
Using Human Language Technology for
Automatic Annotation and Indexing of Digital

Library Content

Kalina Bontcheva, Diana Maynard, Hamish Cunningham, and Horacio Saggion

Dept of Computer Science, University of Sheffield,
211 Portobello St, Sheffield, UK S1 4DP

{kalina,diana,hamish,saggion}@dcs.shef.ac.uk

Abstract. In this paper we show how we used robust human language
technology, such as our domain-independent and customisable named
entity recogniser, for automatic content annotation and indexing in two
digital library applications. Each of these applications posed a unique
challenge: one required adapting the language processing components to
the non-standard written conventions of 18th century English, while the
other presented the challenge of processing material in multiple modali-
ties. This reusable technology could also form the basis for the creation
of computational tools for the study of cultural heritage languages, such
as Ancient Greek and Latin.

1 Introduction

As digital libraries grow in size and coverage, so does the need for automatic con-
tent annotation and indexing. Recent advances in human language technologies
like named entity recognition, information extraction, and summarisation have
made it possible to create automatically metadata (e.g., extract authors, titles)
and document summaries, as well as annotate and index documents with infor-
mation about persons, locations, dates, etc. These advances have been seen both
in the quality of the results and in the robustness of the software solutions avail-
able. An increased acceptance of the importance of engineering to the successful
application of HLT has led to more predictable systems that can realistically be
technology providers for Digital Library systems (which have high reusability
and portability requirements). In the digital library context, especially cultural
digital libraries (e.g., [8]), language technology can offer new ways of accessing
the collections (e.g., through indexes of events), as well as lowering the costs
of annotating documents with metadata and other relevant information. While
fully-automatic solutions might not be always possible or practical, HLT can
frequently be used to bootstrap these laborious tasks.

In this paper we show how we used such technologies for automatic content
annotation and indexing in two digital library applications: eighteenth century
court trials (OldBaileyIE) and a multilingual and multimodal collection on the
Euro2000 football tournament (MUMIS). Each of these applications posed a



unique challenge: the court trials required adapting the language processing com-
ponents to the non-standard written conventions of 18th century English, while
the football collection presented the challenge of indexing material in multiple
modalities - video, audio, semi-structured documents, and free text (newspaper
reports). In the OldBailey application, the digitised content had to be annotated
with various kinds of information, some of which was done automatically with
minimum adaptation of our general-purpose named entity recogniser, while the
rest was performed manually by human annotators. In MUMIS, the purpose was
to construct automatically an index of all entities and events, which would then
allow users to search the collection in novel ways, e.g., queries like ”show me all
goals by David Beckham in Euro2000”.

In both cases, we used as a basis our robust and customisable named entity
recogniser, which comes as part of ANNIE- A Nearly New Information Extrac-
tion system, distributed with the GATE language technology architecture and
development environment 1 [10, 13]. In OldBaileyIE we also used the graphical
environment of GATE, which allows manual annotation verification and correc-
tion to be carried out on the processed texts. In MUMIS, we used a full-blown
information extraction system, which contained the named entity recogniser as
one of its components. This was needed because the application needed to index
more complex data, than just entities.

2 Domain-Independent Named Entity Recognition

There is an increasing need for robust and general purpose tools capable of au-
tomatically annotating named entities in large volumes of text. The goal is to
offer good performance without any tuning for the particular domain and/or
text type and at the same time, to design the modules for easy customisation, if
the user decides to do so. In response to this challenge, we developed a domain-
independent Named Entity (NE) recognition system. It is capable of annotating
entities such as persons, organisations (e.g., companies, government bodies), lo-
cations, dates, percents, money amounts, addresses.

Most Information Extraction (IE) systems, e.g. [7, 1, 9] are designed to ex-
tract fixed types of information from documents in a specific language and do-
main. To increase suitability for end-user applications, IE systems need to be
easily customisable to new domains [17]. Driven by the MUC competitions (e.g.
[18, 19]), work on IE, and in particular on named entity recognition (NE), has
largely focused on narrow subdomains, such as newswires about terrorist attacks
(MUC-3 and MUC-4), and reports on air vehicle launches (MUC-7). In many
applications, however, the type of document and domain may be unknown, or a
system may be required which will process different types of documents without
the need for tuning.

1 GATE and ANNIE are available freely for download from http://gate.ac.uk.
A demo of the named entity recogniser is available online at
http://gate.ac.uk/annie/index.jsp.



Many existing IE systems have been successfully tuned to new domains and
applications - either manually or semi-automatically – but there have been few
advances in tackling the problem of making a single system robust enough to
forego this need. The adaptation of existing systems to new domains is hindered
by both ontology and rule bottlenecks. A substantial amount of knowledge is
needed, and its acquisition and application are non-trivial tasks.

For systems to deal successfully with unknown or multiple types of source
material, they must not only be able to cope with changes of domain, but also
with changes of genre. By this we mean different forms of media (e.g. emails,
transcribed spoken text, written text, web pages, output of OCR recognition),
text type (e.g. reports, letters, books, lists), and structure (e.g. layout options).
The genre of a text may therefore be influenced by a number of factors, such as
author, intended audience and degree of formality. For example, less formal texts
may not follow standard capitalisation, punctuation or even spelling formats.
Our NE system aims to identify the parameters relevant to the creation of a
name recognition system robust across these types of variability [13].

Using pattern matching for NE recognition requires the development of pat-
terns over multi-faceted structures that consider many different token proper-
ties (e.g orthography, morphology, part of speech information etc.). Traditional
pattern-matching languages such as PERL get “hopelessly long-winded and error
prone” [5], when used for such complex tasks. Therefore, attribute-value nota-
tions are normally used, that allow for conditions to refer to token attributes
arising from multiple analysis levels. Examples of such systems include the NEA
(Named Entity Analysis) rule-based system developed within the FACILE and
CONCERTO projects [6, 4, 15], and CPSL (Common Pattern Specification Lan-
guage) [2], from which the JAPE language was developed.

The named entity recognition modules are easily customisable, because they
are based on GATE’s open architecture and consist of manually created sets of
pattern-matching rules that can easily be extended to add new entity types, or
modified for new domains. The rule patterns are based on information produced
by earlier modules, which are responsible for segmenting the text into words (to-
kenisation) and sentences (sentence splitting), assignment of part-of-speech
information to words (POS tagging), and annotations of specific named entity
indicators (e.g., ‘Ltd.’, ‘Mr.’) (gazetteer lists). For example, the following rule
specifies that one or more words, starting with an uppercase letter, followed by
a company designator, should be annotated as an organisation.

Rule: OrgXKey (
({Token.kind == word, Token.orth == upperInitial})+
{Lookup.type == cdg}

) :orgName -->
:orgName.Organization

The Lookup annotations are created by the gazetteer lookup module, which
assigns pre-specified types to the given lists of strings (e.g., a company designator
list, person title list). These can be edited within GATE’s visual environment as



Fig. 1. Named Entities recognised by ANNIE

part of the customisation process. Modifying these lists is an easy task and was
successfully carried out by non-expert users.

Rule writing requires some knowledge of the JAPE pattern-matching lan-
guage [11] and ANNIE annotations. The pattern-matching language is based
on regular expressions over the annotations; when a sequence of annotations is
matched by the left-hand side pattern, then the right-hand side defines the type
of annotation to be added (Organization in the example case above).

Our experiences with different systems and users indicate that writing rules
to extract useful data from text is not conceptually difficult and can be learnt
after some training. GATE’s graphical environment allows visual inspection of
the annotations and their features, which makes rule writing easier. Also, the
types, attributes and values of the annotations produced by each module (e.g.,
tokeniser, part-of-speech tagger) are documented in GATE’s User Guide [11].

The application for which the NE task is designed clearly has an impact on
the development of Named Entity Recognition grammars. It can involve consid-
erable effort simply to adapt a grammar to a new domain or task, particulary if
different entity types are needed, or if the same entities have different structures
and syntactic behaviour in their new context. However, adding rules for new en-



tity types and changing some other rules for the needs of a new domain or text
type/genre, is less effort and time consumming than building everything from
scratch. This has been the focus of the MUSE system [14, 13], and the default IE
system (ANNIE) developed within GATE, which use general-purpose grammars
as a basis for developing application-specific ones.

Though the general-purpose grammars in these systems have been developed
with reusability in mind, they have originated from specific NE recognition appli-
cations. There is always some subset of a purpose-built NE recognition grammar
set, that is application independent; this part can be used as a basis for creating
a new grammar set for a new application, no matter how different one applica-
tion is from another. This set of “core” rules corresponds to the named entities
(person, organisation, location names) and fixed data structures (date, time and
monetary expressions), traditionally identified by any NE recognition system,
which are largely domain independent.

Other rule-based NE recognition systems such as Proteus [12] and FASTUS
[3] do not seem to have this flexibility of design, and therefore are much harder to
adapt to new domains and applications. Current performance of the NE recog-
nition system is around 90-95% Precision and Recall, which is similar to other
current systems.

In the following section we will discuss how the named-entity recogniser was
easily adapted to deal with the different capitalisation and language conventions
of 18th century English.

3 OldBailey - Semi-Automatic Annotation of a 18th
Century English Collection

The application required the following entity types to be recognised: Person,
Location, Occupation and Status.

3.1 Adapting the technology

There were two main ways in which the technology needed to be adapted. First,
the application required some new entity types to be identified, and some modi-
fications to the existing guidelines for annotation (for example, there was a new
entity type “social status”). Second, the resources needed to be modified to take
into account differences caused by the language used and the text type, such as
different spelling, capitalisation, punctuation, and some noisy input.

First, new gazetteer lists had to be added for status information (e.g. “wife”,
“spinster”, “Lord”, “Governor” ), since this entity type is not recognised in the
default gazetteer.

Second, because the texts dealt with some very specific locations in London,
such as “Addington Basin”, “Aldermanbury Postern”, “Cripplegate”, additions
had to be made to the lists of locations, and in particular, to the location key-
words. For example, words such as “Fink”, “Chain”, “Ax”, “Key”, “Workhouse”,
“Rents” etc. would not normally be associated with locations, but these were



commonly used in the 18th century (e.g. “Bennet Fink”. We also needed to
recognise facilities such as pubs as Locations, so new lists had to be added to
take these into consideration.

As far as people’s names were concerned, fewer changes needed to be made,
but one particular feature of the reporting style was that many first names were
abbreviated, e.g. “Benj.” for “Benjamin”, “Edw.” for “Edward”, etc. New entries
had to be made in the gazetteer lists for people’s first names to take this into
account.

Although we already had a list of occupations, many additions had to be
made to this, because there were some typical occupations of the 18th century
which are rare these days, such as “Black-shoe-boy”, “axle tree maker”, “bottled
porter dealer”.

Finally, we had to deal with orthographic variations, since the punctuation,
spelling and capitalisation were very inconsistent. For example, many proper
nouns were spelt both with initial capital letters and without, and sometimes
a hyphen was followed by a capital and sometimes by a lowercase letter. For
example, “Bread Street” was also found in the text as “Bread-Street”, “Bread-
street” and “Bread street”. These non-standard written conventions were dealt
with both in the gazetteer lists (e.g. by adding variations of words with and
without capital letters) and also in the grammar rules (for example, by looking
for strings ending in particular patterns such as “-maker”, “-draper”, “-keeper”,
“-broker”, with and without capital letters and hyphens.

Changing the gazetteer lists also meant making some changes to the grammar
rules to accommodate these. For example, new rules had to be written for the
new entity type “status”, and further rules had to be written to solve conflicts
with existing entity types. For example, “Baker” could be either an occupation or
a person’s name, so rules had to be written incorporating contextual information
in order to disambiguate the entities.

Below we show an example of a typical rule added to the grammar to take
account of the new gazetteer lists, which creates an annotation of type “Occu-
pation”. The rule matches a pattern consisting of any kind of word (recognised
by the tokeniser), followed by one of the entries in the gazetteer list for job keys
(words which typically indicate jobs, such as “-seller”). It then annotates this
pattern with the entity type “Occupation”, and gives it a feature “rule” with
value “OccupationKey”. The rule feature is simply used for debugging purposes,
so it is clear which particular rule has fired to create the annotation. This rule
would annotate a string such as “book-seller” or “potato-merchant”.

Rule: OccupationKey
Priority: 50
(
{Token.kind == word}
{Lookup.type == job_key}
):jobtitle
-->
:jobtitle.Occupation =



{rule = "OccupationKey"}

Most of the adaptation to the system lay in updating the gazetteer lists
and checking for conflicts between the new rules and lists, and existing ones.
This latter was mainly carried out by running the system on test texts and
correcting errors where they arose. The total adaptation time for the grammars
and gazetteer lists (by an experienced system developer) was approximately
one person-week. Further minor changes to the system were then made by the
non-expert system users from the Sheffield University’s Humanities Research
Institute, who are creating the digital collection.

3.2 The Annotation Correction Environment

Automatic named entity annotation systems are typically capable of capturing
between 85% and 95% of the entities in the texts (although these numbers are
sometimes closer to 100% for entities like dates and money amounts). Neverthe-
less, in certain applications, as was the case with the Old Bailey collection, it
is important to have all entities annotated correctly. This process involves two
tasks: deleting wrong annotations and adding new annotations for the entities
that have been missed. Still, because the named entity recogniser has already
annotated at least 85% of all entities, this task is much less time-consuming than
fully manual annotation.

Our users from the Humanities Institute used the visual annotation environ-
ment that comes with the GATE system. This environment makes the annotation
process as simple and quick as possible and yet allows the flexibility to add new
annotation types.

Wrong annotations are detected by the annotator visually, by inspecting the
highlighted text strings; the GATE environment uses different colours for the
different types of annotations (see Figure 2). To delete a wrong annotation,
the user right-clicks on the highlighted text and selects the type of annotation
they want deleted (there could be more than one annotations of different kinds
associated with the same string). For example, in Figure 2, the system wrongly
recognised ’15 Foot Wall’ as a location, because of a space in the digitised text,
which changed the original phrase ‘15 Foot Wallnut Plank’ to become ‘15 Foot
Wall nut Plank’2. GATE also offers a facility to delete all occurences of wrong
annotations, when they refer to the same entity. For example, if the House has
wrongly been identified as a location, all occurrences of this entity in the text
can be viewed and deleted by pressing the Delete key, when the entity is selected
in the Coreference data panel on the right (see Figure 3). In this way, the user
removes all occurrences with one action, rather than having to delete all these
annotations individually.

2 In 18th century English nouns were frequently capitalised. This example also demon-
strates that the digitised content contained noisy data, such as underscores, spaces,
etc.



Fig. 2. An Old Bailey example text from 1714

New annotations are added by selecting the text with the mouse (e.g., “William
Mills”) and then clicking on the desired annotation type (e.g., Person), which is
shown in the list of types on the right-hand-side (see Figure 2).

The annotation environment comes as standard with a number of pre-defined
annotation types (e.g., Person, Organization). New types can be defined and
made available in the annotation environment by specifying them in the XML
Schema language supported by W3C. For example, the schema for defining an
Occupation annotation type looks like:

// Occupation schema
<?xml version="1.0"?>
<schema
xmlns="http://www.w3.org/2000/10/XMLSchema">
<!-- XSchema deffinition for Occupation-->
<element name="Occupation">
</element>

</schema>

New schemas need to be created once for each application and shared by all users
who do the actual annotation. Typically the schemas are created by the software
support personnel, then they automatically appear in the visual environment,
so users only need to be trained to use them.

The GATE visual annotation environment can also be used independently
from the language processing tools. It offers the advantage of making the annota-
tion process independent from the particular document format used, e.g., XML.
Our experience with users from the humanities has shown that they find the
annotation task easier when it involves selecting text and associating types in a
visual environment, than when it requires writing XML markup. The colour cod-
ing scheme which associates different types of annotations with different colours



Fig. 3. Viewing and deleting all annotations for an entity



Fig. 4. The MUMIS interface

makes it easier for users to find and correct the annotations. Once the anno-
tation process is completed, the user only needs to save the document, which
automatically inserts the newly added markup in the appropriate format (e.g.,
HTML, XML).

4 MUMIS - Indexing and Search in Multiple Media

The MUMIS (MUltiMedia Indexing and Searching environment) system uses
Information Extraction (IE) components developed within GATE to produce
formal annotations about essential events in football video programme mate-
rial.3 The textual sources used for this project are taken from reports of the
Euro2000 Championships: semi-structured ticker reports that give a minute by
minute objective account of the match; match reports that also give a full ac-
count of the match but may be subjective; and comments that give general

3 http://mumis.vda.nl/, funded by the EC’s 5th Framework HLT programme under
grant number IST-1999-10651. Project partners: Universities of Twente, Nijmegen
and Sheffield, Esteam AB, VDA Ltd., DFKI.



information such as player profiles. These reports are drawn from a variety of
online media sources (BBC-online, Press Association, The Guardian, etc.). The
video material was indexed by running the IE system on the output of an auto-
matic speech recognition system. Information about the same event in multiple
sources is merged into a common index, which also contains references to the
video material, thus allowing direct access to the relevant part of the video.

The indexing task in this particular application is focused on the entities
and the events that occur in this domain, i.e., the aim is to enable users to
access only the relevant parts of the documents, which show a particular entity
and/or event of interest. Therefore, such information is collected for each docu-
ment, regardless of its modality, and used to create an index of all entities and
events that have occurred in the collection (e.g., red cards, goals). This kind of
“conceptual” indexing is complementary to the more general indexing problem
in digital libraries, where documents are typically indexed for access by author,
title, etc. One of the issues here is to determine whether or not a name has
been used to refer to the same entity in two different documents. For example,
Cambridge in one document might refer to Cambridge in England, while in the
other document it might refer to Cambridge, Massachusetts. These issues have
already been recognised in previous digital library research, not only in research
on human language technology, e.g., [8].

The indexed multimedia information is accessed via a menu-based user inter-
face (in Dutch, English, and German) (see Figure 4) which allows users to query
the indexed information and play video fragments matching the query (e.g., “all
fouls on Beckham”).

The domain-independent named entity recogniser was extended to recognise
domain-specific entities such as teams, players, and referee. Our philosophy of
clean separation between linguistic data and the algorithms that process it re-
sulted in a substantial saving of effort, since only new domain-specific data (i.e.,
names and grammar rules) had to be created, while the algorithms using them
remained unchanged. Further details on the adaptation process and on the use
of information extraction for multimedia indexing and search can found in [16].

5 Conclusion

In this paper we presented briefly the domain-independent portable named en-
tity recogniser developed as part of the ANNIE Information Extraction system.
ANNIE is intended to be useable in many different applications, on many dif-
ferent kinds of text and for many different purposes. Here we showed how it
can be applied for annotating (semi)-automatically digital library content and
also for indexing such content by entities and events. The system was built for
portability and offers a comprehensive support for documents in many different
formats, from badly-spelled lower case email messages to structured XML or
HTML pages to newswires. It is capable of dealing with noisy data and process-
ing of large data volumes (for further details on that see [10]). Finally, ANNIE
is also capable of processing and visualising multilingual documents, based on



Unicode [20], which makes it particularly suitable for digital library applications
which need to deal with content in languages other than English. For example,
it could be a basis for creation of computational tools for the study of cultural
heritage languages, such as Ancient Greek and Latin.

The GATE visual environment was designed originally to help researchers
develop HLT applications, and manual annotation facilities were needed as they
form an important part of the application-building process, i.e., the performance
evaluation. However, our experience with the OldBailey project has shown that
this environment could be used in the future as part of a tool specifically aimed
at digital libraries, which support the end user with the annotation task. In
the future, we hope to be able to undertake such research in collaboration with
interested digital library researchers.

References

1. D. Appelt. An Introduction to Information Extraction. Artificial Intelligence
Communications, 12(3):161–172, 1999.

2. D.E. Appelt. The Common Pattern Specification Language. Technical report, SRI
International, Artificial Intelligence Center, 1996.

3. E. R. Appelt, J.R. Hobbs, J. Bear, D. Israel, M. Kameyama, A. Kehler, D. Martin,
K. Myers, and M. Tyson. SRI International FASTUS system: MUC-6 Test Re-
sults and Analysis. In Proceedings of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann, California, 1995.

4. W. Black and F. Rinaldi. Facile pre-processor v3.0 - a user guide. Technical report,
Department of Language Engineering, UMIST, 2000.

5. W. Black, F. Rinaldi, and D. Mowatt. Facile: Description of the named entity
system used for muc-7. In Proceedings of the 7th MUC, 1998.

6. F. Ciravegna, A. Lavelli, N. Mana, J. Matiasek, L. Gilardoni, S. Mazza, M. Ferraro,
W. Black, F. Rinaldi, and D. Mowatt. Facile: Classifying texts integrating pattern
matching and information extraction. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI99), 1999.

7. J. Cowie and W. Lehnert. Information Extraction. Communications of the ACM,
39(1):80–91, 1996.

8. Gregory Crane, Robert F. Chavez, Anne Mahoney, Thomas L. Milbank, Jeffrey A.
Rydberg-Cox, David A. Smith, and Clifford E. Wulfman. Drudgery and deep
thought. Communications of the ACM, 44(5):34–40, 2001.

9. H. Cunningham. Information Extraction: a User Guide (revised version). Research
Memorandum CS–99–07, Department of Computer Science, University of Sheffield,
May 1999.

10. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, 2002.

11. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, and C. Ursu. The GATE
User Guide. http://gate.ac.uk/, 2002.

12. R. Grishman. Information Extraction: Techniques and Challenges. In Information
Extraction: a Multidisciplinary Approach to an Emerging Information Technology,
Springer 1997.



13. D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K. Bontcheva, and
Y. Wilks. Architectural elements of language engineering robustness. Journal of
Natural Language Engineering – Special Issue on Robust Methods in Analysis of
Natural Language Data, 2002. forthcoming.

14. D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and Y. Wilks. Named Entity
Recognition from Diverse Text Types. In Recent Advances in Natural Language
Processing 2001 Conference, Tzigov Chark, Bulgaria, 2001.

15. J. McNaught, W. Black, F. Rinaldi, E. Bertino, A. Brasher, D. Deavin, B. Catania,
D. Silvestri, B. Armani, A. Persidis, G. Semerano, F. Esposito, V. Candela, G.P.
Zarri, and L. Gilardoni. Integrated document and knowledge management for the
knowledge-based enterprise. In Proceedings of the 3rd International Conference
on the practical application of Knowledge Management. The paractical application
company, 2000.

16. H. Saggion, H. Cunningham, D. Maynard, K. Bontcheva, O. Hamza, C. Ursu, and
Y. Wilks. Extracting Information for Automatic Indexing of Multimedia Material.
In 3rd International Conference on Language Resources and Evaluation (LREC
2002), pages 669–676, Las Palmas, Gran Canaria, Spain, 2002.

17. S. Soderland. Learning to extract text-based information from the world wide web.
Proceedings of Third International Conference on Knowledge Discovery and Data
Mining (KDD-97), 1997.

18. Beth Sundheim, editor. Proceedings of the Sixth Message Understanding Confer-
ence (MUC-6), Columbia, MD, 1995. ARPA, Morgan Kaufmann.

19. Beth Sundheim, editor. Proceedings of the Seventh Message Understanding Con-
ference (MUC-7). ARPA, Morgan Kaufmann, 1998.

20. V. Tablan, C. Ursu, K. Bontcheva, H. Cunningham, D. Maynard, O. Hamza, Tony
McEnery, Paul Baker, and Mark Leisher. A unicode-based environment for creation
and use of language resources. In Proceedings of 3rd Language Resources and
Evaluation Conference, 2002.


