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Abstract Thirdly, such a system may also be used as
We present the design of Mnemosym@epeer-to-peer a shared-memory communication medium with
steganographic storage service. Mnemosyne pgieganographic properties: this allows interpersonal
vides a high level of privacy and plausible deniabilitynessaging with a high degree of privacy.

by using a large amount of shared distributed storageA system with these properties is of great potential
to hide data. Blocks are dispersed by secure hashinge to the modern business traveler.

and loss codes used for resiliency. We discuss the dévinemosyne takes advantage of the widespread
sign of the system, and the challenges posed by tradfailability and low cost of network bandwidth and

analysis. disk space. The system comprises servers that pro-
_ o vide unreliable block storage, and clients which write
1 Introduction and Motivation and read blocks to and from the servers. A node

A steganographic file system, first presented in [Zan serve the function of server and client simulta-
has the property that it gives a user strong protectigBously. The servers collectively comprise a peer-to-
against being compelled to disclose (all) its contentseer system: a centralized organisation or authority
Attackers not in possession of the secret are unaeieither required nor desirable.

to acquire the contents of files, and they cannot everBefore describing Mnemosyne itself, we present a
gain information about whether a given file is presegiscription of oudocal steganographic file system.
or not. In effect, the system allows an author to plawe do this for two reasons. Firsﬂy, many of the prin-
sibly deny the existence of most fifeis the system. ciples of local steganographic systems carry over to

A distributed, peer-to-peer steganographic stqfre distributed case, and discussion of these helps es-

age system like Mnemosyne has further interestifighlish context for describing Mnemosyne later. Sec-
properties.  Firstly, in common with systems likendly, our implementation of the local case differs
FreeNet [6], storage providers can offer a servigeym previous systems (most notably that described

without being able to know what is being storegn [13]) in ways significant when extending the con-
This property may be attractive to a service providggpt to a full peer-to-peer system.

concerned about liability asdte factoconfers some-
thing akin to common-carrier status on the provider.

Secondly, for a single user desiring to store files A Local Steganographic File System
securely, a distributed steganographic storage systehglerson et. al. [2] describe two approaches to
makes information less susceptible to machine fdille steganographic storage of data. In the first,
ure or denial-of-service: a local storage medium c&ndomly-filled “cover files” are created, and user

always be stolen, but a peer-to-peer system is harti@s are “written” by altering a subset of the cover

to shut down. files (determined by a passphrase) so that the user

file is thexoR of that subset.

e o Uity Caiie Compte L Th Secon consuton, ol here, asumes
pronouncede moz' e ’ a disk which can storéX blocks of data. To pre-
2pt least some files must be revealed to justify the existenP@re this for use, we first write random data to every

of the system itself. block. Then to store a file we simply encrypt each




block and write it to a pseduo-randomly chosen loaeans thaK alone is not sufficient to determine the
cation (e.g. one determined by hashing the filenarwveadidity of a given block.
and block number with a secret key). With a suf- In our implementation we use SHA256 as the hash
ficiently good cipher and key, the encrypted blockanction H and AES as the block cipher for encrypt-
will be indistinguishable from the random substrat@ég blocks, choosing a key size of 256 bits to match
and so an attacker cannot even determine the etiwe size of hash values.
tence of the file. On the other hand, someone privy
to the filename and key can reconstruct the pseudrectories, Inodes and Files
random sequence, retrieve the encrypted blocks, afd build a file system over this basic block facility
decrypt them. usingdirectories inodes andfile blocks
This leads to the problem ofollisions where In Mnemosyne directories are used to aggregate
blocks are overwritten on the disk by subsequefiies which share a common kel. A directory
files. The well-known “birthday paradox” makes thiblock contains a known textual name for the direc-
quite likely with even a small load factor (ratio of filgory itself, and a list of textual file names. The valid-
blocks to total blocks on the disk), and so replicatidty check for a directory block is the presence of the
is used: each block is written to the diskrainde- name of the directory in the block. The initial hash
pendent locations. value used for writing a directory block is obtained
We describe our implementation of this schen® hashing the directory name ardRring the result
(over Linux) by first describing the process for repliwith the key, K. Using K in this way prevents dif-
cating a block on the disk, and then discussing filerent users from overwriting each others’ blocks de-
structures built over this facility. terministically when they choose identical directory
names.
Writing and Reading a Single Block Each file is represented in the file system by an
Writing a block to the local steganographic file Sy$node block. The inode block is stored using an
tem requires a user's kei(, the block data itself, jnjtial hash value obtained by concatenating the di-
and two further pieces of information: @mitial hash rectory name and file name to produce a pathname,
value hy for the block, and avalidity check(a way nashing this pathname, and theoring the result
of determining whether the block data has been cQjith the keyK as before; this is the reason direc-
rupted or not). The initial hash value and validityory plocks need only store filenames. The filename
check vary according to whether one is storing dis a1s0 stored in the inode block, acting as the valid-
rectory blocks, inodes, or file blocks (see below). T8, check. Note that in this scheme directories them-
write (or overwrite) a block, the procedure is: selves are completely optional, serving simply as a
« The user computes a sequence:dfash values mnemonic device for a set of file names. Directory
ho, b1 = H (hy), Tt = H(hy_s) nameson the other hand, are necessary components
0s M1 0 n
of path names.
e Replicai (0 < 7 < n) is encrypted under the In addition to this file name, the inode block for a
key k; = Ex(h;) and stored at block numbefile consists of a list of zero or morgnitval, check-
b, = h; mod X, where X is the number of val} pairs, one for each block in the file. These pairs
blocks on the disk of 256-bit values are analogous to the block point-

) o ers in a conventional file systenmitval, chosen at
To read a block given the kely and an initial hash anqom s the initial hash value for locating the file

value i, we read and decrypt each replica in tigiock replicas. checkvalis a secure hash of the file
from block b; until we have a block which passeg)ock and is used as the validity check for file blocks

the va_Iidity check. If no blocks pass the check, th&nce, unlike directories and inodes, no redundant in-
block is deemed lost. The use of a per-replica KeY tormation is stored within file blocks.
ensures that replicas are not identical on disk. It also

*We believe that using subkeys = Ex (h;) improves over DiSCl_JSSion _ _
ki = K & h;, used in an earlier version of this paper. As discussed in [2], the choice af (the number of



replicas) is critical. Intuitively, there is a tension beion. Rather than storing the block replicat block

tween increasing to make an individual replica semumber {; mod X), we need to derive both a node

more resilient and decreasingto reduce the over-identifier and a block number on that node from the

all number of blocks written (and hence potentiall256-bit hash value.

overwritten). Analytical solutions are difficult to ob- We can do this by leveraging existing work on

tain, but initial experiments (s€gb) suggest overall peer-to-peer object location and routing schemes.

replication factors of 2 to 8. We use Tapestry [21], although any of [15, 18, 19]
This results in a significant cost in disk space, babuld serve. All we require is routing of messages

the factor is constant (while large) over a convetagged with arbitrary:-bit identifiers to nodes.

tional file system and so we consider it acceptableln Mnemosyne, even in the local case, blocks read

since what is offered is a specialised service for cérem the disk need not be correct. Instead, the va-

tain types of information. The key point is that thaédity of blocks is explicitly checked after they have

service scales well in disk size, not how much didleen retrieved. This allows us to build a distributed

space is required for a given load. block store in which there is little reliance on the
The systems in [2] and [13] present a hierarchicitegrity of any single node. The only operations a

security model, which can be generalised to a masde need implement are:

trix controlling access by a fixed number of users (or _

principals) to a fixed number of security “levels”. we © PutBlock(blockid datg)

eschew suc_h an approach in favor of a simpler, flat, getBlock(blockid) — data

key space: if a user possesses a key and the name of

a directory, he or she is able to read and write filesTie semantics of these are weadutBlock simply

that directory. This has two advantages. Firstly, thequests that the node store the blalgta in such

indefinite number of keys makes it less likely that al way that it may be subsequently retrieveddey-

the keys can be extracted from a user under dureBkck using an identicablockid However, the node

Secondly, and more importantly, when we extens not required (and may not even be able) to ensure

the system to a distributed, peer-to-peer scenario, this — that is, theputBlock operation has at-most-

cannot know in advance how many users, files, once semantics.

available blocks there will be. The matrix model im- getBlock requests that the node return whatever

plies an authority that at least allocates rows of tlata it has associated with the givelockid How-

matrix to users; the flat key space model is more ager the node may ignore the request, or return any

propriate for a federated, peer-to-peer world. block of data it chooses. The client will determine if
Note also that even in this local implementatiorthe information is valid after it has been received.

users don’t have to trust the block store, as long agJsing this service we construct a first attempt at

most of the time it doesn’t throw away blocks, and distributed steganographic storage system. We as-

the load factor isn’t so great that too many blocksime a set of Tapestry nodes, each of which exports

have all their replicas overwritten. This feature ihe same amount of storage space (e.g. 1GB arranged

significant when we extend the system to the peeis2?’ blocks of 1KB each).

to-peer case. To store a block, we follow the block replication
algorithm described i§2, except that we choose the
3 Distributing the Block Store leading 160 bits of:; as the Tapestry node identifier

We first present here the obvious extension of the 185, and the next (e.g.) 20 bits as the blockijdon

cal system to the distributed case, and then disctisat node.

refinements and modifications of thisga. To retrieve a block, the client requests blockigs
Assume there exists a set 8f nodes each of from nodesV,;. We note that these requests may pro-

which wishes to contributéV blocks of storage to ceed in parallel. The client then tries to decrypt and

the collective. We can logically treat this as an averify each block until a valid one is found. If none

ray of M N blocks, and proceed to store and retrieve found, the block is deemed lost.

files and directories as described in the previous secWe can build directories and files over this basic

3



system as in the local case. Note that it is not nebese are sufficient to reassemble the original data.
essary for an individual node to respond “correctiyJsing the IDA gives us much better resilience for a
or even at all. All that the client requires is that aiven “redundancy factor'rt./n).
least one of the replicas for a block is still available. The IDA requires that we replace our simple
This makes it difficult for an attacker without a keyedundancy-based validity checks with a crypto-
to destroy any particular piece of information. graphic authenticity check on each dispersed block;
We note that with lookup services having a notioour current implementation uses the AES in the new
of unique “successor” for a node (such as Chord)CB mode [17] to get both privacy and authenti-
new node joining the system can initialize by dupliation in one pass, although CBC-MAC, XCBC, or
cating the entire block store of its successor; neitNn&CBC [11] would also suffice.
the new nor the existing node need be aware of whiclReaders now independently retrievé of the m
blocks are “valid”. This duplication means that thblocks wherem’ > n is chosen by each user so as
new node will immediately respond correctly to anp obtain a “reasonable” expectation that at least
getBlock requests made of it. With Plaxton-baseblocks will be valid. The publisher choosesso that
systems like Tapestry, there are several nodes arfd};) is large enough for likely values of,’. Con-
ogous to a Chord successor (roughly 4 in Tapestrglrrently, readers retrieve other blocks chosen at
but we can still usefully copy fractions of the storesandom and discard them on receipt.

of these nodes. This allows us to more efficiently address the prob-
lem of traffic analysis whereby an adversary who can
Discussion snoop packet transfers can infer the existence (and

This system has the following useful properties: possibly location) of a file. If desired some of the

Firstly, given the obvious implementation for dlocks could represent a known piece of content to
“cooperative” node (viz. to reserve 1GB of spagarovide “deniable encryption” [3].
and then store and retrieve blocks as requested), thé/e also use the flexible dispersal of the IDA to
owner of the node can plausibly deny knowledge afidress the problem that any reader of a file can re-
any of the contents. Indeed, they will in general f@ace or destroy its contents. To combat hijacking we
unaware even of which blocks are in use. can simply allow authors to use pseudonymous digi-

Secondly, a node can choose to use a smaligrsignatures, much as in [8]. To prevent destruction
amount of storage by mapping the 20-bit block idenf file content we introduce expliciocation keys
tifiers down tok < 20 bits. This produces a lesgandomly chosen values which atered with a (di-
resilient but still valid store. rectory or file) name’s hash in order to choose the set

Finally, a node can provide more tha# blocks of m storage locations. An author can now choose
simply by obtaining more than one node identifieany! different location keys and writen blocks (as-
(e.g. as with “virtual servers” in CFS [7]). suming no collisions).

In summary, Mnemosyne provides information Each reader is now provided with the name, the
hiding at two levels: first, data is striped widelgncryption key, a location key, and. This prevents
across different nodes each of which is unaware akingle reader from destroying more than a fraction
the other nodes holding parts of the file. Seconaf, the total replicas. Furthermore, lifis never dis-
each individual node embeds encrypted blocks irclsed, an author under duress can claim to delete
random substrate, thus making them indistinguishll copies but later recover the information, as in the

able from one another (without a valid key). Eternity Service [1].
Writing of data under Mnemosyne also holds in-
4 Enhancements teresting challenges. A per-node rate limiter protects

Our first enhancement to this basic scheme is to egrainst brute-force denial-of-service attacks, as an
place simple replication with the information disalternative to the Hash-Cash scheme in [20]. We note
persal algorithm (IDA) [14]. Using this, an authothat Mnemosyne is less susceptible to such attacks
chooses two numbera > n and encodes informa-due to its sparse use of storage space.

tion to be published inta: blocks such that any of ~ Nonetheless, over time more and more of a doc-



umentD'’s replicas will be overwritten until at somebefore it becomes inaccessible. Figure 2 shows cu-

pointitis no longer accessible. To avoid this we ne@aulative distributions of file lifetimes (measured as

to periodically refresiD. Choosing a good refreshithe number of subsequent file writes) for the same

interval in the absence of global knowledge is ditoding parameters as before. Of interest to users is

ficult, and so we expect users to err on the side where these curves intersect some low probability of

caution (i.e. to rewrite rather frequently). file loss, thus giving an idea of how often a file needs
The refresh of files provides us with another traffito be refreshed.

analysis problem. We could attempt to resolve this .

as before: i.e. arrange for additional writes to occfir Implementation

so that the “real” ones may be concealed. Unfort¥/e have built a working implementation of

nately this would result in a large number of addMnemosyne. The client is implemented in C and

tional writes, and hence collisions. makes use of freely available implementations of
A better scheme is to require that all messages3blA256 and the AES; it provides a command-line

block stores are encrypted and of the same size inderface with operations for creating directories and

single bit in a request is used to specify if the ag0PYing files between Mnemosyne and the Unix fil-

companying payload is to be written. In all casel!d System.

a block of data is returned. This makes it impossi- e use the IDA with polynomials ove&F'(2'°)

ble for an eavesdropper to distinguish between redgk dispersal, and OCB-AES to provide combined

and writes, making traffic analysis more difficult. IEncryption and authenticity. Local performance is

bandwidth is cheap, an obvious extension is for ®lausible: we can copy in at around 64KB/s, and out

users to issue an isochronous stream of request&igirca 375KB/s (for = 32, m = 96).

which “real” requests are occasionally embedded. The distributed block storage functionality is im-
plemented in Java over Tapestry [21]. The client

5 Simulation uses a simple UDP-based protocol to communicate

Two of the key parameters in the system are tMdth a randomly picked Tapestry node. Read and
choices ofm andn for a given file since there iswrite requests are then routed through Tapestry to
a tension between maximizing the capacity of tfge appropriate block store. Responses are returned
store, and increasing the resilience of each file. Th#sthe client via the original Tapestry node. In early
is further complicated in the decentralized case sin&$ts using 3 co-located nodes we can copy in files at
users are free to choose andn independently, and @round 80KB/s, and copy them out at 160KB/s.
no-one knows how many users there are, or howVVe intend to make the code for Mnemosyne avail-
much traffic they are generating. Nevertheless, 8gle in the near future.

give some idea of the trade-offs involved, we presept

here some initial simulation results for fixed-siz o
gome recent systems have used distribution and self-

files and uniform coding schemes. L ) L
The simulation repeatedly adds files to a store OVEIiganlsatlon to provide robustness and availability

. . 1, 7,9, 10, 12]. Other systems use their decen-
million blocks and keeps track of how many files at lised nature 1 id itv of d
still retrievable: i.e. files for which, blocks have not - &'>cd nature 1o provide anonymity of access an

. : : . Prevent censorship [4, 6, 8, 20].

been overwritten in the store. Starting with an emp yMn mosvne is more alianed with the latter cl

store, this number converges to a limit for eaclas emosyne 1S more aligned. ne atter c'ass
8{ system. However it provides in addition plausible

files are added, and we call this limit the capacity O iability for client qi ited to privat
the store. Figure 1 shows how the capacity changseesnla ity Tor clients, and 1s more suited 1o private

with choice ofm. For low values, the birthday para- torage anq messaging applications than to the wide-
. L scale publishing of data. Mnemosyne also shares
dox comes into play and capacity is limited. As

increases, capacity increases until the large numBer ¢ common ground with private information re-
. X . . trieval systems [5, 16].
of writes per file reduce it again.
Of more importance to actual users of the systaREFERENCES
is the expected lifetime of a file: how long a file lastd1] Anpberson R. The Eternity Service. IRroc. of the 1st

Relation to Existing Work
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