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Abstra
t

Tableaux-based de
ision pro
edures for satis�ability of modal and

des
ription logi
s behave quite well in pra
ti
e, but it is sometimes

hard to obtain exa
t worst-
ase 
omplexity results using these ap-

proa
hes, espe
ially for ExpTime-
omplete logi
s. In 
ontrast, auto-

mata-based approa
hes often yield algorithms for whi
h optimal worst-


ase 
omplexity 
an easily be proved. However, the algorithms ob-

tained this way are usually not only worst-
ase, but also best-
ase

exponential: they �rst 
onstru
t an automaton that is always ex-

ponential in the size of the input, and then apply the (polynomial)

emptiness test to this large automaton. To over
ome this problem,

one must try to 
onstru
t the automaton \on-the-
y" while perform-

ing the emptiness test.

In this paper we will show that Voronkov's inverse method for the

modal logi
 K 
an be seen as an on-the-
y realization of the empti-

ness test done by the automata approa
h for K. The bene�ts of this

result are two-fold. First, it shows that Voronkov's implementation of

the inverse method, whi
h behaves quite well in pra
ti
e, is an opti-

mized on-the-
y implementation of the automata-based satis�ability

pro
edure for K. Se
ond, it 
an be used to give a simpler proof of

the fa
t that Voronkov's optimizations do not destroy 
ompleteness of

the pro
edure. We will also show that the inverse method 
an easily

be extended to handle global axioms, and that the 
orresponden
e to

the automata approa
h still holds in this setting. In parti
ular, the

inverse method yields an ExpTime-algorithm for satis�ability in K

w.r.t. global axioms.
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1 Introdu
tion

De
ision pro
edures for (propositional) modal logi
s and des
ription logi
s

play an important rôle in knowledge representation and veri�
ation. When

developing su
h pro
edures, one is both interested in their worst-
ase 
om-

plexity and in their behavior in pra
ti
al appli
ations. From the theoreti
al

point of view, it is desirable to obtain an algorithm whose worst-
ase 
om-

plexity mat
hes the 
omplexity of the problem. From the pra
ti
al point of

view it is more important to have an algorithm that is easy to implement and

amenable to optimizations, su
h that it behaves well on pra
ti
al instan
es

of the de
ision problem. The most popular approa
hes for 
onstru
ting de
i-

sion pro
edures for modal logi
s are i) semanti
 tableaux and related methods

[10, 2℄; ii) translations into 
lassi
al �rst-order logi
s [15, 1℄; and iii) redu
-

tions to the emptiness problem for 
ertain (tree) automata [17, 14℄.

Whereas highly optimized tableaux and translation approa
hes behave

quite well in pra
ti
e [11, 12℄, it is sometimes hard to obtain exa
t worst-


ase 
omplexity results using these approa
hes. For example, satis�ability

in the basi
 modal logi
 K w.r.t. global axioms is known to be ExpTime-


omplete [16℄. However, the \natural" tableaux algorithm for this problem

is a NExpTime-algorithm [2℄, and it is rather hard to 
onstru
t a tableaux

algorithm that runs in deterministi
 exponential time [6℄. In 
ontrast, it is

folklore that the automata approa
h yields a very simple proof that satis-

�ability in K w.r.t. global axioms is in ExpTime. However, the algorithm

obtained this way is not only worst-
ase, but also best-
ase exponential: it

�rst 
onstru
ts an automaton that is always exponential in the size of the

input formulae (its set of states is the powerset of the set of subformulae of

the input formulae), and then applies the (polynomial) emptiness test to this

large automaton. To over
ome this problem, one must try to 
onstru
t the

automaton \on-the-
y" while performing the emptiness test. Whereas this

idea has su

essfully been used for automata that perform model 
he
king

[9, 5℄, to the best of our knowledge it has not yet been applied to satis�ability


he
king.

The original motivation of this work was to 
ompare the automata and

the tableaux approa
hes, with the ultimate goal of obtaining an approa
h

that 
ombines the advantages of both, without possessing any of the dis-

advantages. As a starting point, we wanted to see whether the tableaux

approa
h 
ould be viewed as an on-the-
y realization of the emptiness test

done by the automata approa
h. At �rst sight, this idea was persuasive sin
e
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a run of the automaton 
onstru
ted by the automata approa
h (whi
h is a

so-
alled looping automaton working on in�nite trees) looks very mu
h like

a run of the tableaux pro
edure, and the tableaux pro
edure does gener-

ate sets of formulae on-the-
y. However, the polynomial emptiness test for

looping automata does not try to 
onstru
t a run starting with the root of

the tree, as done by the tableaux approa
h. Instead, it 
omputes ina
tive

states, i.e., states that 
an never o

ur on a su

essful run of the automa-

ton, and tests whether all initial states are ina
tive. This 
omputation starts

\from the bottom" by lo
ating obviously ina
tive states (i.e., states without

su

essor states), and then \propagates" ina
tiveness along the transition

relation. Thus, the emptiness test works in the opposite dire
tion of the

tableaux pro
edure. This observation suggested to 
onsider an approa
h

that inverts the tableaux approa
h: this is just the so-
alled inverse method.

Re
ently, Voronkov [19℄ has applied this method to obtain a bottom-up de-


ision pro
edure for satis�ability in K, and has optimized and implemented

this pro
edure.

In this paper we will show that the inverse method for K 
an indeed be

seen as an on-the-
y realization of the emptiness test done by the automata

approa
h for K. The bene�ts of this result are two-fold. First, it shows

that Voronkov's implementation, whi
h behaves quite well in pra
ti
e, is

an optimized on-the-
y implementation of the automata-based satis�ability

pro
edure for K. Se
ond, it 
an be used to give a simpler proof of the fa
t

that Voronkov's optimizations do not destroy 
ompleteness of the pro
edure.

We will also show how the inverse method 
an be extended to handle global

axioms, and that the 
orresponden
e to the automata approa
h still holds in

this setting. In parti
ular, the inverse method yields an ExpTime-algorithm

for satis�ability in K w.r.t. global axioms.

2 Preliminaries

First, we brie
y introdu
e the modal logi
 K and some te
hni
al de�nitions

related to K-formulae, whi
h are used later on to formulate the inverse 
al
u-

lus and the automata approa
h for K. Then, we de�ne the type of automata

used to de
ide satis�ability (w.r.t. global axioms) in K. These so-
alled loop-

ing automata [18℄ are a spe
ialization of B�u
hi tree automata.
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Modal Formulae

We assume the reader to be familiar with the basi
 notions of modal logi
.

For a thorough introdu
tion to modal logi
s, refer to, e.g., [4℄.

K-formulae are built indu
tively from a 
ountably in�nite set P = fp

1

; p

2

; : : :g

of propositional atoms using the Boolean 
onne
tives ^, _, and : and the

unary modal operators 2 and 3. The semanti
s of K-formulae is de�ne as

usual, based on Kripke models M = (W;R; V ) where W is a non-empty

set, R � W � W is an a

essibility relation, and V : P ! 2

W

is a valu-

ation mapping propositional atoms to the set of worlds they hold in. The

relation j= between models, worlds, and formulae is de�ned in the usual

way. Let G;H be K-formulae. Then G is satis�able i� there exists a Kripke

model M = (W;R; V ) and a world w 2 W with M; w j= G. The for-

mula G is satis�able w.r.t. the global axiom H i� there exists a Kripke model

M = (W;R; V ) and a world w 2 W su
h M; w j= G and M; w

0

j= H for all

w

0

2 W . K-satis�ability is PSpa
e-
omplete [13℄, and K-satis�ability w.r.t.

global axioms is ExpTime-
omplete [16℄.

A K-formula is in negation normal form (NNF) if : o

urs only in front

of propositional atoms. Every K-formula 
an be transformed (in linear time)

into an equivalent formula in NNF using de Morgan's laws and the duality

of the modal operators.

For the automata and 
al
uli 
onsidered here, sub-formulae of G play an

important role and we will often need operations going from a formula to its

super- or sub-formulae. As observed in [19℄, these operations be
ome easier

when dealing with \addresses" of sub-formulae in G rather than with the

sub-formulae themselves.

De�nition 1 (G-Paths) For a K-formula G in NNF, the set of G-paths

�

G

is a set of words over the alphabet f_

l

;_

r

;^

l

;^

r

;2;3g. The set �

G

and

the sub-formula Gj

�

of G addressed by � 2 �

G

are de�ned indu
tively as

follows:

� � 2 �

G

and Gj

�

= G

� if � 2 �

G

and

{ Gj

�

= F

1

^ F

2

then �^

l

; �^

r

2 �

G

, Gj

�^

l

= F

1

, Gj

�^

r

= F

2

, and

� is 
alled ^-path

{ Gj

�

= F

1

_ F

2

then �_

l

; �_

r

2 �

G

, Gj

�_

l

= F

1

, Gj

�_

r

= F

2

, and

� is 
alled _-path
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Figure 1: The set �

G

for G = 3:p

1

^ (2p

2

^2(:p

2

_ p

1

))

{ Gj

�

= 2F then �2 2 �

G

, Gj

�2

= F and � is 
alled 2-path

{ Gj

�

= 3F then �3 2 �

G

, Gj

�3

= F and � is 
alled 3-path

� �

G

is the smallest set that satis�es the previous 
onditions.

We use of ^

�

and _

�

as pla
eholders for ^

l

;^

r

and _

l

;_

r

, respe
tively. Also,

we use _̂ and 2

�

as pla
eholders for ^;_ and 2;3, respe
tively. If � is an ^-

or and _-path then � is 
alled _̂-path. If � is a 2- or a 3-path then � is 
alled

2

�

-path. Figure 1 shows an example of a K-formula G and the 
orresponding

set �

G

, whi
h 
an be read o� the edge labels. For example, ^

r

^

r

is a G-path

and Gj

^

r

^

r

= 2(:p

2

_ p

1

)

Looping Automata

For a natural number n, let [n℄ denote the set f1; : : : ; ng. An n-ary in�nite

tree over the alphabet � is a mapping t : [n℄

�

! �. An n-ary looping tree

automaton is a tuple A = (Q;�; I;�), where Q is a �nite set of states, � is

a �nite alphabet, I � Q is the set of initial states, and � � Q � � � Q

n

is

the transition relation. Sometimes, we will view � as a fun
tion from Q��

to 2

Q

n

and write �(q; �) for the set fq j (q; �;q) 2 �g. A run of A on a tree

t is a n-ary in�nite tree r over Q su
h that

(r(p); t(p); (r(p1); : : : ; r(pn))) 2 �

for every p 2 [n℄

�

. The automaton A a

epts t i� there is a run r of A on

t su
h that r(�) 2 I. The set L(A) := ft j A a

epts tg is the language

a

epted by A.

5



Sin
e looping tree automata are spe
ial B�u
hi tree automata, emptiness

of their a

epted language 
an e�e
tively be tested using the well-known

(quadrati
) emptiness test for B�u
hi automata [17℄. However, for looping

tree automata this algorithm 
an be spe
ialized into a simpler (linear) one.

Though this is well-known in the automata theory 
ommunity, there appears

to be no referen
e for the result.

Intuitively, the algorithm works by 
omputing ina
tive states. A state

q 2 Q is a
tive i� there exists a tree t and a run of A on t in whi
h q o

urs;

otherwise, q is ina
tive. It is easy to see that a looping tree automaton a

epts

at least one tree i� it has an a
tive initial state. How 
an the set of ina
tive

states be 
omputed? Obviously, a state from whi
h no su

essor states are

rea
hable is ina
tive. Moreover, a state is ina
tive if every transition possible

from that state involves an ina
tive state. Thus, one 
an start with the set

Q

0

:= fq 2 Q j 8� 2 �:�(q; �) = ;g

of obviously ina
tive states, and then propagate ina
tiveness through the

transition relation. We formalize this propagation pro
ess in a way that

allows for an easy formulation of our main results.

A derivation of the emptiness test is a sequen
e Q

0

B Q

1

B : : : B Q

k

su
h that Q

i

� Q and Q

i

B Q

i+1

i� Q

i+1

= Q

i

[ fqg with

q 2 fq

0

2 Q j 8� 2 �:8(q

1

; : : : ; q

n

) 2 �(q; �):9j:q

j

2 Q

i

g:

We write Q

0

B

�

P i� there is a k 2 N and a derivation Q

0

B : : : B Q

k

with

P = Q

k

. The emptiness test answers \L(A) = ;" i� there exists a set of

states P su
h that Q

0

B

�

P and I � P .

Note that Q B P implies Q � P and that Q � Q

0

and Q B P imply

Q

0

B

�

P . Consequently, the 
losure Q

B

0

of Q

0

under B, de�ned by Q

B

0

=:

S

fP j Q

0

B Pg, 
an be 
al
ulated starting with Q

0

, and su

essively adding

states q to the 
urrent set Q

i

su
h that Q

i

B Q

i

[ fqg and q 62 Q

i

, until

no more states 
an be added. It is easy to see that this 
losure 
onsists of

the set of ina
tive states, and thus L(A) = ; i� I � Q

B

0

. As des
ribed until

now, this algorithm runs in time polynomial in the number of states. By

using 
lever data stru
tures and a propagation algorithm similar to the one

for satis�ability of propositional Horn formulae [7℄, one 
an in fa
t obtain a

linear emptiness test for looping tree automata.
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3 Automata, Modal Formulae, and the In-

verse Cal
ulus

We �rst des
ribe how to de
ide satis�ability in K using the automata ap-

proa
h and the inverse method, respe
tively. Then we show that both ap-

proa
hes are 
losely 
onne
ted.

3.1 Automata and Modal Formulae

Given a K-formulaG, we de�ne an automatonA

G

su
h that L(A

G

) = ; i�G is

not satis�able. In 
ontrast to the \standard" automata approa
h, the states

of our automaton A

G

will be subsets of �

G

rather than sets of subformulae

of G. Using paths instead of subformulae is mostly a matter of notation.

We also require the states to satisfy additional properties (i.e., we do not

allow for arbitrary subsets of �

G

). This makes the proof of 
orre
tness of the

automata approa
h only slightly more 
ompli
ated, and it allows us to treat

some important optimisations of the inverse 
al
ulus within our framework.

The next de�nition introdu
es these properties.

De�nition 2 (Propositionally expanded, 
lash) Let G be a K-formula

in NNF, �

G

the set of G-paths, and � � �

G

. An ^-path � 2 � is propo-

sitionally expanded in � i� f�^

l

; �^

r

g � �. An _-path � 2 � is proposi-

tionally expanded in � i� f�_

l

; �_

r

g \ � 6= ;. The set � is propositionally

expanded i� every _̂-path � 2 � is propositionally expanded in �. We use

\p.e." as an abbreviation for \propositionally expanded".

The set �

0

is an expansion of the set � if � � �

0

, �

0

is p.e. and �

0

is

minimal w.r.t. set in
lusion with these properties. For a set �, we de�ne the

set of its expansions as hh�ii := f�

0

j �

0

is an expansion of �g.

� 
ontains a 
lash i� there are two paths �

1

; �

2

2 � su
h that Gj

�

1

= p

and Gj

�

2

= :p for a propositional variable p. Otherwise, � is 
alled 
lash-

free.

For a set of paths 	, the set hh	ii 
an e�e
tively be 
onstru
ted by su

es-

sively adding paths required by the de�nition of p.e. A formal 
onstru
tion

of the 
losure 
an be found in the proof of Lemma 4. Note that ; is p.e.,


lash-free, and hh;ii = f;g.
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De�nition 3 (Formula Automaton) For a K-formula G in NNF, we �x

an arbitrary enumeration f�

1

; : : : ; �

n

g of the 3-paths in �

G

. The n-ary

looping automaton A

G

is de�ned by A

G

:= (Q

G

;�

G

; hhf�gii;�

G

), where Q

G

:=

�

G

:= f� � �

G

j � is p.e.g and the transition relation �

G

is de�ned as

follows:

� �

G


ontains only tuples of the form (�;�; : : : ).

� If � is 
lash-free, then we de�ne �

G

(�;�) := hh	

1

ii � � � � � hh	

n

ii,

where

	

i

=

(

f�

i

3g [ f�2 j � 2 � is a 2-path g if �

i

2 �

; else

� If � 
ontains a 
lash, then �

G

(�;�) = ;, i.e., there is no transition

from �.

Note, that this de�nition implies �

G

(;; ;) = f(;; : : : ; ;)g and only states

with a 
lash have no su

essor states.

Theorem 1 For a K-formula G, G is satis�able i� L(A

G

) 6= ;.

This theorem 
an be proved by showing that i) every tree a

epted by A

G

indu
es a model of G; and ii) every modelM of G 
an be turned into a tree

a

epted by A

G

by a) unraveling M into a tree model T for G; b) labeling

every world of T with a suitable p.e. set depending on the formulae that

hold in this world; and 
) padding \holes" in T with ;.

Proof. Let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in �

G

.

For the if -dire
tion let L(A

G

) 6= ;, t; r : [n℄

�

! f� � �

G

j � is p.e.g a

tree that is a

epted by A

G

and a 
orresponding run of A

G

. By 
onstru
tion

of A

G

, t(w) = r(w) for every w 2 [n℄

�

. We 
onstru
t a Kripke model M =

(W;R; V ) from t by setting

W = fw 2 [n℄

�

j t(w) 6= ;g

R = f(w;wi) 2 W �W j i 2 [n℄g

V = �P:fp 2 W j 9� 2 t(w):Gj

�

= Pg for all propositional atoms P

Claim. For all w 2 W , if � 2 t(w) then M; w j= Gj

�

.

8



Proof of the 
laim. The 
laim is proved by indu
tion on the stru
ture of K-

formulae. Let w 2 W be a world and � 2 �

G

be a path su
h that � 2 t(w).

� if Gj

�

= P is a propositional atom and w 2 W , then w 2 V (P ) and

hen
e M; w j= Gj

�

.

� if Gj

�

= :P is a negated propositional atom, then, sin
e t(w) is 
lash

free, there is no �

0

2 t(w) su
h that Gj

�

0

= P . Thus, w 62 V (P ) and

hen
e M; w j= :P .

� ifGj

�

= F

1

^F

2

then � is an ^-path, and sin
e t(w) is p.e., f�^

l

; �^

r

g �

t(w). By indu
tion, M; w j= Gj

�^

�

and hen
e M; w j= Gj

�

.

� if Gj

�

= F

1

_F

2

then � is an _-path, and sin
e t(w) is p.e., f�_

l

; �_

r

g\

t(w) 6= ;. By indu
tion, M; w j= Gj

�_

l

or M; w j= Gj

�_

r

and hen
e

M; w j= Gj

�

.

� if Gj

�

= 3F then � is a 3-path and, w.o.l.g., assume � = �

i

. Sin
e

�

i

2 r(w), �

i

3 2 r(wi) = t(wi) holds and hen
e wi 2 W and (w;wi) 2

R. By indu
tion, we have thatM; wi j= Gj

�

i

3

and hen
eM; w j= Gj

�

i

.

� if Gj

�

= 2F and (w;w

0

) 2 R then w

0

= wi for some i 2 [n℄ and t(wi) 6=

; holds and by 
onstru
tion of A

G

, this implies �2 2 r(wi) = t(wi).

By indu
tion, this impliesM; wi j= Gj

�2

and sin
e wi = w

0

and w

0

has

been 
hosen arbitrarily, M; w j= Gj

�

.

This �nishes the proof of the 
laim. Sin
e t(�) = r(�) 2 hhf�gii and hen
e

� 2 t(�), M; � j= Gj

�

and G = Gj

�

is satis�able.

For the only if -dire
tion, we �rst show an auxiliary 
laim: for a set

	 � �

G

we de�ne M; w j= 	 i� M; w j= Gj

�

for every � 2 	.

Claim. If 	 � �

G

and w 2 W su
h thatM; w j= 	, then there is a � 2 hh	ii

su
h that M; w j= �.

Proof of the 
laim. Let 	 � �

G

and w 2 W su
h that M; w j= 	. We will

show how to 
onstru
t an expansion of 	 with the desired property. If 	 is

already p.e., then 	 2 hh	ii and we are done. If 	 is not p.e. then let � 2 	

be a _̂-path that is not p.e. in 	.

� If � is a ^-path then Gj

�

= F

1

^F

2

and sin
eM; w j= Gj

�

, alsoM; w j=

F

1

= Gj

�^

l

and M; w j= F

2

= Gj

�^

r

. Hen
e M; w j= 	 [ f�^

l

; �^

r

g

9



and 	

0

= 	 [ f�^

l

; �^

r

g is a set with M; w j= 	

0

that is\one step


loser" to being p.e. than 	.

� If � is a _-path then Gj

�

= F

1

_ F

2

and sin
e M; w j= Gj

�

, also

M; w j= F

1

= Gj

�_

l

or M; w j= F

2

= Gj

�_

r

. Hen
e M; w j= 	[ f�_

l

g

or M; w j= 	 [ f�_

r

g and hen
e 
an obtain a set 	

0

with M; w j= 	

0

that is again \one step 
lose" to being p.e. than 	.

Restarting this pro
ess with 	 = 	

0

eventually yields an expansion � of

the initial set 	 with M; w j= �, whi
h proves the 
laim.

Let M = (W;R; V ) be a model for G with w 2 W su
h that M; w j= G.

From M we 
onstru
t a tree that is a

epted by A

G

. Using this 
laim,

we indu
tively de�ne a tree t a

epted by A

G

. To this purpose, we also

indu
tively de�ne a fun
tion f : [n℄

�

! W su
h that, if M; f(p) j= t(p) for

all p.

We start by setting f(�) = w for a w 2 W withM; w j= G. and t(�) = �

for a � 2 hhf�gii su
h that M; w j= �. From the 
laim we have that su
h a

set � exists be
ause M; w j= G = Gj

�

.

If f(p) and t(p) are already de�ned, then, for i 2 [n℄, we de�ne f(pi) and

t(pi) as follows:

� if �

i

2 t(p) then M; f(p) j= Gj

�

i

and hen
e there is a w

0

2 W su
h

that (f(p); w

0

) 2 R and M; w

0

j= Gj

�

i

3

. If � 2 t(p) is a 2-path,

then also M; w

0

j= Gj

�2

holds. Hen
e M; w

0

j= f�

i

3g [ f�2 j � 2

t(p) is a 2-path g. We set f(pi) = w

0

and t(pi) = � for a � 2 hhf�

i

3g[

f�2 j � 2 t(p) is a 2-path gii with M; w

0

j= �, whi
h exist by the


laim.

� if �

i

62 t(p), then we set f(pi) = w for an arbitrary w 2 W and

t(pi) = ;.

In both 
ases, we have de�ne f(pi) and t(pi) su
h that M; f(pi) j= t(pi). It

is easy to see that t is a

epted by A

G

with the run r = t. Hen
e L(A

G

) 6= ;

whi
h is what we needed to show.

Together with the emptiness test for looping tree automata, Theorem 1

yields a de
ision pro
edure for K-satis�ability. To test a K-formula G for

unsatis�ability, 
onstru
t A

G

and test whether L(A

G

) = ; holds using the

emptiness test for looping tree automata: L(A

G

) = ; i� hhf�gii � Q

B

0

, where

10



Q

0

� Q

G

is the set of states 
ontaining a 
lash. The following is a derivation

of a superset of hhf�gii from Q

0

for the example formula from Figure 1:

Q

0

= ff�

5

; �

6

; �

7

; �

8

g; f�

5

; �

6

; �

7

; �

9

g

| {z }

= hh�

5

;�

6

;�

7

ii

; : : : g B Q

0

[ ff�

0

; �

1

; �

2

; �

3

; �

4

gg

| {z }

= hhf�gii

3.2 The Inverse Cal
ulus

In the following, we introdu
e the inverse 
al
ulus for K. We stay 
lose to

the notation and terminology used in [19℄.

A sequent is a subset of �

G

. Sequents will be denoted by 
apital greek

letters. The union of two sequents � and � is denote by �;�. If � is a sequent

and � 2 �

G

then we denote � [ f�g by �; �. If � is a sequent that 
ontains

only 2-paths then we write �2 to denote the sequent f�2 j � 2 �g. Sin
e

states of A

G

are also subsets of �

G

and hen
e sequents, we will later on use

the same notational 
onventions for states as for sequents.

De�nition 4 (The inverse path 
al
ulus) Let G be a formula in NNF

and �

G

the set of paths of G. Axioms of the inverse 
al
ulus are all sequents

f�

1

; �

2

g su
h that Gj

�

1

= p and Gj

�

2

= :p for some propositional variable

p. The rules of the inverse 
al
ulus are given in Figure 2, where all paths

o

urring in a sequent are G-paths and, for every 3

+

inferen
e, � is a 3-path.

We refer to this 
al
ulus by IC

G

.

1

We de�ne S

0

:= f� j � is an axiom g. A derivation of IC

G

is a sequen
e

of sets of sequents S

0

` � � � ` S

m

where S

i

` S

i+1

i� S

i+1

= S

i

[f�g su
h that

there exists sequents �

1

; : : :�

k

2 S

i

and

�

1

: : : �

k

�

is an inferen
e.

We write S

0

`

�

S i� there is a derivation S

0

` � � � ` S

m

with S = S

m

. The


losure S

`

0

of S

0

under ` is de�ned by S

`

0

=

S

fS j S

0

`

�

Sg. Again, the


losure 
an e�e
tively be 
omputed by starting with S

0

and then adding

sequents that 
an be obtained by an inferen
e until no more new sequents


an be added.

As shown in [19℄, the 
omputation of the 
losure yields a de
ision pro
e-

dure for K-satis�ability:

Fa
t 1 G is unsatis�able i� f�g 2 S

`

0

.

1

G appears in the subs
ript be
ause the 
al
ulus is highly dependent of the input

formula G: only G-paths 
an be generated by IC

G

.

11



(_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

(^

l

)

�; �^

l

�; �

(^

r

)

�; �^

r

�; �

(3)

�2; �3

�; �

(3

+

)

�2

�; �

Figure 2: Inferen
e rules of IC

G

Figure 3 shows the inferen
es of IC

G

that lead to �

0

= � for the example

formula from Figure 1.

3.3 Conne
ting the Two Approa
hes

The results shown in this subse
tion imply that IC

G


an be viewed as an

on-the-
y implementation of the emptiness for A

G

. In addition to generat-

ing states on-the-
y, states are also represented in a 
ompa
t manner: one

sequent generated by IC

G

represents several states of A

G

.

De�nition 5 For the formula automaton A

G

with states Q

G

and a sequent

� � �

G

we de�ne [[�℄℄ := f� 2 Q

G

j � � �g, and for a set S of sequents we

de�ne [[S℄℄ :=

S

�2S

[[�℄℄.

The following theorem, whi
h is one of the main 
ontributions of this

paper, establishes the 
orresponden
e between the emptiness test and IC

G

.

Theorem 2 (IC

G

and the emptiness test mutually simulate ea
h other)

Let Q

0

, S

0

, B, and ` be de�ned as above.

1. Let Q be a set of states su
h that Q

0

B

�

Q. Then there exists a set of

sequents S with S

0

`

�

S and Q � [[S℄℄.

2. Let S be a set of sequents su
h that S

0

`

�

S. Then there exists a set of

states Q � Q

G

with Q

0

B

�

Q and [[S℄℄ � Q.

The �rst part of the theorem shows that IC

G


an simulate ea
h 
omputation of

the emptiness test for A

G

. The set of states represented by the set of sequents


omputed by IC

G

may be larger than the one 
omputed by a parti
ular

derivation of the emptiness test. However, the se
ond part of the theorem

implies that all these states are in fa
t ina
tive sin
e a possibly larger set

of states 
an also be 
omputed by a derivation of the emptiness test. In

parti
ular, the theorem implies that IC

G


an be used to 
al
ulate a 
ompa
t

12
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^

l

3; ^

r

^

r

2_

r

j ^

r

^

l

2; ^

r

^

r

2_

l

(3)

^

l

3; ^

r

^

l

2; ;^

r

^

r

2

(^

r

)

^

l

; ^

r

^

l

; ^

r

^

r

(^

l

)

^

l

; ^

r

; ^

r

^

l

(^

r

)

^

l

; ^

r

(^

l

)

�; ^

l

�

Figure 3: An example of inferen
es in IC

G

representation of Q

B

0

. This is an on-the-
y 
omputation sin
e A

G

is never


onstru
ted expli
itly.

Corollary 1 Q

B

0

= [[S

`

0

℄℄.

Proof. If � 2 Q

B

0

then there exists a set of states Q su
h that Q

0

B

�

Q and

� 2 Q. By Theorem 2.1, there exists a set of sequents S with S

0

`

�

S and

Q � [[S℄℄. Hen
e � 2 [[S

`

0

℄℄. For the 
onverse dire
tion, if � 2 [[S

`

0

℄℄ then there

exists a set of sequents S with S

0

`

�

S and � 2 [[S℄℄. By Theorem 2.2, there

exists a set of states Q with Q

0

B

�

Q and [[S℄℄ � Q and hen
e � 2 Q

B

0

.

The proof of the se
ond part of Theorem 2 is the easier one. It is a


onsequen
e of the next three lemmata. First, observe that the two 
al
uli

have the same starting points.

Lemma 1 If S

0

is the set of axioms of IC

G

, and Q

0

is the set of states of

A

G

that have no su

essor states, then [[S

0

℄℄ = Q

0

.

Proof. The set S

0

is the set of all axioms i.e., the set of all 
lashes. Hen
e

[[S

0

℄℄ = f� j � 
ontains a 
lashg = Q

0

.

Se
ond, sin
e states are assumed to be p.e., propositional inferen
es of

IC

G

do not 
hange the set of states represented by the sequents.

Lemma 2 Let S ` T be a derivation of IC

G

that employs a ^

l

-, ^

r

-, or a

_-inferen
e. Then [[S℄℄ = [[T ℄℄.

13



Proof. Sin
e S � T , [[S℄℄ � [[T ℄℄ holds immediately. To show [[T ℄℄ � [[S℄℄, we

distinguish the di�erent inferen
es used to obtain T from S:

� If the employed inferen
e is (^

�

)

�; �^

�

�; �

and T = S [ f�; �g with

�; �^

�

2 S. Then [[T ℄℄ = [[S℄℄ [ [[�; �℄℄. Let � 2 [[�; �℄℄. � is p.e. and

hen
e � 2 � implies �^

�

2 �. Thus, �; �^

�

� � and � 2 [[�; �^

�

℄℄ �

[[S℄℄.

� Assume that the employed inferen
e is (_)

�

l

; �_

l

�

r

;_

r

�

l

;�

r

; �

and T =

S [ f�

l

;�

r

; �g with �

l

; �_

l

2 S, �

r

;_

r

2 S. Then [[T ℄℄ = [[S℄℄ [

[[�

l

;�

r

; �℄℄. Let � 2 [[�

l

;�

r

; �℄℄. � is p.e. and hen
e, w.o.l.g., �_

l

2 �.

Thus, �

l

; �_

l

� � and � 2 [[�

l

; �_

l

℄℄ � [[S℄℄.

Third, modal inferen
es of IC

G


an be simulated by derivations of the

emptiness test.

Lemma 3 Let S ` T be derivation of IC

G

that employs a 3- or 3

+

-inferen
e.

If Q is a set of states with [[S℄℄ [Q

0

� Q then there exists a set of states P

with QB

�

P and [[T ℄℄ � P .

Proof. We only 
onsider the 3-inferen
e, the 
ase of a 3

+

-inferen
e is

analogous. If S ` T by an appli
ation of a 3-inferen
e, then T = S [ f�; �g

where � 
onsists only of 2-paths, � is a 3-path (w.o.l.g., we assume � =

�

i

, the i-th path in the enumeration of 3-paths in �

G

), �2; �

i

3 2 S and

(3)

�2; �

i

3

�; �

i

. Also, [[T ℄℄ = [[S℄℄ [ [[�; �

i

℄℄ holds.

Claim. Let � 2 [[�; �

i

℄℄ and R a set of states with [[�2; �

i

3℄℄[Q

0

� R. Then

there exists a derivation RB

�

R

0

with � 2 R

0

and [[�2; (�

i

3)℄℄ [Q

0

� R

0

Proof of the Claim. If � 
ontains a 
lash then � 2 Q

0

� R and nothing has

to be done. If � does not 
ontain a 
lash, then �

G

(�;�) = hh	

i

ii�� � ��hh	

n

ii

where the 	

i

are de�ned as in De�nition 3 and espe
ially, sin
e �

i

2 �,

hh	

i

ii = hhf�

i

3g [ f�2 j � 2 � is a 2-path g

| {z }

��2;�

i

3

ii � [[�2; �

i

3℄℄ � R

Sin
e all states in hh	

i

ii have been marked ina
tive, the emptiness test 
an

also mark � ina
tive and derive R B R [ f�g = R

0

, whi
h proves the 
laim.
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Using this 
laim, we prove the lemma as follows. Let �

i

; : : :�

k

be an

enumeration of [[�; �

i

℄℄. The set P

0

= Q satis�es the requirements of the


laim for R. Thus, we repeatedly use the 
laim and 
hain the derivations to

obtain a derivation Q = P

0

B P

1

B : : : B P

k

= P su
h that �

i

2 P

i

. Sin
e

the sets grow monotoni
ally, in the end [[�; �℄℄ � P holds, whi
h implies

[[T ℄℄ � P .

Given these lemmata, proving Theorem 2.2 is quite simple.

Proof of Theorem 2.2. The proof is by indu
tion on the length m of the

derivation S

0

` S

1

� � � ` S

m

= S of IC

G

. The base 
ase m = 0 is Lemma 1.

For the indu
tion step, S

i+1

is either inferred from S

i

using a propositional

inferen
e, whi
h is dealt with by Lemma 2, or by a modal inferen
e, whi
h is

dealt with by Lemma 3. Lemma 3 is appli
able sin
e, for every set of states

Q with Q

0

B

�

Q, Q

0

� Q.

Proving the �rst part of Theorem 2 is more involed be
ause of the 
al
u-

lation of the propositional expansions impli
it in the de�nition of A

G

.

Lemma 4 Let � � �

G

be a set of paths and S a set of sequents su
h that

hh�ii � [[S℄℄. Then there exists a set of sequents T with S`

�

T su
h that there

exists a sequent � 2 T with � � �.

Proof. If � is p.e., then this is immediate, as in this 
ase hh�ii = f�g � [[S℄℄.

If � is not p.e., then let sele
t be an arbitrary sele
tion fun
tion, i.e., a

fun
tion that maps every set 	 that is not p.e. to a _̂-path � 2 	 that is not

p.e. in 	. Let T

�

be the following, indu
tively de�ned tree:

� The root of T

�

is �.

� If a node 	 of T

�

is not p.e., then

{ if sele
t(	) = � is an ^-path, then 	 has the su

essor node

	; �^

l

; �^

r

and 	 is 
alled an ^-node.

{ if sele
t(	) = � is an _-path, then 	 has the su

essor nodes

	; �_

l

and 	; �_

l

and 	 is 
alled an _-node.

� If a node 	 of T

�

is p.e., then it is a leaf of the tree.
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If �_

l

62 �

l

or �_

r

62 �

r

, then �

l

� �

i+1

or �

r

� �

i+1

holds and hen
e

already T

i


ontains a sequent � with � � �

i+1

.

If �

l

= �

l

; �_

l

and �

r

= �

r

; �_

r

with �_

�

62 �

�

then IC

G


an use the

inferen
e

(_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

(3)

to derive T

i

` T

i

[ f�

l

;�

r

; �g = T

i+1

, and and �

l

;�

r

; � � �

i+1

holds

as follows: assume there is a �

0

2 �

l

;�

r

; � with �

0

62 �

i+1

. Sin
e

� 2 �

i+1

, w.o.l.g., �

0

2 �

l

. But then also �

l

6� �

i+1

; �_

l

would hold,

sin
e �

0

6= �_

l

be
ause �_

l

62 �

l

.

Pro
eeding in this manner, starting from T

0

= S, we 
an 
onstru
t a

derivation that yields a set T = T

k

of states 
ontaining a sequent � su
h

that � � �

`

= �.

Proof of Theorem 2.1. We show this by indu
tion on the number k of

steps in the derivation Q

0

B : : : B Q

k

= Q. Again, Lemma 1 yields the base


ase.

For the indu
tion step, let Q

0

B : : : B Q

i

B Q

i+1

= Q

i

[ f�g be a

derivation of the emptiness test and S

i

a set of sequents su
h that S `

�

S

i

and Q

i

� [[S

i

℄℄. Su
h a set exists by the indu
tion hypothesis be
ause the

derivation Q

0

B : : : B Q

i

is of length i. Now let Q

i

B Q

i

[ f�g = Q

i+1

be

the derivation of the emptiness test. If already � 2 Q

i

then Q

i+1

� [[S

i

℄℄ and

we are done.

If � 62 Q

i

, then Q

0

� Q

i

implies that �

G

(�;�) 6= ;. Sin
e ; is an a
tive

state, we know that ; 62 Q

i

, and for Q

i

B Q

i+1

to be a possible derivation

of the emptiness test, �

G

(�;�) = hh	

1

ii � � � � � hh	

n

ii 6= f(;; : : : ; ;)g must

hold, i.e., there must be a 	

i

6= ; su
h that hh	

i

ii � Q

i

� [[S

i

℄℄. Hen
e �

i

2 �

and 	

i

= f�

i

3g [ f�2 j � 2 � is a 2-pathg.

Lemma 4 yields the existen
e of a set of sequents T

i

with S

i

`

�

T 
ontaining

a sequent � with � � 	

i

. This sequent is either of the form � = �2; �

i

3 or

� = �2 for some � � �. In the former 
ase, IC

G


an use a 3-inferen
e

(3)

�2; �

i

3

�; �

i

17



and in the latter 
ase a 3

+

-inferen
e

(3

+

)

�2

�; �

i

to derive S

0

`

�

S

i

`

�

T ` T [ f�; �

i

g = S and � � [[�; �

i

℄℄ holds.

4 Optimizations

Sin
e the inverse 
al
ulus 
an be seen as an on-the-
y implementation of the

emptiness test, optimizations of the inverse 
al
ulus also yield optimizations

of the emptiness test. We use the 
onne
tion between the two approa
hes to

provide an easier proof of the fa
t that the optimizations of IC

G

introdu
ed

by Voronkov [19℄ do not destroy 
ompleteness of the 
al
ulus.

4.1 Unrea
hable states / redundant sequents

States that 
annot o

ur on any run starting with an initial state have no

e�e
t on the language a

epted by the automaton. We 
all su
h states un-

rea
hable. In the following, we will determine 
ertain types of unrea
hable

states.

De�nition 6 Let �; �

1

; �

2

2 �

G

.

� The modal length of � is the number of o

urren
es of 2 and 3 in �.

� �

1

; �

2

2 �

G

form a _-fork if �

1

= �_

l

�

0

1

and �

2

= �_

r

�

0

2

for some

�; �

0

1

; �

0

2

.

� �

1

; �

2

are 3-separated if �

1

= �

0

1

3�

00

1

and �

2

= �

0

2

3�

00

2

su
h that �

0

1

; �

0

2

have the same modal length and �

0

1

6= �

0

2

.

Lemma 5 Let A

G

be the formula automaton for a K-formula G in NNF

and � 2 Q. If � 
ontains a _-fork, two 3-separated paths, or two paths of

di�erent modal length, then � is unrea
hable.

The lemma shows that we 
an remove su
h states from A

G

without 
hanging

the a

epted language. Sequents 
ontaining a _-fork, two 3-separated paths,

or two paths of di�erent modal length represent only unrea
hable states,

and are thus redunant, i.e., inferen
es involving su
h sequents need not be


onsidered.
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De�nition 7 (Redu
ed automaton) Let

�

Q be the set of states of A

G

that


ontain a _-fork, two 3-separated paths, or two paths of di�erent modal

length. The redu
ed automaton A

0

G

= (Q

0

G

;�

G

; hhf�gii;�

0

G

) is de�ned by

Q

0

G

:= Q

G

n

�

Q and �

0

G

:= �

G

\ (Q

0

G

� �

G

�Q

0

G

� � � � �Q

0

G

):

Sin
e the states in

�

Q are unrea
hable, L(A

G

) = L(A

0

G

). From now on, we


onsider A

0

G

and de�ne [[�℄℄ relative to the states on A

0

G

: [[�℄℄ = f� 2 Q

0

G

j

� � �g.

4.2 G-orderings / redundant inferen
es

In the following, the appli
ability of the propositional inferen
es of the inverse


al
ulus will be restri
ted to those where the a�e
ted paths are maximal

w.r.t. a total ordering of �

G

. In order to maintain 
ompleteness, one 
annot


onsider arbitrary orderings in this 
ontext.

Two paths �

1

; �

3

are brothers i� there exists a _̂-path � su
h that �

1

=

�_̂

l

and �

3

= �_̂

r

or �

1

= �_̂

r

and �

3

= �_̂

l

.

De�nition 8 (G-ordering) Let G be a K-formula in NNF. A total ordering

� of �

G

is 
alled a G-ordering i�

1. �

1

� �

2

whenever

(a) the modal length of �

1

is stri
tly greater than the modal length of

�

2

; or

(b) �

1

; �

2

have the same modal length, the last symbol of �

1

is _̂

�

, and

the last symbol of �

2

is 2

�

; or

(
) �

1

; �

2

have the same modal length and �

2

is a pre�x of �

1

2. There is no path between brothers, i.e., there exist no G-paths �

1

; �

2

; �

3

su
h that �

1

� �

2

� �

3

and �

1

; �

3

are brothers.

For the example formula G of Figure 1, a G-ordering � 
an be de�ned by

setting �

9

� �

8

� � � � � �

1

� �

0

. Voronkov [19℄ shows that G-orderings exist

for every K-formula G in NNF. Using an arbitrary, but �xed G-ordering �,

the appli
ability of the propositional inferen
es is restri
ted as follows.

De�nition 9 (Optimized Inverse Cal
ulus) For a sequent � and a path

� we write � � � i� � � �

0

for every �

0

2 �.
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� An inferen
e (^

�

)

�; �^

�

�; �

respe
ts � i� �^

�

� �.

� An inferen
e (_)

�

l

; �_

l

�

r

; �_

r

�

l

;�

r

; �

respe
ts � i� �_

l

� �

l

and

�_

r

� �

r

.

� The 3- and 3

+

-inferen
es always respe
t �.

The optimized inverse 
al
ulus IC

�

G

works as IC

G

, but for ea
h derivation

S

0

` � � � ` S

k

the following restri
tions must hold:

� For every step S

i

` S

i+1

, the employed inferen
e respe
ts �, and

� S

i

must not 
ontain _-forks, 3-separated paths, or paths of di�erent

modal length.

To distinguish derivations of IC

G

and IC

�

G

, we will use the symbol `

�

in

derivations of IC

�

G

. In [19℄, 
orre
tness of IC

�

G

is shown.

Fa
t 2 ([19℄) Let G be a K-formula in NNF and � a G-ordering. Then G

is unsatis�able i� f�g 2 S

`

�

0

.

Using the 
orresponden
e between the inverse method and the emptiness

test of A

0

G

, we will now give an alternative, and in our opinion simpler, proof

of this fa
t. Sin
e IC

�

G

is merely a restri
tion of IC

G

, soundness (i.e., the

if-dire
tion of the fa
t) is immediate.

Completeness requires more work. In parti
ular, the proof of Lemma 4

needs to be re
onsidered sin
e the propositional inferen
es are now restri
ted:

we must show that the _̂-inferen
es employed in that proof respe
t (or 
an

be made to respe
t) �. To this purpose, we will follow [19℄ and introdu
e

the notion of �-
ompa
tness. For �-
ompa
t sets, we 
an be sure that all

appli
able _̂-inferen
es respe
t �. To ensure that all the sets �

i


onstru
ted

in the proof of Lemma 4 are �-
ompa
t, we again follow Voronkov and

employ a spe
ial sele
tion strategy.

De�nition 10 (�-
ompa
t, sele
t

�

) Let G be a K-formula in NNF and

� a G-ordering. An arbitrary set � � �

G

is �-
ompa
t i�, for every _̂-path

� 2 � that is not p.e. in �, �_̂

�

� �.

The sele
tion fun
tion sele
t

�

is de�ned as follows: if � is not p.e., then

let f�

1

; : : : ; �

m

g be the set of _̂-paths that are not p.e. in �. From this
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set, sele
t

�

sele
ts the path �

i

su
h that the paths �

i

_̂

�

are the two smallest

elements in f�

j

_̂

�

j 1 � j � mg.

The fun
tion sele
t

�

is well-de�ned be
ause of Condition (2) of G-orderings.

The de�nition of 
ompa
t ensures that _̂-inferen
es appli
able to not propo-

sitionally expanded sequents respe
t �.

Lemma 6 Let G be a K-formula in NNF, � a G-ordering, and sele
t

�

the

sele
tion fun
tion as de�ned above. Let � = f�g or � = �2; �

i

3 with 2-

paths � and a 3-path �, all of equal modal length. If T

�

, as de�ned in the

proof of Lemma 4, is generated using sele
t

�

as sele
tion fun
tion, then every

node 	 of T

�

is �-
ompa
t.

Proof. The proof is similar to the proof of Lemma 5.8.3 in [19℄. It is given

by indu
tion on the depths of the node 	 in the tree T

�

. For the root �

there are two possibilities. If � = f�g and � is a _̂-path, then _̂

l

and _̂

r

have

the same modal length as � and _̂

�

� � by Condition (1
) of G-orderings. If

� = �2; �

i

3 and � 2 � is a _̂-path, then �_̂

�

� � holds by Condition (1b)

of G-orderings be
ause the last symbol of every path in � is 2

�

.

For the indu
tion step, let 	 be a node in T

�

whi
h we have already

shown to be �-
ompa
t. We show that then also its su

essor nodes (if any)

are �-
ompa
t.

� If 	 is an ^-node with sele
ted ^-path � 2 	, then the su

essor node

of 	 is 	

0

= 	; �^

l

; �^

r

. Let �

0

2 �

0

be a _̂-path that is not p.e. in

�

0

. There are two possibilities:

{ �

0

= �^

�

. In this 
ase, sin
e �^

�

_̂

�

� �^

�

by Condition (1
) of

G-orderings and �^

�

� 	, �

0

_̂

�

� 	

0

holds.

{ �

0

6= �^

�

. Then, �

0

2 	 and �

0

6= � holds be
ause � is p.e. in

	

0

. Sin
e 	 is �-
ompa
t,  

0

_̂

�

� � for every � 2 	. It remains

to show that �

0

_̂

�

� �_̂

�

, whi
h follows from the fa
t that � was

sele
ted by sele
t

�

.

� If 	 is an _-path and the sele
ted _-path is � 2 	, then, w.o.l.g.,

� = 	; �_

l

. The same arguments as before apply.
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Given this lemma, it is easy to show that the 
onstru
tion employed in the

proof of Lemma 4 also works for IC

�

G

, provided that we restri
t the set � as

in Lemma 6:

Lemma 7 Let � = f�g or � = �2; �

i

3 with 2-paths � and a 3-path � all

of equal modal length and S a set of sequents su
h that hh�ii � [[S℄℄. Then

there exists a set of sequents T with S `

�

�

T su
h that there exists � 2 T with

� � �.

Proof. We use the same 
onstru
tion as in the proof of Lemma 4, but the

spe
ial sele
tion fun
tion sele
t

�

as above. From Lemma 6 we have that

all nodes �

i

in T

�

are �-
ompa
t. All we have to do is to make sure that

the employed inferen
es respe
t �. We refer to the inferen
es by number

assigned to them in the proof of Lemma 4.

(1) Sin
e �

i+1

is 
ompa
t and � 2 �

i+1

is not p.e. in �

i+1

, �^

l

� �

i+1

and hen
e �^

l

� � be
ause � � �

i+1

.

(2) W.l.o.g., assume �^

l

� �^

r

. (If this is not the 
ase, then reverse

the order of the two inferen
es.) Sin
e �

i+1

is 
ompa
t, � � �

i+1

and

� 2 �

i+1

is not p.e., �^

l

� � holds as well as �^

l

� �^

r

. Also �^

r

� �

holds, whi
h means that both inferen
es respe
t �.

(3) Sin
e �

i+1

is 
ompa
t and � 2 �

i+1

is not p.e. we have �_

�

� �

i+1

and

sin
e both �

l

and �

r

are subsets of �

i+1

, also �_

l

� �

l

and �_

r

� �

r

holds.

Alternative Proof of Fa
t 2. As mentioned before, soundness (the if-

dire
tion) is immediate. For the only-if-dire
tion, if G is not satis�able, then

L(A

0

G

) = ; and there is a set of states Q with Q

0

B

�

Q and hhf�gii � Q.

Using Lemma 7 we show that there is a derivation of IC

�

G

that simulates this

derivation, i.e., there is a set of sequents S with S

0

`

�

�

S and Q � [[S℄℄.

The proof is by indu
tion on the length m of the derivation Q

0

B : : : B

Q

m

= Q and is totally analogous to the proof of Theorem 2. The base 
ase is

Lemma 1, whi
h also holds for IC

�

G

and the redu
ed automaton. The indu
-

tion step uses Lemma 7 instead of Lemma 4, but this is the only di�eren
e.

Hen
e, Q

0

B

�

Q and hhf�gii � Q implies that there exist a derivation

S

0

`

�

�

S su
h that hhf�gii � [[S℄℄. Lemma 7 yields a derivation S `

�

�

T with

f�g 2 T � S

`

�

0

.
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5 Global axioms

When 
onsidering satis�ability of G w.r.t. the global axiom H, we must take

subformulae of G and H into a

ount. We address subformulae using paths

in G and H.

De�nition 11 ((G;H)-Paths) For K-formulae G;H in NNF, the set of

(G;H)-paths �

G;H

is a subset of f�

G

; �

H

g�f_

l

;_

r

;^

l

;^

r

;2;3g

�

. The set

�

G;H

and the subformula (G;H)j

�

of G;H addressed by a path � 2 �

G;H

are de�ned indu
tively as follows:

� �

G

2 �

G;H

and (G;H)j

�

G

= G, and �

H

2 �

G;H

and (G;H)j

�

H

= H

� if � 2 �

G;H

and (G;H)j

�

= F

1

^F

2

then �^

l

; �^

r

2 �

G;H

, (G;H)j

�^

l

=

F

1

, (G;H)j

�^

r

= F

2

, and � is 
alled ^-path.

� The other 
ases are de�ned analogously (see also De�nition 1).

� �

G;H

is the smallest set that satis�es the previous 
onditions.

The de�nitions of p.e. and 
lash are extended to subsets of �

G;H

in the

obvious way, with the additional requirement that, for � 6= ; to be p.e.,

�

H

2 � must hold. This additional requirement enfor
es the global axiom.

De�nition 12 (Formula Automaton with Global Axioms) For K-for-

mulae G;H in NNF, let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in

�

G;H

. The n-ary looping automaton A

G;H

is de�ned by

A

G

:= (Q

G;H

;�

G;H

; hhf�

G

gii;�

G;H

);

where Q

G;H

:= �

G;H

:= f� 2 �

G;H

j � is p.e.g and the transition relation

�

G;H

is de�ned as for the automaton A

G

in De�nition 3.

Theorem 3 G is satis�able w.r.t. the global axiom H i� L(A

G;H

) 6= ;.

Proof. The proof is totally analogous to the proof of Theorem 1. We use

the same 
onstru
tions for both dire
tions.

Let f�

1

; : : : ; �

n

g be an enumeration of the 3-paths in �

G;H

.
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For the if -dire
tion let L(A

G;H

) 6= ;, t; r : [n℄

�

! f� � �

G;H

j � is p.e.g

a tree that is a

epted by A

G;H

and a 
orresponding run of A

G;H

. By 
on-

stru
tion of A

G;H

, t(w) = r(w) for every w 2 [n℄

�

. We 
onstru
t a Kripke

model M = (W;R; V ) from t by setting

W = fw 2 [n℄

�

j t(w) 6= ;g

R = f(w;wi) 2 W �W j i 2 [n℄g

V = �P:fp 2 W j 9� 2 t(w):(G;H)j

�

= Pg for all propositional atoms P

Claim. For all w 2 W , if � 2 t(w) then M; w j= (G;H)j

�

.

Proof of the 
laim. The 
laim is proved by indu
tion on the stru
ture of K-

formulae. Let w 2 W be a world and � 2 �

G

be a path su
h that � 2 t(w).

� if (G;H)j

�

= P is a propositional atom and w 2 W , then w 2 V (P )

and hen
e M; w j= (G;H)j

�

.

� if (G;H)j

�

= :P is a negated propositional atom, then, sin
e t(w)

is 
lash free, there is no �

0

2 �

G;H

su
h that (G;H)j

�

0

= P . Thus,

w 62 V (P ) and hen
e M; w j= :P .

� if (G;H)j

�

= F

1

^ F

2

then � is an ^-paths, and sin
e t(w) is p.e.,

f�^

l

; �^

r

g � t(w). By indu
tion, M; w j= (G;H)j

�^

�

and hen
e

M; w j= (G;H)j

�

.

� if (G;H)j

�

= F

1

_ F

2

then � is an _-paths, and sin
e t(w) is p.e.,

f�_

l

; �_

r

g \ t(w) 6= ;. By indu
tion, M; w j= (G;H)j

�_

l

or M; w j=

(G;H)j

�_

r

and hen
e M; w j= (G;H)j

�

.

� if (G;H)j

�

= 3F then � is a 3-path and, w.o.l.g., assume � = �

i

.

Sin
e �

i

2 r(w), �

i

3 2 r(wi) = t(wi) holds and hen
e wi 2 W and

(w;wi) 2 R. By indu
tion, we have that M; wi j= (G;H)j

�

i

3

and

hen
e M; w j= (G;H)j

�

i

.

� if (G;H)j

�

= 2F and (w;w

0

) 2 R then w

0

= wi for some i 2 [n℄ and

t(wi) 6= ; holds and by 
onstru
tion of A

G;H

, this implies �2 2 r(wi) =

t(wi). By indu
tion, this impliesM; wi j= (G;H)j

�2

and sin
e wi = w

0

and w

0

has been 
hosen arbitrarily, M; w j= (G;H)j

�

.
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This �nishes the proof of the 
laim. Sin
e t(�) = r(�) 2 hhf�

G

gii and

hen
e �

G

2 t(�), M; � j= (G;H)j

�

G

and G = (G;H)j

�

G

is satis�able.

Also, sin
e t(w) is p.e., �

H

2 t(w) for every w 2 W and, by the 
laim,

M; w j= H = (G;H)j

�

H

holds for every w 2 W . Hen
e G is satis�able w.r.t.

the global axiom H.

For the only if -dire
tion, we �rst show an auxiliary 
laim: for a set

	 � �

G;H

we de�ne M; w j= 	 i� M; w j= (G;H)j

�

for every � 2 	.

Claim. If 	 � �

G;H

and w 2 W su
h that M; w j= 	, then there is a

� 2 hh	ii su
h that M; w j= �.

Proof of the 
laim. Let 	 � �

G;H

and w 2 W su
h that M; w j= 	. We will

show how to 
onstru
t an expansion of 	 with the desired property. If 	 is

already p.e., then 	 2 hh	ii and we are done.

� If 	 is not p.e. be
ause �

H

62 	 then, be
auseM; w j= H, 	

0

= 	[f�

H

g

is a set with M; w j= 	 that is \one step 
loser" to being p.e. than 	.

� If 	 is not p.e. and �

H

2 	 then let � 2 	 be a _̂-path that is not p.e.

in 	.

{ If � is a ^-path then (G;H)j

�

= F

1

^ F

2

and sin
e M; w j=

(G;H)j

�

, also M; w j= F

1

= (G;H)j

�^

l

and M; w j= F

2

=

(G;H)j

�^

r

. Hen
eM; w j= 	[f�^

l

; �^

r

g and 	

0

= 	[f�^

l

; �^

r

g

is a set with M; w j= 	

0

that is \one step 
loser" to being p.e.

than 	.

{ If � is a _-path then (G;H)j

�

= F

1

_ F

2

and sin
e M; w j=

(G;H)j

�

, alsoM; w j= F

1

= (G;H)j

�_

l

orM; w j= F

2

= (G;H)j

�_

r

.

Hen
e M; w j= 	 [ f�_

l

g or M; w j= 	 [ f�_

r

g and hen
e 
an

obtain a set 	

0

with M; w j= 	

0

that is again \one step 
lose" to

being p.e. than 	.

Restarting this pro
ess with 	 = 	

0

eventually yields an expansion � of

the initial set 	 with M; w j= �, whi
h proves the 
laim.

Let M = (W;R; V ) be a model for G with w 2 W su
h that M; w j= G.

From M we 
onstru
t a tree that is a

epted by A

G;H

. Using this 
laim,

we indu
tively de�ne a tree t a

epted by A

G;H

. To this purpose, we also

indu
tively de�ne a fun
tion f : [n℄

�

! W su
h that, if M; f(p) j= t(p) for

all p.

25



We start by setting f(�) = w for a w 2 W withM; w j= G. and t(�) = �

for a � 2 hhf�gii su
h that M; w j= �. From the 
laim we have that su
h a

set � exists be
ause M; w j= G = (G;H)j

�

.

If f(p) and t(p) are already de�ned, then, for i 2 [n℄, we de�ne f(pi) and

t(pi) as follows:

� if �

i

2 t(p) then M; f(p) j= (G;H)j

�

i

and hen
e there is a w

0

2 W

su
h that (f(p); w

0

) 2 R and M; w

0

j= (G;H)j

�

i

3

. If � 2 t(p) is a

2-path, then also M; w

0

j= (G;H)j

�2

holds. Hen
e M; w

0

j= f�

i

3g [

f�2 j � 2 t(p) is a 2-path g. We set f(pi) = w

0

and t(pi) = � for a

� 2 hhf�

i

3g [ f�2 j � 2 t(p) is a 2-path gii with M; w

0

j= �, whi
h

exist by the 
laim.

� if �

i

62 t(p), then we set f(pi) = w for an arbitrary w 2 W and t(pi) = ;

In both 
ases, we have de�ne f(pi) and t(pi) su
h thatM; f(pi) j= t(pi). It is

easy to see that t is a

epted by A

G;H

with the run r = t. Hen
e L(A

G;H

) 6= ;

whi
h is what we needed to show.

De�nition 13 (The Inverse Cal
ulus w. Global Axiom) Let G;H be

K- formula in NNF and �

G;H

the set of paths of G;H. Sequents are subsets

of �

G;H

, and operations on sequents are de�ned as before.

In addition to the inferen
es from Figure 2, the inverse 
al
ulus for G

w.r.t. the global axiom H, IC

ax

G;H

, employs the inferen
e

(ax)

�; �

H

�

:

From now on, [[�℄℄ is de�ned w.r.t. the states of A

G;H

, i.e., [[�℄℄ := f� 2

Q

G;H

j � � �g.

Theorem 4 (IC

ax

G;H

and the emptiness test for A

G;H

simulate ea
h other)

Let `

ax

denote derivation steps of IC

ax

G;H

, and B derivation steps of the empti-

ness test for A

G;H

.

1. Let Q � Q

G;H

be a set of states su
h that Q

0

B

�

Q. Then there exists a

set of sequents S with S

0

`

ax

�

S and Q � [[S℄℄.

2. Let S be a set of sequents su
h that S

0

`

ax

�

S. Then there exists a set of

states Q � Q

G

with Q

0

B

�

Q and [[S℄℄ � Q.
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Lemma 1, 2, and 3, restated for A

G;H

and IC

ax

G;H

, 
an be shown as before.

The following lemma deals with the ax-inferen
e of IC

ax

G;H

.

Lemma 8 Let S B T be a derivation of IC

ax

G;H

that employs an ax-inferen
e.

Then [[S℄℄ = [[T ℄℄.

Proof. Let T = S [f�g with f�; �

H

g 2 S. Then we know that (ax)

�; �

H

�

.

[[T ℄℄ = [[S℄℄ [ [[�℄℄. Sin
e S � T , [[S℄℄ � [[T ℄℄ holds immediately. If � 2 [[�℄℄,

then, sin
e � is p.e., �

H

2 � and � 2 [[�; �

H

℄℄ � [[S℄℄.

The proof of Theorem 4.2 is now analogous to the proof of Theorem 2.2.

For the proof of Theorem 4.1, Lemma 4 needs to be re-proved be
ause the


hange in the de�nition of p.e. now also implies that �

H

2 � holds for every

set � 2 hh	ii for any 	 6= ; (see Lemma 9). This is where the new inferen
e ax


omes into play. In all other respe
ts, the proof of Theorem 4.1 is analogous

to the proof of Theorem 2.1.

Lemma 9 Let � � �

G

a set of paths and S a set of sequents su
h that

hh�ii � [[S℄℄. Then there exists a set of sequents T with S `

ax

�

T su
h that

there exists � 2 T with � � �.

Proof. If �

H

2 � than we 
an use the same 
onstru
tion used in the proof

of Lemma 4 to 
onstru
t the set T su
h that S `

ax

�

T and there is a � 2 T

with � � �.

If �

H

62 �, then set 	 = �; �

H

and again use the 
onstru
tion from the

proof of Lemma 4 to 
onstru
t a set T su
h that S`

ax

�

T and there is a � 2 T

with � � 	. If �

H

62 � then we are done sin
e then also � � �. If � = �; �

H

for some � with �

H

62 �, then � � � and T `

ax

T [ f�g 
an be derived by

IC

ax

G;H

using the inferen
e (ax)

�; �

H

�

.

Corollary 2 IC

ax

G;H

yields an ExpTime de
ision pro
edure for satis�ability

w.r.t. global axioms in K.

The following algorithm yields the desired pro
edure:
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Algorithm 1 Let G;H be K-formulae in NNF. To test satis�ability of G

w.r.t. H, 
al
ulate S

`

ax

0

. If f;; f�

G

gg\S

`

ax

0

6= ;, then answer \not satis�able,"

and \satis�able" otherwise.

Corre
tness of this algorithm follows from Theorem 3 and 4. If G is not

satis�able w.r.t. H, then L(A

G;H

) = ;, and there exists a set of states Q

with Q

0

B

�

Q and hhf�

G

gii � Q. Thus, there exists a set of sequents S with

S

0

`

ax

�

S su
h that Q � [[S℄℄. With (the appropriately reformulated) Lemma 4

there exists a set of sequents T with S `

ax

�

T su
h that there is a sequent

� 2 T with � � f�

G

g. Consequently, � = ; or � = f�

G

g.

Sin
e S

0

`

ax

�

S

`

ax

0

, there exists a set of (ina
tive) states Q su
h that Q

0

B

�

Q

and [[S

`

ax

0

℄℄ � Q. Sin
e hhf�

G

gii � [[f�

G

g℄℄ � [[;℄℄, we know that f;; f�

G

gg \

S

`

ax

0

6= ; implies hhf�

G

gii � Q. Consequently, L(A

G;H

) = ; and thus G is not

satis�able w.r.t. H.

For the 
omplexity, note that there are only exponentially many sequents.

Consequently, it is easy to see that the saturation pro
ess that leads to S

`

ax

0


an be realized in time exponential in the size of the input formulae.

6 Future Work

There are several interesting dire
tions in whi
h to 
ontinue this work. First,

satis�ability in K (without global axioms) is PSpa
e-
omplete whereas the

inverse method yields only an ExpTime-algorithm. Can suitable optimiza-

tions turn this into a PSpa
e-pro
edure? Se
ond, 
an the optimizations


onsidered in Se
tion 4 be extended to the inverse 
al
ulus with global ax-

ioms? Third, Voronkov 
onsiders additional optimizations. Can they also be

handled within our framework? Finally, 
an the 
orresponden
e between the

automata approa
h and the inverse method be used to obtain inverse 
al
uli

and 
orre
tness proofs for other modal or des
ription logi
s?
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