
A Computational Basis for Conic Arcs

and Boolean Operations on Conic Polygons�

Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert,
Kurt Mehlhorn, and Elmar Schömer

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{eric,arno,hemmer,hert,mehlhorn,schoemer}@mpi-sb.mpg.de

Abstract. We give an exact geometry kernel for conic arcs, algorithms
for exact computation with low-degree algebraic numbers, and an al-
gorithm for computing the arrangement of conic arcs that immediately
leads to a realization of regularized boolean operations on conic polygons.
A conic polygon, or polygon for short, is anything that can be obtained
from linear or conic halfspaces (= the set of points where a linear or
quadratic function is non-negative) by regularized boolean operations.
The algorithm and its implementation are complete (they can handle all
cases), exact (they give the mathematically correct result), and efficient
(they can handle inputs with several hundred primitives).

1 Introduction

We give an exact geometry kernel for conic arcs, algorithms for exact compu-
tation with low-degree algebraic numbers, and a sweep-line algorithm for com-
puting arrangements of curved arcs that immediately leads to a realization of
regularized boolean operations on conic polygons. A conic polygon, or polygon
for short, is anything that can be obtained from linear or conic halfspaces (= the
set of points where a linear or quadratic function is non-negative) by regularized
boolean operations (Figure 1). A regularized boolean operation is a standard
boolean operation (union, intersection, complement) followed by regularization.
Regularization replaces a set by the closure of its interior and eliminates dangling
low-dimensional features.

Our algorithm and implementation are complete and exact. They are com-
plete in the sense that they can handle all inputs including arbitrary degenera-
cies. They are exact in that they always deliver the mathematically correct result.
Complete and exact implementations for the linear case are available, e.g., in
the generalized polygon class [21, Section 10.8] of Leda and in the planar map
class [15] of Cgal. However, existing implementations for conic polygons are
either incomplete or inexact, except for the very recent work by Wein [25].

� Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG - Effective Computational
Geometry for Curves and Surfaces).

R. Möhring and R. Raman (Eds.): ESA 2002, LNCS 2461, pp. 174–186, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Computational Basis for Conic Arcs 175

Fig. 1. We compute the union of two curved polygons (left panel). The first
input polygon is created from a regular 10-gon by replacing each straight edge
with a half-circle with that edge as diameter. The second polygon is created
from the first by rotating it around the origin by α = π/20 radians. On the right
is the union of these two polygons. We can compute the correct union of such
rotated n-gons for any n and any α. For n = 1000 and α = π/2000, the time
required to compute the correct union with 2702 edges is less than 20 minutes
on an 846 MHz Pentium III processor

There are three main parts to our work: (1) a sweep-line algorithm for com-
puting arrangements of curved arcs, (2) predicates and functions for conic arcs,
and (3) algorithms for the exact computation with low-degree algebraic numbers.
For part (1), the sweep-line algorithm extends the Bentley-Ottmann sweep-line
algorithm for segments [1]. The handling of many curves passing through the
same point is considerably more involved than in the straight-line case. For (2),
we give algorithms for basic predicates and functions on conics and use them
to realize the functionality required in the sweep algorithm. For (3), we have
integrated the representation of algebraic numbers as roots of polynomials and
the representation as explicit expressions involving square roots.

Our implementation consists of a basic layer providing polynomials, roots of
polynomials, low-degree algebraic numbers, conics, and predicates and functions
on conics and conic arcs and an algorithmic layer that provides arrangements
of conics, the sweep-line algorithm for curves, and boolean operations on conic
polygons and on polygons with circular and straight-line arcs. We have tested
our implementations on inputs of various sizes and with various degeneracies;
see for example Figure 2. We provide evidence of the efficiency of the approach
presented here by comparing the results to the implementations in Leda for
polygons with line-segment edges. Our implementation can handle scenes with
several hundred conic segments.

The rest of the paper is organized as follows. We first summarize related work
(Section 2) and then review the Bentley-Ottmann sweep-line algorithm. We ex-
tend it to curved arcs and derive the required set of predicates and functions
(Section 3). In Section 4 we discuss conics, functions and predicates on con-
ics, and computation with low-degree algebraic numbers. In Section 5 we give
more details of our implementations and provide the results of our experiments.
Section 6 offers some conclusions.

176 Eric Berberich et al.

2 Related Work

The work of three communities is relevant for our work: computational geome-
try, solid modeling, and computer algebra. The solid modeling community has
always dealt with curved objects, and CAD systems dealing with curved ob-
jects in two and three dimensions have been available since the 60’s. None of
these systems is complete or exact, not even for straight-line objects. The ques-
tion of complete and exact implementations has been addressed only recently.
MAPC [20] provides a set of classes for manipulating algebraically defined points
and curves in the plane, which includes an implementation of the näıve O(n2)
algorithm for computing an arrangement of n curves in the plane. The algo-
rithms are not complete; they handle some but not all degeneracies. Also the
use of Sturm sequences to handle degenerate cases, such as tangential curves or
degenerate segments, results in unnecessarily slow computations in these cases.
ESOLID [19] performs accurate boundary evaluation of low-degree curved solids.
It is explicitly stated that degeneracies are not treated.

Surprisingly little work in computational geometry deals with curved objects;
some examples are [24, 12, 11]. The sweep-line algorithm of Bentley-Ottmann [1]
is known to work for x-monotone curves, at least in the absence of degenera-
cies. Degeneracies have been discussed for straight-line segments only. Several
papers [3, 4, 6] have looked into the question of using restricted predicates to
report or compute segment intersections, the rationale being that lower-degree
predicates are simpler to evaluate. All papers have to exclude at least some
degenerate cases.

The exact and efficient implementation of the predicates required in our algo-
rithms is non-trivial, since they involve algebraic numbers. One of the predicates
used in our algorithms, the lexicographical comparison of vertices in an arrange-
ment of circles and lines, has been considered by Devillers et al. [10]. A very
efficient realization is given. The more complex predicates also needed in our al-
gorithms are not discussed in their work and it is not clear whether the technique
generalizes.

Cgal’s planar map class also supports the computation of arrangements of
circular arcs and line segments. Very recently, the implementation was extended
to conic arcs by Wein [25]. The implementation is in some respects similar to
ours. However, the sweep method is not yet available and the the computation
of boolean operations on polygons is implemented only indirectly.

The papers [13, 17] show how to compute arrangements of quadrics in three-
space. The algorithms are complete, but (as of now) can handle only a small
number of quadrics. Root isolation of univariate polynomials, resultant compu-
tation, and exact treatment of algebraic numbers are well studied problems in
computer algebra. We use the standard techniques.

3 Conic Polygons and the Sweep-Line Algorithm

The Bentley-Ottmann Sweep-line Algorithm: The Bentley-Ottmann sweep-line
algorithm for computing an arrangement of segments in the plane [1] was origi-

A Computational Basis for Conic Arcs 177

nally formulated for sets of segments, no three of which pass through a common
point and no two of which overlap each other. A vertical line is swept across the
plane and the ordered sequence of intersections between the sweep line and the
segments is maintained (= Y-structure). The status of the sweep line changes
when a segment starts, when a segment ends, and when two segments cross.
Bentley and Ottmann observed that the algorithm can actually handle any set
of x-monotone curves. Of course, when two such curves meet they may either
cross or touch, which requires a minor modification to the algorithm. The events
are maintained in a priority queue, referred to as the X-structure.

It was later observed, see for example [9, 21], that in the case of straight-
line segments the algorithm can also handle arbitrary degeneracies. A number
of small extensions are required. For example, when the algorithm sweeps across
a point in which several segments meet, the y-order of the segments meeting at
this point is reversed.

We next argue that the algorithm can also handle degenerate situations in
the case of curves. The main problem is sweeping across a point where many
curves meet and we restrict our attention to this problem here.

Consider a point p and assume that arcs C1 to Ck pass through p. We assume
that the curves are numbered according to their y-order just left of p. Let si be
the multiplicity of intersection of the curves Ci and Ci+1 at p; see [2, Chapters
I and IV] for a formal definition. Intuitively, the multiplicity is one if the curves
meet at p and have different slopes, the multiplicity is two if the curves have
identical tangent but different radii of curvature, the multiplicity is three if the
curves have same tangent and identical radii of curvature but different
Two curves meeting at p cross at p if the multiplicity of the intersection is odd,
and they touch, but do not cross, if the multiplicity is even. The multiplicity
of intersection between Ci and Cj for i < j is min{ si, . . . , sj−1 } because the
multiplicity of intersection is the number of identical initial coefficients in the
local Taylor series expansion. For distinct conics, the multiplicity of intersection
at any point is at most 4. For example, the multiplicity of intersection at the
origin between y(1 − x) = x2 and y = x2 + y2 is three.

The following algorithm determines the y-order of our curves C1 to Ck just to
the right of p in time O(k). Make four passes over the sequence of curves passing
through p. In the j-th pass, 4 ≥ j ≥ 1, form maximal subsequences of curves,
where two curves belong to the same subsequence if they are not separated by
a multiplicity less than j, and reverse the order of each subsequence.

Lemma 1. The algorithm above correctly computes the y-order of the segment
passing through a common point p immediately to the right of p from the order
immediately to the left of p.

Proof. Consider two arbitrary curves Ch and Ci with h < i. Their y-order right
of p differs from their y-order left of p iff s = min{ sh, . . . , si−1 } is odd. Next
observe that s is also exactly the number of times Ch and Ci belong to the same
subsequence, i.e., the number of times their order is reversed. We conclude the
order of Ci and Ch is reversed iff Ci and Ch cross at p.

178 Eric Berberich et al.

Of course, the algorithm just outlined will also work if the maximal multiplic-
ity M of intersection is arbitrary. However, its running time will be M times k,
the number of curves passing through the point. Lutz Kettner (personal com-
munication) has shown that the permutation can always be computed in time
linear in the length of the subsequence.

Conic Polygons: Regularized boolean operations on straight-line or conic poly-
gons can be built on top of the sweep-line algorithm for segment intersection,
see [21, Section 10.8]. The corresponding data structure in Leda is called gen-
eralized polygons. We reused it with only one small change. When curved edges
are used, a polygonal chain with only two edges is possible. We also made the
implementation more general by parameterizing it with the type of the polygon
used to represent the boundaries (Section 5).

Required Predicates and Functions: We are now ready to summarize the pred-
icates and functions that must be defined for the points and segments used in
the sweep-line algorithm and in the computation of generalized polygons.

compare xy(p, q) – compares points p and q lexicographically. This predicate
is used to maintain the order of the events in the X-structure.

seg.y order(p) – determines if a point p in the x-range of segment seg is
vertically above, below, or on seg. This predicate is used to insert starting
segments into the Y-structure.

seg.compare right of common point(seg2, p) – compares seg and seg2 to
determine their y-ordering just right of their common point p. This predicate
is also used to insert starting segments into the Y-structure. The order of
segments starting at the same point is determined by this predicate.

seg.common point multiplicity(seg2, p) – returns the multiplicity of inter-
section of seg and seg2 at their common point p. This predicate is used to
handle curves passing through a common point as described above.

seg.has on(p) – determines if p lies on seg. This predicate is not needed in the
sweep line algorithm, but in the algorithm for boolean operations. It is used
to determine the containment of one boundary inside another.

intersect(seg1, seg2, result) – determines if seg1 and seg2 intersect or not
and, if so, inserts their intersection points in lexicographical order into result

4 Conics and Computations with Conics

We discuss predicates and constructions on conics and their algorithmic realiza-
tion in this section.

Every conic is defined as the zero-set in R2 of a quadratic implicit equation P
in the variables (x, y) i.e.,

α1x
2 + α2y

2 + 2α3xy + 2α4x+ 2α5y + α6 = 0

with ¬(α1 = α2 = α3 = 0). We restrict attention to the non-degenerate conics in
this paper as lines bring nothing new algorithmically. For every value x there are

A Computational Basis for Conic Arcs 179

at most two values of y satisfying the equation. We can obtain an x-monotone
parameterization by rewriting the equation as a quadratic equation for y and
solving for y. We obtain Q = a(x)y2 + b(x)y + c(x) = 0. Solving for y yields

y =

−b(x)±
√

b(x)2−4a(x)c(x)

2a(x) if α2 �= 0
−c(x)
b(x) if α2 = 0 and b(x) �= 0

Degenerate conics are easily recognized [18].
A conic arc is an x-monotone curve that corresponds to one choice of sign

in the equation above. A conic decomposes into either one or two conic arcs.
In the latter case we refer to the two arcs as the lower and the upper arc. For
a conic C we use C0 and (if it exists) C1 to denote the arcs of C. We view the
arcs as functions of x, i.e., C1(x) is the y-value of the upper arc of C at x.

Intersection of Two Conics: Consider two conics

Q1 = a1y
2 + b1y + c1 = 0 Q2 = a2y

2 + b2y + c2 = 0.

Then there is a polynomial R in x of degree at most four such that the x-
coordinates of the intersections of Q1 and Q2 are roots of R.

R = a2b
2
1c2 + a2

2c
2
1 − a2c1b2b1 − 2a2a1c1c2 − b2a1b1c2 + c22a

2
1 + b22a1c1 = 0

is called the resultant of Q1 and Q2; see [8] for a discussion of resultants. A root x
of R does not necessarily correspond to an intersection of Q1 and Q2 in R2; the
corresponding y-values may have non-zero imaginary parts.

Low-Degree Algebraic Numbers: The x-coordinates (and similarly the y-
coordinates) of intersections points are roots of polynomials of degree at most
four. We call an algebraic number a one-root-number if it is of the form α+β

√
γ

with α, β, γ ∈ Q. The following well-known lemma is useful.

Lemma 2. A degree-four polynomial p either has four simple roots or all roots
of p are one-root-numbers. The two cases are easily distinguished and the one-
root-numbers can be determined in the latter case.

Proof. (Sketch) Follows from a case distinction on the degree of p/gcd(p, p′).

We represent algebraic numbers x in one of two ways. Either as one-root-
numbers or as triples (P, l, r) where P is a polynomial with only simple roots, l
and r are rational numbers, P has exactly one real root in the open interval
(l, r) and P (l) �= 0 �= P (r). Such an interval is called an isolating interval for
the root. In our implementation, l and r have the additional property that their
denominators are powers of two. We determine isolating intervals by means of
Uspensky’s algorithm [7, 23]. Isolating intervals are easily refined by considering
the point m = (l + r)/2. If P (m) = 0, we have a one-root-number for x. Oth-
erwise, we replace the isolating interval by either (l,m) or (m, r) depending on
the sign of P (m).

180 Eric Berberich et al.

One-root-numbers are represented as objects of the number type leda-real,
cf. [5] or [21, Section 4.4]. Integers are leda-reals, and if x and y are leda-reals,
so are x ± y, x ∗ y, x/y, and k

√
x for arbitrary integer k. Leda-reals have exact

comparison operators ≤, < and =. In particular, if x is a leda-real and P is
a polynomial with integer coefficients, we can determine the sign of P (x).

We next describe how to compare two algebraic numbers x and y. If both
of them are given as leda-real, we use the comparison operator of leda-real. If
x = (P, l, r) and y is a leda-real, we proceed as follows: If y ≤ l or y ≥ r, the
outcome of the comparison is clear. So assume l < y < r. If P (y) = 0, x = y.
So assume that P (y) �= 0. Then(!!!) x �= y. We now refine the isolating interval
for x as described in the preceding paragraph until y �∈ (l, r).

In order to compare two algebraic numbers x = (P, lx, rx) and y = (Q, ly, ry)
we have to work slightly harder. If the isolating intervals are disjoint, we are
done. Otherwise, let I = (l, r) be the intersection of the isolating intervals. We
have x = y iff P and Q have a common root in I. We first refine the isolating
intervals of x and y using the endpoints of I. Then it is either the case that
both intervals are I or the intervals are disjoint. If they are disjoint, then we
are done. Otherwise, we know that P and Q both have exactly one simple root
in I. These roots are equal if g = gcd(P,Q) has a root z in I, in which case z
must be a simple root. Thus the degree of g can be used to decide quickly about
equality or inequality in certain cases. For example, if deg(g) = 0, we know
that x and y are not equal, and similarly, if deg(g) = 4, we know they are
equal. Otherwise we use the fact that g has only simple roots. So x = y = z iff
sign(g(l)) �= sign(g(r)). Furthermore, depending on the degree of g, a rational
or one-root representation for x and y may be obtained if they are zeros of g,
P/g, or Q/g and if the respective degree is ≤ 2.

The critical values of a conic are the roots of h(x) if α2 �= 0 and is the root
of b(x) if α2 = 0. At the critical values the conic either has a vertical tangent or
a pole. Critical values are one-root-numbers.

Intersection of Two Conics, Continued: Let R be the resultant of conics C and D
and let x be a root of R. Do arcs Ci and Dj intersect at x?

If x is given as a leda-real, we simply compare Ci(x) and Dj(x) using leda-
reals. Otherwise, by Lemma 2, x = (R, l, r) is a simple root ofR and hence arcsCi

and Dj cross at x if they intersect at all. Let (R, l, r) be the representation of x.
We refine the representation of x until the isolating interval contains no critical
value of either C or D. Then Ci and Dj are defined on the entire interval [l, r]
and they intersect at most once in [l, r]. Thus Ci and Dj intersect at x iff the
signs of Ci(r) − Dj(r) and Ci(l) − Dj(l) differ. We compute the signs using
leda-reals.

Conic Points, Conic Segments, and Comparisons: We specify conic points by
an x-coordinate (= an algebraic number) and a conic arc Ci. The point has
coordinates (x,Ci(x)). If x is a leda-real, we can compute the y-coordinate as
a leda-real. A conic segment is the part of a conic arc between two conic points.

A Computational Basis for Conic Arcs 181

The x-compare of two conic points is tantamount to the comparison of two
algebraic numbers, which was discussed above. We turn to the xy-compare. Let
(x1, Ci) and (x2, Dj) be two conic points. If x1 �= x2, we are done. If x1 = x2

and we know a one-root-number for x1, we simply compare Ci(x1) and Dj(x2).
So assume otherwise. We compute the resultant R of C and D and compare x1

to the roots of R. Three cases arise: x1 is either not a root of R, a multiple root
of R (yielding a one-root-number for it), or a simple root of R. In the latter two
cases, we proceed as described in the paragraph on intersection of two conics.
In the first case, we refine the isolating interval of x1 until is contains no critical
values of C and D and then use the fact that the y-order of the two arcs at x1

is the same as the y-order at the right end of the isolating interval of x1. The
strategy just described also resolves the has on predicate as well as y order.

Multiplicity of Intersection: Let p = (x, y) be an intersection point of arcs Ci

and Dj . Then x is a zero of the resultant of C and D with multiplicity m > 0.
If m = 1, the multiplicity of the intersection is 1. So assume that m > 1. Then
we know a one-root-number for x. We have to deal with two difficulties. The
first difficulty is that there might be intersections with non-real y values, but
this cannot happen since the y values would come in conjugate pairs. Thus the
conic would have three points on the complex line through x parallel to the y
axis and hence the conic would be degenerate.

The second difficulty arises when both conics have two arcs and hence hence
there might be intersections between C1−i and D1−j at x. Let d be the (currently
unknown) multiplicity of the intersection at p and let e be the multiplicity of
the intersection of C1−i with D1−j at x. Then d + e = m. We test e ≥ 1 by
testing the equality C1−i(x) = D1−j(x) using leda-reals. If e = 0, we are done.
Otherwise, let q be the corresponding intersection point. We next test d ≥ 2,
by checking whether the normal vectors (Cx(p), Cy(p)) and (Dx(p), Dy(p)) are
parallel. Here Cx and Cy are the partial derivatives of C. The check is again
a computation using leda-reals since p = (x,Ci(x)). If d < 2 then d = 1 and
we are done. So assume d ≥ 2. If m = 3 then d = 2 and we are done. Assume
otherwise, i.e., m = 4. We check whether e ≥ 2. If e = 1 then d = m− 1 = 3. If
e ≥ 2 then d = e = 2.

Order Immediately to the Right of a Common Point: Consider arcs Ci and Dj

containing p = (x, y) and extending to the right. Assume that we know a leda-
real u such that x < u, arcs Ci and Dj are defined on [x, u] and do not intersect
in the interval (x, u]. Then the y-order just right of x is the same as the y-order
at u; the latter can be computed using leda-reals. How can we obtain u? If x is
a simple root of the resultant of C and D, we refine the isolating interval of x
until it contains no critical values of C and D and take u as the right endpoint
of the isolating interval. If x is a multiple root of the resultant, we have one-
root-numbers for all roots and we simply take a rational point to the right of x
and within the x-range of the two arcs. This can be, for example, the midpoint
of x and the next larger root of the resultant if there is one.

182 Eric Berberich et al.

5 Implementation and Empirical Results

We describe our implementations and report about experiments. All our imple-
mentations are in C++. They use components of Leda, Cgal, and the standard
template library.

Algebraic Numbers and Conics: We have implemented four classes: alg number,
conic, arrangement2, and X mono conic segment. The first realizes algebraic
numbers as discussed in Section 4. The main ingredients are polynomials, gcd
of polynomials, resultant computations, Uspensky’s algorithm for root isola-
tion, and leda-reals. The main functionality is exact comparison between al-
gebraic numbers. The class conic realizes conics and the predicates and con-
structions discussed in Section 4. The class arrangement2 uses the functionality
of the two other classes to construct the arrangement of two conics. The class
X mono conic segment realizes an implementation of a segment type as required
by the sweep-line algorithm and generalized polygon class.

The Naive Algorithm for Computing Arrangements of Conics: This algorithm
takes a set of conics and computes the subdivision of the plane defined by them. It
first computes the arrangement of any pair of conics and then merges the pairwise
arrangements into a single arrangement. This implementation provides a test-
bed for classes alg number, conic, and arrangement2, and serves as a reference
implementation for the sweep-line algorithm.

The first phase of the naive algorithm produces a list of all intersections
(x,Ci, Dj). We generate two conic points (x,Ci) and (x,Dj) for each intersec-
tion and sort them using compare xy. Then it is easy to remove duplicates, and
the vertices of the arrangement A are known. We create additional vertices for
the points of vertical tangency and also create a dictionary that maps conic
points to the vertices of A. Then we sort our conic points a second time. For
the second sorting, the conic arc is the main key and the second key is the x-
coordinate. We obtain the sorted list of intersection points on each arc. Using
the map from conic points to vertices of A, we create the edges of A. Finally,
we determine the cyclic order of the edges incident to each vertex using the
predicate compare right of common point. The final result is a planar map.

We checked the correctness of the implementation both manually (for small
examples) and by checking Euler’s equation for planar maps, which is a good
heuristic test. We ran the algorithm on: (1) conics in general position, (2) conics
with carefully designed degeneracies, and (3) conics with perturbed degeneracies
(i.e., almost degenerate points). Figure 2 shows two examples of the second kind.
Both feature high-degree intersection points with various multiplicities of inter-
sections. The example on the left also contains intersection points with equal x-
coordinate. Table 1 shows that, as one would expect, running time increases
when degeneracies are present and also when the input precision is increased
to represent nearly degenerate cases. However, the increase is not unreasonable.
With the naive algorithm, we are able to compute, an arrangement of 200 conics
with approximately 55000 intersection points in around 28 minutes.

A Computational Basis for Conic Arcs 183

Fig. 2. On the left, a set of 15 ellipses all of which intersect at one point in the
lower right quadrant of the picture with varying multiplicities. On the right is
a set of 10 ellipses, also in highly degenerate positions

A Generic Implementation of the Sweep Algorithm: Our implementation of the
algorithms, classes and predicates described in Sections 3 and 4 is based on the
Cgal geometry kernel and the original implementations in Leda of the sweep-
line algorithm and the generalized polygons. To easily accommodate different
segment types, point types and predicate implementations, we have followed
the generic programming paradigm [22] and used the concept of geometric traits
classes introduced with Cgal [14]. By supplying different traits classes, the same
algorithm can be applied to different kinds of objects or using different predicate
implementations.

Such a generic implementation made light work of producing the empirical
results presented below that compare different segment types, different predicate
implementations and different underlying kernels.

Sweeping Circular Arcs and Straight Line Segments: When only circular arcs and
line segments are used, the implementation of the predicates and functions be-
come easier since the coordinates of all intersection points are one-root-numbers.
This means in particular that when the circles and lines supporting the segments
are specified through rational points, much of the computation can be carried
out using rational numbers. Only when it is time to compute the coordinates of
the points using the sqrt function will the leda-real number type be used. This is
generally a big efficiency win. Furthermore, we are able to exploit the fact that
the intersection point between any two rational circles can be described via the

Table 1. Average computation time required by the naive algorithm per pair
of conics

processing time per
pair of conics input precision

general position 30 ms 50 bits
degenerate position 48 ms 50 bits
perturbed degenerate position 48 ms 100 bits

184 Eric Berberich et al.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160

tim
e

(s
ec

.)

Number of original segments

Line segments vs. Circular arcs

LEDA line segment sweep
line segments

x-montone arcs

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

tim
e

(s
ec

.)

Number of original segments

Optimizations for Circle Arcs and Line Segments

no optimizations
using structural filtering
using rational numbers

Fig. 3. On the left, a comparison of running times for the optimized version of the
Leda line segment sweep algorithm, our generic implementation of the sweep-
line algorithm using line segments and the same implementation using circular
arcs. On the right, a comparison of running times using various optimizations
for circular arcs and line segments. Running times were recorded on an 846 MHz
Pentium III processor

Fig. 4. On the left the planar graph that results from the sweep of a set of 50
circular arcs and line segments with many degeneracies. The graph was produced
in less than 1 second on an 846 MHz Pentium III processor. On the right is an
example with 241 circular arcs and line segments, which required approximately
2 seconds to compute

intersection of a rational line and a rational circle [10] in our implementation of
the compare xy predicate for points that lie on circular arcs or line segments.
That is, before comparing the actual coordinates of the points p and q, we first
determine if they were constructed in the same way. If so, they are equal and
we are done. This technique is called structural filtering [16, 25]. Notice that, in
contrast to usual numeric filters used in the exact computation paradigm, which
filter out the easy cases that can be dealt with quickly by imprecise number
types (i.e., when the points’ coordinates are vastly different from each other),
this filtering technique works by filtering out the most difficult case (when the
points’ coordinates are identical) and thus assures that the cases left are usually
relatively easy. The graph in figure 3 illustrates the advantages of using these
optimizations.

Sweeping Conic Segments: When constructing arrangements of general conic
segments such as the ones shown in Figure 2, running times are naturally higher.

A Computational Basis for Conic Arcs 185

Examples similar to the ones shown in Figure 2 with 30 and 60 conic segments
require, respecitvely, 19 seconds and 49 seconds using our current implementa-
tion. Table 1 indicates that, as one would expect, running time degrades when
degeneracies are introduced. However, with the application of appropriate fil-
tering techniques in our predicate implementations we are confident that the
running times for conic segments will come in line with those for circular arcs.

6 Conclusions

We described an exact kernel for conic arcs, algorithms for dealing with low-
degree algebraic numbers, a sweep-line algorithm for curved segments, and al-
gorithms for boolean operations on conic polygons. Our algorithms and their
implementations are complete, exact, and efficient. We feel that it was crucial
for our work that we had all three goals in mind right from the beginning of our
work.

References

[1] J. Bentley and T. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Transaction on Computers C 28, pages 643–647, 1979. 175,
176

[2] R. Bix. Conics and Cubics: A Concrete Introduction to Algebraic Curves.
Springer Verlag, 1998. 177

[3] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting seg-
ments. Research Report 3270, INRIA, Sophia Antipolis, Sept. 1997. 176

[4] J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and curve segment
intersection using restricted predicates. In Proc. 15th Annu. ACM Sympos.
Comput. Geom., pages 370–379, 1999. 176

[5] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In ESA 2001, volume 2161 of LNCS, pages
254–265, 2001. 180

[6] T.M. Chan. Reporting curve segment intersection using restricted predicates.
Computational Geometry, 16(4):245–256, 2000. 176

[7] G.E. Collins and A.-G. Akritas. Polynomial real root isolation using Descartes’
rule of sign. In SYMSAC, pages 272–275, Portland, OR, 1976. 179

[8] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-
Verlag New York, Inc., 2nd edition, 1997. 179

[9] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer, 1997. 177

[10] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Exact predicates for
circle arcs arrangements. In Proc. 16th Annu. ACM Sympos. Comput. Geom.,
2000. 176, 184

[11] D.P. Dobkin and D.L. Souvaine. Computational geometry in a curved world.
Algorithmica, 5:421–457, 1990. 176

[12] D.P. Dobkin, D. L. Souvaine, and C. J. Van Wyk. Decomposition and intersec-
tion of simple splinegons. Algorithmica, 3:473–486, 1988. 176

186 Eric Berberich et al.

[13] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A new algorithm for the
robuts intersection of two general quadrics. submitted to Solid Modelling 2002.
176

[14] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the
design of CGAL, the computational geometry algorithms library. Software –
Practice and Experience, 30:1167–1202, 2000. 183

[15] E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and im-
plementation of planar maps in CGAL. In Proceedings of the 3rd Workshop
on Algorithm Engineering, volume 1668 of Lecture Notes in Computer Science,
pages 154–168. Springer, 1999. 174

[16] S. Funke and K. Mehlhorn. Look - a lazy object-oriented kernel for geometric
computation. In Proceedings of the 16th Annual Symposium on Computational
Geometry (SCG-00), pages 156–165, Hong Kong, China, June 2000. Association
of Computing Machinery (ACM), ACM Press. 184

[17] N. Geismann, M. Hemmer, and E. Schömer. Computing a 3-dimensional cell
in an arrangement of quadrics: Exactly and actually. In ACM Conference on
Computational Geometry, 2001. 176

[18] M. Hemmer. Reliable computation of planar and spatial arrangements of
quadrics. Master’s thesis, Max-Planck-Institut für Informatik, 2002. 179

[19] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha. Esolid - a system
for exact boundary evaluation. submitted to Solid Modelling 2002. 176

[20] J. Keyser, T. Culver, D. Manocha, and S. Krishnan. MAPC: A library for
efficient and exact manipulation of algebraic points and curves. Technical Report
TR98-038, University of N. Carolina, Chapel Hill, 1998. 176

[21] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999. 1018 pages. 174, 177,
178, 180

[22] D.R. Musser and A.A. Stepanov. Generic programming. In 1st Intl. Joint
Conf. of ISSAC-88 and AAEC-6, pages 13–25. Springer LNCS 358, 1989. 183

[23] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial real roots.
Technical Report 4113, INRIA, 2001. 179

[24] A.A. Schäffer and C. J. Van Wyk. Convex hulls of piecewise-smooth Jordan
curves. J. Algorithms, 8:66–94, 1987. 176

[25] R. Wein. High-level filtering for arrangements of conic arcs. In Proceedings of
ESA 2002, 2002. 174, 176, 184

	A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons
	Introduction
	Related Work
	Conic Polygons and the Sweep-Line Algorithm
	Conics and Computations with Conics
	Implementation and Empirical Results
	Conclusions

