7

; �

9

g

| {z }

= hh�

5

;�

6

;�

7

ii

; : : : g B Q

0

[ ff�

0

; �

1

; �

2

; �

3

; �

4

gg

| {z }

= hhf�gii

3.2 The Inverse Calulus

In the following, we introdue the inverse alulus for K. We stay lose to

the notation and terminology used in [19℄.

A sequent is a subset of �

G

. Sequents will be denoted by apital greek

letters. The union of two sequents � and � is denote by �;�. If � is a sequent

and � 2 �

G

then we denote � [ f�g by �; �. If � is a sequent that ontains

only 2-paths then we write �2 to denote the sequent f�2 j � 2 �g. Sine

states of A

G

are also subsets of �

G

and hene sequents, we will later on use

the same notational onventions for states as for sequents.

De�nition 4 (The inverse path alulus) Let G be a formula in NNF

and �

G

the set of paths of G. Axioms of the inverse alulus are all sequents

f�

1

; �

2

g suh that Gj

�

1

= p and Gj

�

2

= :p for some propositional variable

p. The rules of the inverse alulus are given in Figure 2, where all paths

ourring in a sequent are G-paths and, for every 3

+

inferene, � is a 3-path.

We refer to this alulus by IC

G

.

1

We de�ne S

0

:= f� j � is an axiom g. A derivation of IC

G

is a sequene

of sets of sequents S

0

` � � � ` S

m

where S

i

` S

i+1

i� S

i+1

= S

i

[f�g suh that

there exists sequents �

1

; : : :�

k

2 S

i

and

�

1

: : : �

k

�

is an inferene.

We write S

0

`

�

S i� there is a derivation S

0

` � � � ` S

m

with S = S

m

. The

losure S

`

0

of S

0

under ` is de�ned by S

`

0

=

S

fS j S

0

`

�

Sg. Again, the

losure an e�etively be omputed by starting with S

0

and then adding

sequents that an be obtained by an inferene until no more new sequents

an be added.

As shown in [19℄, the omputation of the losure yields a deision proe-

dure for K-satis�ability:

Fat 1 G is unsatis�able i� f�g 2 S

`

0

.

1

G appears in the subsript beause the alulus is highly dependent of the input

formula G: only G-paths an be generated by IC

G

.

11



(_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

(^

l

)

�; �^

l

�; �

(^

r

)

�; �^

r

�; �

(3)

�2; �3

�; �

(3

+

)

�2

�; �

Figure 2: Inferene rules of IC

G

Figure 3 shows the inferenes of IC

G

that lead to �

0

= � for the example

formula from Figure 1.

3.3 Conneting the Two Approahes

The results shown in this subsetion imply that IC

G

an be viewed as an

on-the-y implementation of the emptiness for A

G

. In addition to generat-

ing states on-the-y, states are also represented in a ompat manner: one

sequent generated by IC

G

represents several states of A

G

.

De�nition 5 For the formula automaton A

G

with states Q

G

and a sequent

� � �

G

we de�ne [[�℄℄ := f� 2 Q

G

j � � �g, and for a set S of sequents we

de�ne [[S℄℄ :=

S

�2S

[[�℄℄.

The following theorem, whih is one of the main ontributions of this

paper, establishes the orrespondene between the emptiness test and IC

G

.

Theorem 2 (IC

G

and the emptiness test mutually simulate eah other)

Let Q

0

, S

0

, B, and ` be de�ned as above.

1. Let Q be a set of states suh that Q

0

B

�

Q. Then there exists a set of

sequents S with S

0

`

�

S and Q � [[S℄℄.

2. Let S be a set of sequents suh that S

0

`

�

S. Then there exists a set of

states Q � Q

G

with Q

0

B

�

Q and [[S℄℄ � Q.

The �rst part of the theorem shows that IC

G

an simulate eah omputation of

the emptiness test for A

G

. The set of states represented by the set of sequents

omputed by IC

G

may be larger than the one omputed by a partiular

derivation of the emptiness test. However, the seond part of the theorem

implies that all these states are in fat inative sine a possibly larger set

of states an also be omputed by a derivation of the emptiness test. In

partiular, the theorem implies that IC

G

an be used to alulate a ompat

12



(_)

^

l

3; ^

r

^

r

2_

r

j ^

r

^

l

2; ^

r

^

r

2_

l

(3)

^

l

3; ^

r

^

l

2; ;^

r

^

r

2

(^

r

)

^

l

; ^

r

^

l

; ^

r

^

r

(^

l

)

^

l

; ^

r

; ^

r

^

l

(^

r

)

^

l

; ^

r

(^

l

)

�; ^

l

�

Figure 3: An example of inferenes in IC

G

representation of Q

B

0

. This is an on-the-y omputation sine A

G

is never

onstruted expliitly.

Corollary 1 Q

B

0

= [[S

`

0

℄℄.

Proof. If � 2 Q

B

0

then there exists a set of states Q suh that Q

0

B

�

Q and

� 2 Q. By Theorem 2.1, there exists a set of sequents S with S

0

`

�

S and

Q � [[S℄℄. Hene � 2 [[S

`

0

℄℄. For the onverse diretion, if � 2 [[S

`

0

℄℄ then there

exists a set of sequents S with S

0

`

�

S and � 2 [[S℄℄. By Theorem 2.2, there

exists a set of states Q with Q

0

B

�

Q and [[S℄℄ � Q and hene � 2 Q

B

0

.

The proof of the seond part of Theorem 2 is the easier one. It is a

onsequene of the next three lemmata. First, observe that the two aluli

have the same starting points.

Lemma 1 If S

0

is the set of axioms of IC

G

, and Q

0

is the set of states of

A

G

that have no suessor states, then [[S

0

℄℄ = Q

0

.

Proof. The set S

0

is the set of all axioms i.e., the set of all lashes. Hene

[[S

0

℄℄ = f� j � ontains a lashg = Q

0

.

Seond, sine states are assumed to be p.e., propositional inferenes of

IC

G

do not hange the set of states represented by the sequents.

Lemma 2 Let S ` T be a derivation of IC

G

that employs a ^

l

-, ^

r

-, or a

_-inferene. Then [[S℄℄ = [[T ℄℄.

13



Proof. Sine S � T , [[S℄℄ � [[T ℄℄ holds immediately. To show [[T ℄℄ � [[S℄℄, we

distinguish the di�erent inferenes used to obtain T from S:

� If the employed inferene is (^

�

)

�; �^

�

�; �

and T = S [ f�; �g with

�; �^

�

2 S. Then [[T ℄℄ = [[S℄℄ [ [[�; �℄℄. Let � 2 [[�; �℄℄. � is p.e. and

hene � 2 � implies �^

�

2 �. Thus, �; �^

�

� � and � 2 [[�; �^

�

℄℄ �

[[S℄℄.

� Assume that the employed inferene is (_)

�

l

; �_

l

�

r

;_

r

�

l

;�

r

; �

and T =

S [ f�

l

;�

r

; �g with �

l

; �_

l

2 S, �

r

;_

r

2 S. Then [[T ℄℄ = [[S℄℄ [

[[�

l

;�

r

; �℄℄. Let � 2 [[�

l

;�

r

; �℄℄. � is p.e. and hene, w.o.l.g., �_

l

2 �.

Thus, �

l

; �_

l

� � and � 2 [[�

l

; �_

l

℄℄ � [[S℄℄.

Third, modal inferenes of IC

G

an be simulated by derivations of the

emptiness test.

Lemma 3 Let S ` T be derivation of IC

G

that employs a 3- or 3

+

-inferene.

If Q is a set of states with [[S℄℄ [Q

0

� Q then there exists a set of states P

with QB

�

P and [[T ℄℄ � P .

Proof. We only onsider the 3-inferene, the ase of a 3

+

-inferene is

analogous. If S ` T by an appliation of a 3-inferene, then T = S [ f�; �g

where � onsists only of 2-paths, � is a 3-path (w.o.l.g., we assume � =

�

i

, the i-th path in the enumeration of 3-paths in �

G

), �2; �

i

3 2 S and

(3)

�2; �

i

3

�; �

i

. Also, [[T ℄℄ = [[S℄℄ [ [[�; �

i

℄℄ holds.

Claim. Let � 2 [[�; �

i

℄℄ and R a set of states with [[�2; �

i

3℄℄[Q

0

� R. Then

there exists a derivation RB

�

R

0

with � 2 R

0

and [[�2; (�

i

3)℄℄ [Q

0

� R

0

Proof of the Claim. If � ontains a lash then � 2 Q

0

� R and nothing has

to be done. If � does not ontain a lash, then �

G

(�;�) = hh	

i

ii�� � ��hh	

n

ii

where the 	

i

are de�ned as in De�nition 3 and espeially, sine �

i

2 �,

hh	

i

ii = hhf�

i

3g [ f�2 j � 2 � is a 2-path g

| {z }

��2;�

i

3

ii � [[�2; �

i

3℄℄ � R

Sine all states in hh	

i

ii have been marked inative, the emptiness test an

also mark � inative and derive R B R [ f�g = R

0

, whih proves the laim.

14



Using this laim, we prove the lemma as follows. Let �

i

; : : :�

k

be an

enumeration of [[�; �

i

℄℄. The set P

0

= Q satis�es the requirements of the

laim for R. Thus, we repeatedly use the laim and hain the derivations to

obtain a derivation Q = P

0

B P

1

B : : : B P

k

= P suh that �

i

2 P

i

. Sine

the sets grow monotonially, in the end [[�; �℄℄ � P holds, whih implies

[[T ℄℄ � P .

Given these lemmata, proving Theorem 2.2 is quite simple.

Proof of Theorem 2.2. The proof is by indution on the length m of the

derivation S

0

` S

1

� � � ` S

m

= S of IC

G

. The base ase m = 0 is Lemma 1.

For the indution step, S

i+1

is either inferred from S

i

using a propositional

inferene, whih is dealt with by Lemma 2, or by a modal inferene, whih is

dealt with by Lemma 3. Lemma 3 is appliable sine, for every set of states

Q with Q

0

B

�

Q, Q

0

� Q.

Proving the �rst part of Theorem 2 is more involed beause of the alu-

lation of the propositional expansions impliit in the de�nition of A

G

.

Lemma 4 Let � � �

G

be a set of paths and S a set of sequents suh that

hh�ii � [[S℄℄. Then there exists a set of sequents T with S`

�

T suh that there

exists a sequent � 2 T with � � �.

Proof. If � is p.e., then this is immediate, as in this ase hh�ii = f�g � [[S℄℄.

If � is not p.e., then let selet be an arbitrary seletion funtion, i.e., a

funtion that maps every set 	 that is not p.e. to a _̂-path � 2 	 that is not

p.e. in 	. Let T

�

be the following, indutively de�ned tree:

� The root of T

�

is �.

� If a node 	 of T

�

is not p.e., then

{ if selet(	) = � is an ^-path, then 	 has the suessor node

	; �^

l

; �^

r

and 	 is alled an ^-node.

{ if selet(	) = � is an _-path, then 	 has the suessor nodes

	; �_

l

and 	; �_

l

and 	 is alled an _-node.

� If a node 	 of T

�

is p.e., then it is a leaf of the tree.
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If �_

l

62 �

l

or �_

r

62 �

r

, then �

l

� �

i+1

or �

r

� �

i+1

holds and hene

already T

i

ontains a sequent � with � � �

i+1

.

If �

l

= �

l

; �_

l

and �

r

= �

r

; �_

r

with �_

�

62 �

�

then IC

G

an use the

inferene

(_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

(3)

to derive T

i

` T

i

[ f�

l

;�

r

; �g = T

i+1

, and and �

l

;�

r

; � � �

i+1

holds

as follows: assume there is a �

0

2 �

l

;�

r

; � with �

0

62 �

i+1

. Sine

� 2 �

i+1

, w.o.l.g., �

0

2 �

l

. But then also �

l

6� �

i+1

; �_

l

would hold,

sine �

0

6= �_

l

beause �_

l

62 �

l

.

Proeeding in this manner, starting from T

0

= S, we an onstrut a

derivation that yields a set T = T

k

of states ontaining a sequent � suh

that � � �

`

= �.

Proof of Theorem 2.1. We show this by indution on the number k of

steps in the derivation Q

0

B : : : B Q

k

= Q. Again, Lemma 1 yields the base

ase.

For the indution step, let Q

0

B : : : B Q

i

B Q

i+1

= Q

i

[ f�g be a

derivation of the emptiness test and S

i

a set of sequents suh that S `

�

S

i

and Q

i

� [[S

i

℄℄. Suh a set exists by the indution hypothesis beause the

derivation Q

0

B : : : B Q

i

is of length i. Now let Q

i

B Q

i

[ f�g = Q

i+1

be

the derivation of the emptiness test. If already � 2 Q

i

then Q

i+1

� [[S

i

℄℄ and

we are done.

If � 62 Q

i

, then Q

0

� Q

i

implies that �

G

(�;�) 6= ;. Sine ; is an ative

state, we know that ; 62 Q

i

, and for Q

i

B Q

i+1

to be a possible derivation

of the emptiness test, �

G

(�;�) = hh	

1

ii � � � � � hh	

n

ii 6= f(;; : : : ; ;)g must

hold, i.e., there must be a 	

i

6= ; suh that hh	

i

ii � Q

i

� [[S

i

℄℄. Hene �

i

2 �

and 	

i

= f�

i

3g [ f�2 j � 2 � is a 2-pathg.

Lemma 4 yields the existene of a set of sequents T

i

with S

i

`

�

T ontaining

a sequent � with � � 	

i

. This sequent is either of the form � = �2; �

i

3 or

� = �2 for some � � �. In the former ase, IC

G

an use a 3-inferene

(3)

�2; �

i

3

�; �

i
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and in the latter ase a 3

+

-inferene

(3

+

)

�2

�; �

i

to derive S

0

`

�

S

i

`

�

T ` T [ f�; �

i

g = S and � � [[�; �

i

℄℄ holds.

4 Optimizations

Sine the inverse alulus an be seen as an on-the-y implementation of the

emptiness test, optimizations of the inverse alulus also yield optimizations

of the emptiness test. We use the onnetion between the two approahes to

provide an easier proof of the fat that the optimizations of IC

G

introdued

by Voronkov [19℄ do not destroy ompleteness of the alulus.

4.1 Unreahable states / redundant sequents

States that annot our on any run starting with an initial state have no

e�et on the language aepted by the automaton. We all suh states un-

reahable. In the following, we will determine ertain types of unreahable

states.

De�nition 6 Let �; �

1

; �

2

2 �

G

.

� The modal length of � is the number of ourrenes of 2 and 3 in �.

� �

1

; �

2

2 �

G

form a _-fork if �

1

= �_

l

�

0

1

and �

2

= �_

r

�

0

2

for some

�; �

0

1

; �

0

2

.

� �

1

; �

2

are 3-separated if �

1

= �

0

1

3�

00

1

and �

2

= �

0

2

3�

00

2

suh that �

0

1

; �

0

2

have the same modal length and �

0

1

6= �

0

2

.

Lemma 5 Let A

G

be the formula automaton for a K-formula G in NNF

and � 2 Q. If � ontains a _-fork, two 3-separated paths, or two paths of

di�erent modal length, then � is unreahable.

The lemma shows that we an remove suh states from A

G

without hanging

the aepted language. Sequents ontaining a _-fork, two 3-separated paths,

or two paths of di�erent modal length represent only unreahable states,

and are thus redunant, i.e., inferenes involving suh sequents need not be

onsidered.
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De�nition 7 (Redued automaton) Let

�

Q be the set of states of A

G

that

ontain a _-fork, two 3-separated paths, or two paths of di�erent modal

length. The redued automaton A

0

G

= (Q

0

G

;�

G

; hhf�gii;�

0

G

) is de�ned by

Q

0

G

:= Q

G

n

�

Q and �

0

G

:= �

G

\ (Q

0

G

� �

G

�Q

0

G

� � � � �Q

0

G

):

Sine the states in

�

Q are unreahable, L(A

G

) = L(A

0

G

). From now on, we

onsider A

0

G

and de�ne [[�℄℄ relative to the states on A

0

G

: [[�℄℄ = f� 2 Q

0

G

j

� � �g.

4.2 G-orderings / redundant inferenes

In the following, the appliability of the propositional inferenes of the inverse

alulus will be restrited to those where the a�eted paths are maximal

w.r.t. a total ordering of �

G

. In order to maintain ompleteness, one annot

onsider arbitrary orderings in this ontext.

Two paths �

1

; �

3

are brothers i� there exists a _̂-path � suh that �

1

=

�_̂

l

and �

3

= �_̂

r

or �

1

= �_̂

r

and �

3

= �_̂

l

.

De�nition 8 (G-ordering) Let G be a K-formula in NNF. A total ordering

� of �

G

is alled a G-ordering i�

1. �

1

� �

2

whenever

(a) the modal length of �

1

is stritly greater than the modal length of

�

2

; or

(b) �

1

; �

2

have the same modal length, the last symbol of �

1

is _̂

�

, and

the last symbol of �

2

is 2

�

; or

() �

1

; �

2

have the same modal length and �

2

is a pre�x of �

1

2. There is no path between brothers, i.e., there exist no G-paths �

1

; �

2

; �

3

suh that �

1

� �

2

� �

3

and �

1

; �

3

are brothers.

For the example formula G of Figure 1, a G-ordering � an be de�ned by

setting �

9

� �

8

� � � � � �

1

� �

0

. Voronkov [19℄ shows that G-orderings exist

for every K-formula G in NNF. Using an arbitrary, but �xed G-ordering �,

the appliability of the propositional inferenes is restrited as follows.

De�nition 9 (Optimized Inverse Calulus) For a sequent � and a path

� we write � � � i� � � �

0

for every �

0

2 �.
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� An inferene (^

�

)

�; �^

�

�; �

respets � i� �^

�

� �.

� An inferene (_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

respets � i� �_

l

� �

l

and

�_

r

� �

r

.

� The 3- and 3

+

-inferenes always respet �.

The optimized inverse alulus IC

�

G

works as IC

G

, but for eah derivation

S

0

` � � � ` S

k

the following restritions must hold:

� For every step S

i

` S

i+1

, the employed inferene respets �, and

� S

i

must not ontain _-forks, 3-separated paths, or paths of di�erent

modal length.

To distinguish derivations of IC

G

and IC

�

G

, we will use the symbol `

�

in

derivations of IC

�

G

. In [19℄, orretness of IC

�

G

is shown.

Fat 2 ([19℄) Let G be a K-formula in NNF and � a G-ordering. Then G

is unsatis�able i� f�g 2 S

`

�

0

.

Using the orrespondene between the inverse method and the emptiness

test of A

0

G

, we will now give an alternative, and in our opinion simpler, proof

of this fat. Sine IC

�

G

is merely a restrition of IC

G

, soundness (i.e., the

if-diretion of the fat) is immediate.

Completeness requires more work. In partiular, the proof of Lemma 4

needs to be reonsidered sine the propositional inferenes are now restrited:

we must show that the _̂-inferenes employed in that proof respet (or an

be made to respet) �. To this purpose, we will follow [19℄ and introdue

the notion of �-ompatness. For �-ompat sets, we an be sure that all

appliable _̂-inferenes respet �. To ensure that all the sets �

i

onstruted

in the proof of Lemma 4 are �-ompat, we again follow Voronkov and

employ a speial seletion strategy.

De�nition 10 (�-ompat, selet

�

) Let G be a K-formula in NNF and

� a G-ordering. An arbitrary set � � �

G

is �-ompat i�, for every _̂-path

� 2 � that is not p.e. in �, �_̂

�

� �.

The seletion funtion selet

�

is de�ned as follows: if � is not p.e., then

let f�

1

; : : : ; �

m

g be the set of _̂-paths that are not p.e. in �. From this
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set, selet

�

selets the path �

i

suh that the paths �

i

_̂

�

are the two smallest

elements in f�

j

_̂

�

j 1 � j � mg.

The funtion selet

�

is well-de�ned beause of Condition (2) of G-orderings.

The de�nition of ompat ensures that _̂-inferenes appliable to not propo-

sitionally expanded sequents respet �.

Lemma 6 Let G be a K-formula in NNF, � a G-ordering, and selet

�

the

seletion funtion as de�ned above. Let � = f�g or � = �2; �

i

3 with 2-

paths � and a 3-path �, all of equal modal length. If T

�

, as de�ned in the

proof of Lemma 4, is generated using selet

�

as seletion funtion, then every

node 	 of T

�

is �-ompat.

Proof. The proof is similar to the proof of Lemma 5.8.3 in [19℄. It is given

by indution on the depths of the node 	 in the tree T

�

. For the root �

there are two possibilities. If � = f�g and � is a _̂-path, then _̂

l

and _̂

r

have

the same modal length as � and _̂

�

� � by Condition (1) of G-orderings. If

� = �2; �

i

3 and � 2 � is a _̂-path, then �_̂

�

� � holds by Condition (1b)

of G-orderings beause the last symbol of every path in � is 2

�

.

For the indution step, let 	 be a node in T

�

whih we have already

shown to be �-ompat. We show that then also its suessor nodes (if any)

are �-ompat.

� If 	 is an ^-node with seleted ^-path � 2 	, then the suessor node

of 	 is 	

0

= 	; �^

l

; �^

r

. Let �

0

2 �

0

be a _̂-path that is not p.e. in

�

0

. There are two possibilities:

{ �

0

= �^

�

. In this ase, sine �^

�

_̂

�

� �^

�

by Condition (1) of

G-orderings and �^

�

� 	, �

0

_̂

�

� 	

0

holds.

{ �

0

6= �^

�

. Then, �

0

2 	 and �

0

6= � holds beause � is p.e. in

	

0

. Sine 	 is �-ompat,  

0

_̂

�

� � for every � 2 	. It remains

to show that �

0

_̂

�

� �_̂

�

, whih follows from the fat that � was

seleted by selet

�

.

� If 	 is an _-path and the seleted _-path is � 2 	, then, w.o.l.g.,

� = 	; �_

l

. The same arguments as before apply.
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Given this lemma, it is easy to show that the onstrution employed in the

proof of Lemma 4 also works for IC

�

G

, provided that we restrit the set � as

in Lemma 6:

Lemma 7 Let � = f�g or � = �2; �

i

3 with 2-paths � and a 3-path � all

of equal modal length and S a set of sequents suh that hh�ii � [[S℄℄. Then

there exists a set of sequents T with S `

�

�

T suh that there exists � 2 T with

� � �.

Proof. We use the same onstrution as in the proof of Lemma 4, but the

speial seletion funtion selet

�

as above. From Lemma 6 we have that

all nodes �

i

in T

�

are �-ompat. All we have to do is to make sure that

the employed inferenes respet �. We refer to the inferenes by number

assigned to them in the proof of Lemma 4.

(1) Sine �

i+1

is ompat and � 2 �

i+1

is not p.e. in �

i+1

, �^

l

� �

i+1

and hene �^

l

� � beause � � �

i+1

.

(2) W.l.o.g., assume �^

l

� �^

r

. (If this is not the ase, then reverse

the order of the two inferenes.) Sine �

i+1

is ompat, � � �

i+1

and

� 2 �

i+1

is not p.e., �^

l

� � holds as well as �^

l

� �^

r

. Also �^

r

� �

holds, whih means that both inferenes respet �.

(3) Sine �

i+1

is ompat and � 2 �

i+1

is not p.e. we have �_

�

� �

i+1

and

sine both �

l

and �

r

are subsets of �

i+1

, also �_

l

� �

l

and �_

r

� �

r

holds.

Alternative Proof of Fat 2. As mentioned before, soundness (the if-

diretion) is immediate. For the only-if-diretion, if G is not satis�able, then

L(A

0

G

) = ; and there is a set of states Q with Q

0

B

�

Q and hhf�gii � Q.

Using Lemma 7 we show that there is a derivation of IC

�

G

that simulates this

derivation, i.e., there is a set of sequents S with S

0

`

�

�

S and Q � [[S℄℄.

The proof is by indution on the length m of the derivation Q

0

B : : : B

Q

m

= Q and is totally analogous to the proof of Theorem 2. The base ase is

Lemma 1, whih also holds for IC

�

G

and the redued automaton. The indu-

tion step uses Lemma 7 instead of Lemma 4, but this is the only di�erene.

Hene, Q

0

B

�

Q and hhf�gii � Q implies that there exist a derivation

S

0

`

�

�

S suh that hhf�gii � [[S℄℄. Lemma 7 yields a derivation S `

�

�

T with

f�g 2 T � S

`

�

0

.
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5 Global axioms

When onsidering satis�ability of G w.r.t. the global axiom H, we must take

subformulae of G and H into aount. We address subformulae using paths

in G and H.

De�nition 11 ((G;H)-Paths) For K-formulae G;H in NNF, the set of

(G;H)-paths �

G;H

is a subset of f�

G

; �

H

g�f_

l

;_

r

;^

l

;^

r

;2;3g

�

. The set

�

G;H

and the subformula (G;H)j

�

of G;H addressed by a path � 2 �

G;H

are de�ned indutively as follows:

� �

G

2 �

G;H

and (G;H)j

�

G

= G, and �

H

2 �

G;H

and (G;H)j

�

H

= H

� if � 2 �

G;H

and (G;H)j

�

= F

1

^F

2

then �^

l

; �^

r

2 �

G;H

, (G;H)j

�^

l

=

F

1

, (G;H)j

�^

r

= F

2

, and � is alled ^-path.

� The other ases are de�ned analogously (see also De�nition 1).

� �

G;H

is the smallest set that satis�es the previous onditions.

The de�nitions of p.e. and lash are extended to subsets of �

G;H

in the

obvious way, with the additional requirement that, for � 6= ; to be p.e.,

�

H

2 � must hold. This additional requirement enfores the global axiom.

De�nition 12 (Formula Automaton with Global Axioms) For K-for-

mulae G;H in NNF, let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in

�

G;H

. The n-ary looping automaton A

G;H

is de�ned by

A

G

:= (Q

G;H

;�

G;H

; hhf�

G

gii;�

G;H

);

where Q

G;H

:= �

G;H

:= f� 2 �

G;H

j � is p.e.g and the transition relation

�

G;H

is de�ned as for the automaton A

G

in De�nition 3.

Theorem 3 G is satis�able w.r.t. the global axiom H i� L(A

G;H

) 6= ;.

Proof. The proof is totally analogous to the proof of Theorem 1. We use

the same onstrutions for both diretions.

Let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in �

G;H

.
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For the if -diretion let L(A

G;H

) 6= ;, t; r : [n℄

�

! f� � �

G;H

j � is p.e.g

a tree that is aepted by A

G;H

and a orresponding run of A

G;H

. By on-

strution of A

G;H

, t(w) = r(w) for every w 2 [n℄

�

. We onstrut a Kripke

model M = (W;R; V ) from t by setting

W = fw 2 [n℄

�

j t(w) 6= ;g

R = f(w;wi) 2 W �W j i 2 [n℄g

V = �P:fp 2 W j 9� 2 t(w):(G;H)j

�

= Pg for all propositional atoms P

Claim. For all w 2 W , if � 2 t(w) then M; w j= (G;H)j

�

.

Proof of the laim. The laim is proved by indution on the struture of K-

formulae. Let w 2 W be a world and � 2 �

G

be a path suh that � 2 t(w).

� if (G;H)j

�

= P is a propositional atom and w 2 W , then w 2 V (P )

and hene M; w j= (G;H)j

�

.

� if (G;H)j

�

= :P is a negated propositional atom, then, sine t(w)

is lash free, there is no �

0

2 �

G;H

suh that (G;H)j

�

0

= P . Thus,

w 62 V (P ) and hene M; w j= :P .

� if (G;H)j

�

= F

1

^ F

2

then � is an ^-paths, and sine t(w) is p.e.,

f�^

l

; �^

r

g � t(w). By indution, M; w j= (G;H)j

�^

�

and hene

M; w j= (G;H)j

�

.

� if (G;H)j

�

= F

1

_ F

2

then � is an _-paths, and sine t(w) is p.e.,

f�_

l

; �_

r

g \ t(w) 6= ;. By indution, M; w j= (G;H)j

�_

l

or M; w j=

(G;H)j

�_

r

and hene M; w j= (G;H)j

�

.

� if (G;H)j

�

= 3F then � is a 3-path and, w.o.l.g., assume � = �

i

.

Sine �

i

2 r(w), �

i

3 2 r(wi) = t(wi) holds and hene wi 2 W and

(w;wi) 2 R. By indution, we have that M; wi j= (G;H)j

�

i

3

and

hene M; w j= (G;H)j

�

i

.

� if (G;H)j

�

= 2F and (w;w

0

) 2 R then w

0

= wi for some i 2 [n℄ and

t(wi) 6= ; holds and by onstrution of A

G;H

, this implies �2 2 r(wi) =

t(wi). By indution, this impliesM; wi j= (G;H)j

�2

and sine wi = w

0

and w

0

has been hosen arbitrarily, M; w j= (G;H)j

�

.
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This �nishes the proof of the laim. Sine t(�) = r(�) 2 hhf�

G

gii and

hene �

G

2 t(�), M; � j= (G;H)j

�

G

and G = (G;H)j

�

G

is satis�able.

Also, sine t(w) is p.e., �

H

2 t(w) for every w 2 W and, by the laim,

M; w j= H = (G;H)j

�

H

holds for every w 2 W . Hene G is satis�able w.r.t.

the global axiom H.

For the only if -diretion, we �rst show an auxiliary laim: for a set

	 � �

G;H

we de�ne M; w j= 	 i� M; w j= (G;H)j

�

for every � 2 	.

Claim. If 	 � �

G;H

and w 2 W suh that M; w j= 	, then there is a

� 2 hh	ii suh that M; w j= �.

Proof of the laim. Let 	 � �

G;H

and w 2 W suh that M; w j= 	. We will

show how to onstrut an expansion of 	 with the desired property. If 	 is

already p.e., then 	 2 hh	ii and we are done.

� If 	 is not p.e. beause �

H

62 	 then, beauseM; w j= H, 	

0

= 	[f�

H

g

is a set with M; w j= 	 that is \one step loser" to being p.e. than 	.

� If 	 is not p.e. and �

H

2 	 then let � 2 	 be a _̂-path that is not p.e.

in 	.

{ If � is a ^-path then (G;H)j

�

= F

1

^ F

2

and sine M; w j=

(G;H)j

�

, also M; w j= F

1

= (G;H)j

�^

l

and M; w j= F

2

=

(G;H)j

�^

r

. HeneM; w j= 	[f�^

l

; �^

r

g and 	

0

= 	[f�^

l

; �^

r

g

is a set with M; w j= 	

0

that is \one step loser" to being p.e.

than 	.

{ If � is a _-path then (G;H)j

�

= F

1

_ F

2

and sine M; w j=

(G;H)j

�

, alsoM; w j= F

1

= (G;H)j

�_

l

orM; w j= F

2

= (G;H)j

�_

r

.

Hene M; w j= 	 [ f�_

l

g or M; w j= 	 [ f�_

r

g and hene an

obtain a set 	

0

with M; w j= 	

0

that is again \one step lose" to

being p.e. than 	.

Restarting this proess with 	 = 	

0

eventually yields an expansion � of

the initial set 	 with M; w j= �, whih proves the laim.

Let M = (W;R; V ) be a model for G with w 2 W suh that M; w j= G.

From M we onstrut a tree that is aepted by A

G;H

. Using this laim,

we indutively de�ne a tree t aepted by A

G;H

. To this purpose, we also

indutively de�ne a funtion f : [n℄

�

! W suh that, if M; f(p) j= t(p) for

all p.
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We start by setting f(�) = w for a w 2 W withM; w j= G. and t(�) = �

for a � 2 hhf�gii suh that M; w j= �. From the laim we have that suh a

set � exists beause M; w j= G = (G;H)j

�

.

If f(p) and t(p) are already de�ned, then, for i 2 [n℄, we de�ne f(pi) and

t(pi) as follows:

� if �

i

2 t(p) then M; f(p) j= (G;H)j

�

i

and hene there is a w

0

2 W

suh that (f(p); w

0

) 2 R and M; w

0

j= (G;H)j

�

i

3

. If � 2 t(p) is a

2-path, then also M; w

0

j= (G;H)j

�2

holds. Hene M; w

0

j= f�

i

3g [

f�2 j � 2 t(p) is a 2-path g. We set f(pi) = w

0

and t(pi) = � for a

� 2 hhf�

i

3g [ f�2 j � 2 t(p) is a 2-path gii with M; w

0

j= �, whih

exist by the laim.

� if �

i

62 t(p), then we set f(pi) = w for an arbitrary w 2 W and t(pi) = ;

In both ases, we have de�ne f(pi) and t(pi) suh thatM; f(pi) j= t(pi). It is

easy to see that t is aepted by A

G;H

with the run r = t. Hene L(A

G;H

) 6= ;

whih is what we needed to show.

De�nition 13 (The Inverse Calulus w. Global Axiom) Let G;H be

K- formula in NNF and �

G;H

the set of paths of G;H. Sequents are subsets

of �

G;H

, and operations on sequents are de�ned as before.

In addition to the inferenes from Figure 2, the inverse alulus for G

w.r.t. the global axiom H, IC

ax

G;H

, employs the inferene

(ax)

�; �

H

�

:

From now on, [[�℄℄ is de�ned w.r.t. the states of A

G;H

, i.e., [[�℄℄ := f� 2

Q

G;H

j � � �g.

Theorem 4 (IC

ax

G;H

and the emptiness test for A

G;H

simulate eah other)

Let `

ax

denote derivation steps of IC

ax

G;H

, and B derivation steps of the empti-

ness test for A

G;H

.

1. Let Q � Q

G;H

be a set of states suh that Q

0

B

�

Q. Then there exists a

set of sequents S with S

0

`

ax

�

S and Q � [[S℄℄.

2. Let S be a set of sequents suh that S

0

`

ax

�

S. Then there exists a set of

states Q � Q

G

with Q

0

B

�

Q and [[S℄℄ � Q.
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Lemma 1, 2, and 3, restated for A

G;H

and IC

ax

G;H

, an be shown as before.

The following lemma deals with the ax-inferene of IC

ax

G;H

.

Lemma 8 Let S B T be a derivation of IC

ax

G;H

that employs an ax-inferene.

Then [[S℄℄ = [[T ℄℄.

Proof. Let T = S [f�g with f�; �

H

g 2 S. Then we know that (ax)

�; �

H

�

.

[[T ℄℄ = [[S℄℄ [ [[�℄℄. Sine S � T , [[S℄℄ � [[T ℄℄ holds immediately. If � 2 [[�℄℄,

then, sine � is p.e., �

H

2 � and � 2 [[�; �

H

℄℄ � [[S℄℄.

The proof of Theorem 4.2 is now analogous to the proof of Theorem 2.2.

For the proof of Theorem 4.1, Lemma 4 needs to be re-proved beause the

hange in the de�nition of p.e. now also implies that �

H

2 � holds for every

set � 2 hh	ii for any 	 6= ; (see Lemma 9). This is where the new inferene ax

omes into play. In all other respets, the proof of Theorem 4.1 is analogous

to the proof of Theorem 2.1.

Lemma 9 Let � � �

G

a set of paths and S a set of sequents suh that

hh�ii � [[S℄℄. Then there exists a set of sequents T with S `

ax

�

T suh that

there exists � 2 T with � � �.

Proof. If �

H

2 � than we an use the same onstrution used in the proof

of Lemma 4 to onstrut the set T suh that S `

ax

�

T and there is a � 2 T

with � � �.

If �

H

62 �, then set 	 = �; �

H

and again use the onstrution from the

proof of Lemma 4 to onstrut a set T suh that S`

ax

�

T and there is a � 2 T

with � � 	. If �

H

62 � then we are done sine then also � � �. If � = �; �

H

for some � with �

H

62 �, then � � � and T `

ax

T [ f�g an be derived by

IC

ax

G;H

using the inferene (ax)

�; �

H

�

.

Corollary 2 IC

ax

G;H

yields an ExpTime deision proedure for satis�ability

w.r.t. global axioms in K.

The following algorithm yields the desired proedure:
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Algorithm 1 Let G;H be K-formulae in NNF. To test satis�ability of G

w.r.t. H, alulate S

`

ax

0

. If f;; f�

G

gg\S

`

ax

0

6= ;, then answer \not satis�able,"

and \satis�able" otherwise.

Corretness of this algorithm follows from Theorem 3 and 4. If G is not

satis�able w.r.t. H, then L(A

G;H

) = ;, and there exists a set of states Q

with Q

0

B

�

Q and hhf�

G

gii � Q. Thus, there exists a set of sequents S with

S

0

`

ax

�

S suh that Q � [[S℄℄. With (the appropriately reformulated) Lemma 4

there exists a set of sequents T with S `

ax

�

T suh that there is a sequent

� 2 T with � � f�

G

g. Consequently, � = ; or � = f�

G

g.

Sine S

0

`

ax

�

S

`

ax

0

, there exists a set of (inative) states Q suh that Q

0

B

�

Q

and [[S

`

ax

0

℄℄ � Q. Sine hhf�

G

gii � [[f�

G

g℄℄ � [[;℄℄, we know that f;; f�

G

gg \

S

`

ax

0

6= ; implies hhf�

G

gii � Q. Consequently, L(A

G;H

) = ; and thus G is not

satis�able w.r.t. H.

For the omplexity, note that there are only exponentially many sequents.

Consequently, it is easy to see that the saturation proess that leads to S

`

ax

0

an be realized in time exponential in the size of the input formulae.

6 Future Work

There are several interesting diretions in whih to ontinue this work. First,

satis�ability in K (without global axioms) is PSpae-omplete whereas the

inverse method yields only an ExpTime-algorithm. Can suitable optimiza-

tions turn this into a PSpae-proedure? Seond, an the optimizations

onsidered in Setion 4 be extended to the inverse alulus with global ax-

ioms? Third, Voronkov onsiders additional optimizations. Can they also be

handled within our framework? Finally, an the orrespondene between the

automata approah and the inverse method be used to obtain inverse aluli

and orretness proofs for other modal or desription logis?
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