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Abstract. A radio labeling of a graph G is an assignment of pairwise distinct, positive integer
labels to the vertices of G such that labels of adjacent vertices differ by at least 2. The radio labeling
problem (RL) consists in determining a radio labeling that minimizes the maximum label that is used
(the so-called span of the labeling). RL is a well-studied problem, mainly motivated by frequency
assignment problems in which transmitters are not allowed to operate on the same frequency channel.
We consider the special case where some of the transmitters have preassigned operating frequency
channels. This leads to the natural variants p-RL(l) and p-RL(∗) of RL with l preassigned labels
and an arbitrary number of preassigned labels, respectively.

We establish a number of combinatorial, algorithmical, and complexity-theoretical results for
these variants of radio labeling. In particular, we investigate a simple upper bound on the mini-
mum span, yielding a linear time approximation algorithm with a constant additive error bound for
p-RL(∗) restricted to graphs with girth ≥ 5. We consider the complexity of p-RL(l) and p-RL(∗)
for several cases in which RL is known to be polynomially solvable. On the negative side, we prove
that p-RL(∗) is NP-hard for cographs and for k-colorable graphs where a k-coloring is given (k ≥ 3).
On the positive side, we derive polynomial time algorithms solving p-RL(∗) and p-RL(l) for graphs
with bounded maximum degree, and for solving p-RL(l) for k-colorable graphs where a k-coloring is
given.
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1. Introduction. The Frequency Assignment problem (FAP) is a general
framework focused on point-to-point communication, e.g., in radio or mobile telephone
networks. One of its main threads asks for an assignment of frequencies or frequency
channels to transmitters while keeping interference at an acceptable level and making
use of the available frequencies in an efficient way. Interference constraints are usually
related to the use of the same or similar frequencies at locations within a certain
distance (or transmitters within a certain reach) from each other. Due to the scarce
resources and the increasing use of frequencies in modern wireless technology, the
available frequencies should be used as efficiently as possible. There is usually a
trade-off between avoiding interference and the efficient use of frequencies. We will
not go deeper into the technical details here.
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Graph theoretical issues come into play since possible interference between
transmitters is usually modeled by a so-called interference graph. Each vertex of
the interference graph represents a transmitter. If simultaneous broadcasting of two
transmitters may cause an interference, then they are connected by an edge in the
interference graph. The frequency channels are usually labeled by positive integers.
Frequency channels with “close” labels are assumed to be “close” in the spectrum or
expected to be “more likely” to cause interference.

Regarding the assumption that a pair of “close” transmitters should be assigned
different frequencies or frequency channels, the FAP is equivalent to the problem of
labeling the interference graph with some constraints on the labeling. In many cases
the related labeling problems are variants on what is known as the vertex coloring
problem in graph theory.

However, Hale [14] observed that the signal propagation may affect the interfer-
ence even in distant regions (but with decreasing intensity). Hence, not only “close”
transmitters should get different frequencies, but also frequencies used at some dis-
tance should be appropriately separated. This leads to a more detailed and compli-
cated modeling of FAP in terms of distance constrained labeling of the interference
graph. (See, for instance, the book [16] by Leese.)

In some applications the transmitters are not allowed to operate on the same
frequency channel (for example, when every transmitter covers the whole area) while
“close” transmitters should use channels with sufficient separation. In this case non-
reusable frequency channels should be assigned to transmitters in a proper way. This
leads to the so-called Radio Labeling problem (RL), i.e., to the problem of assign-
ing distinct labels to the vertices of a graph such that adjacent vertices get labels
(positive integers) that differ by at least two. The purpose of RL is to find such a
radio labeling with the smallest maximum label.

In this paper we initiate the investigation of two versions of this problem in
which some of the transmitters (like military and governmental stations) already
have preassigned labels corresponding to frequency channels which one is not allowed
to change. Then the problem boils down to determining a radio labeling extending
a given prelabeling in a “best possible” way. In this paper we consider some algo-
rithmical, complexity-theoretical, and combinatorial aspects of these versions of the
problem.

We do not want to claim that the results in what follows have immediate practical
relevance.

1.1. Definitions and preliminary observations. We denote by G = (V,E)
a finite undirected and simple graph. The girth of G is the length of a shortest cycle
in G. For every nonempty W ⊆ V , the subgraph of G induced by W is denoted
by G[W ]. A cograph is a graph containing no induced path on four vertices. The
(open) neighborhood of a vertex v in a graph G is NG(v) := {u ∈ V : {u, v} ∈ E}.
The degree of a vertex v in G is dG(v) := |NG(v)|. The maximum degree of G is
∆(G) := maxv∈V dG(v). A graph G is t-degenerate if each of its nonempty subgraphs
has a vertex of degree at most t. A clique C of a graph G is a subset of V such that
all the vertices of C are pairwise adjacent in G. A nonempty subset of vertices I ⊆ V
is independent in G if no two of its elements are adjacent in G. The complement G of
G is the graph on V with edge set E such that {u, v} ∈ E if and only if {u, v} �∈ E.

A k-coloring of the vertices of a graph G = (V,E) is a partition I1, I2, . . . , Ik of
V into independent sets (in which some of the Ij may be empty); the k sets Ij are
called the color classes of the k-coloring. The chromatic number χ(G) is the minimum
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value k for which a k-coloring exists. A labeling of (the vertex set of) G is an injective
mapping L : V → N+ (the set of positive integers). A labeling L of G is called a radio
labeling of G if for any edge {u, v} ∈ E the inequality |L(u) − L(v)| ≥ 2 holds; the
span of such a labeling L is maxv∈V L(v).

The Radio Labeling problem (RL) is defined as follows: For a given graph
G, find a radio labeling L with the smallest span. The name radio labeling was sug-
gested by Fotakis and Spirakis in [8], but the same notion (under different names) has
been introduced independently and earlier by other researchers (see, e.g., Chang and
Kuo [2]). Problem RL is equivalent to the special case of the Traveling Salesman

problem TSP(2,1) in which all edge weights (distances) are either one or two. The
relation is as follows. For a graph G = (V,E) let KG be the complete weighted graph
on V with edge weights 1 and 2 defined according to E: For every {u, v} ∈ E the
weight w({u, v}) in KG is 2 and for {u, v} �∈ E the weight w({u, v}) = 1. The weight
of a path in KG is the sum of the weights of its edges. The following proposition can
be found in [8, 9].

Proposition 1.1. There is a radio labeling of G with span k if and only if there
is a Hamiltonian path (i.e., a path on |V | vertices) of weight k − 1 in KG.

Another equivalent formulation of this problem, which was extensively studied
in the literature, is the Hamiltonian Path Completion problem (HPC), i.e., the
problem of partitioning the vertex set of a graph G into the smallest possible number
of sets which are spanned by paths in G. This equivalence is expressed in the following
well-known proposition.

Proposition 1.2. There is a radio labeling of G with span ≤ n + k − 1 if and
only if there is a partition of V into ≤ k sets, such that each of these sets induces a
subgraph in G that contains a Hamiltonian path.

Now let us turn to the versions of RL with preassigned labels. For a graph G a
radio prelabeling (or simply prelabeling) L′ of a subset V ′ ⊂ V is an injective mapping
L′ : V ′ → N+ such that L′ is a radio labeling of G[V ′]. We say that a labeling L of G
extends the prelabeling L′ if L(u) = L′(u) for every u ∈ V ′. We study the following
two problems.

• p-RL(∗): Radio Labeling with an arbitrary number of prelabeled

vertices.

For a given graph G and a given prelabeling L′ of G, determine a radio
labeling of G extending L′ with the smallest span.

• p-RL(l): Radio Labeling with a fixed number of prelabeled ver-

tices.

For a given graph G, a subset V ′ ⊆ V with |V ′| ≤ l, and a prelabeling
L′ : V ′ → N+, determine a radio labeling of G extending L′ with the smallest
span.

1.2. Earlier results. As we mentioned above, TSP(2,1) (which is equivalent
to RL without any prelabeling) is a well-studied problem. Papadimitriou and Yan-
nakakis [17] proved that this problem is MAX SNP-hard. Later Engebretsen [4] im-
proved their result by showing that the problem is not approximable within 5381/
5380 − ε for any ε > 0. An approximation algorithm for TSP(2,1) which finds a
solution not worse than 7/6 times the optimum solution is given in [17].

Damaschke et al. [3] proved that the HPC can be solved in polynomial time
on cocomparability graphs (complements of comparability graphs). To obtain this
result they used a reduction to the problem of finding the bump number of a partial
order. (The bump number of a poset P and its linear extension L is the number
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of neighbors in L which are comparable in P .) It was proved by Habib, Möhring,
and Steiner [13] and by Schäffer and Simons [19] that the Bump Number problem
can be solved in polynomial time. By Proposition 1.2, the result of Damaschke et
al. [3] yields that RL is polynomial time solvable for comparability graphs. Later, this
result was rediscovered by Chang and Kuo [2] but under the name of L′(2, 1)-labeling
and only for cographs, a subclass of the class of comparability graphs. Notice that
RL is NP-hard for cocomparability graphs because the Hamiltonian Path problem
is known to be NP-hard for bipartite graphs which form a subclass of comparability
graphs. Recently, Fotakis and Spirakis [8] proved that RL can be solved in polynomial
time within the class of graphs for which a k-coloring can be obtained in polynomial
time (for some fixed k). Note that, for example, this class of graphs includes the
well-studied classes of planar graphs and graphs with bounded treewidth.

We are not aware of any existing results concerning the prelabeling versions
p-RL(∗) and p-RL(l) of RL.

We complete this subsection by mentioning some results concerning the related
notion of radio coloring (also known as L(2, 1)-labeling, λ2,1-coloring, and χ2,1-
labeling). A radio coloring of a graph G = (V,E) is a function f : V → N+ such
that |f(u) − f(v)| ≥ 2 if {u, v} ∈ E and |f(u) − f(v)| ≥ 1 if the distance between
u and v in G is 2. Here the distance between two vertices u and v in a connected
graph G is the smallest number of edges in a path of G between u and v. Therefore,
the difference between radio coloring and radio labeling is that, in a radio coloring,
vertices at distance at least three may have equal labels (or colors). The notion of
radio coloring was introduced by Griggs and Yeh [12] under the name L(2, 1)-labeling.
As with radio labeling the span of a radio coloring f of G is maxv∈V f(v).

The problem of determining a radio coloring with minimum span has received a
lot of attention. For various graph classes the problem was studied by Sakai [18], Bod-
laender et al. [1], van den Heuvel, Leese, and Shepherd [15], and others. NP-hardness
results for this Radio Coloring problem (RC) restricted to planar, split, or cobipar-
tite graphs were obtained by Bodlaender et al. [1]. Fixed-parameter tractability prop-
erties of RC have been discussed by Fiala, Kratochv́ıl, and Kloks [6]. Fiala, Fishkin,
and Fomin [5] have studied on-line algorithms for RC. For only very few graph classes
the problem is known to be polynomially solvable. Chang and Kuo [2] obtained a poly-
nomial time algorithm for RC restricted to trees and cographs. The complexity of
RC even for graphs of treewidth 2 is a long-standing open question. An interesting
direction of research was initiated by Fiala, Kratochv́ıl, and Proskurowski [7]. They
considered a precolored version of RC, i.e., a version in which some colors are preas-
signed to some vertices. They proved that RC with a given precoloring can be solved
in polynomial time for trees. Recently Golovach [11] proved that RC with a given
precoloring is NP-hard for graphs of treewidth 2.

1.3. Our results and organization of the paper. We study algorithmical,
complexity-theoretical, and combinatorial aspects of radio labeling with prelabeled
vertices. In section 2 we give some simple combinatorial bounds for the minimum
span of such labelings: We introduce an easy-to-compute lower bound M on the
minimum span of a labeling extending a prelabeling, and we show that there always
exists such a radio labeling

• with span ≤ 	(7M − 2)/3
, for arbitrary graphs;
• with span ≤ 	(5M + 2)/3
, for graphs of girth at least 4;
• with span ≤ M + 3, for graphs of girth at least 5.
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All these bounds are best possible. The third bound is even best possible for paths,
i.e., for graphs of infinite girth. In section 3 we derive similar results for t-degenerate
graphs. In section 4 we obtain polynomial time algorithms for graphs with bounded
degree; these algorithms are based on the results of section 2.

Sections 5 and 6 are devoted to the algorithmical study of the radio labeling
problem with preassigned labels. We study these problems restricted to graphs for
which a k-coloring is given and restricted to cographs, two graph classes for which
the radio labeling problem without prelabeling is known to be solvable in polynomial
time. Known and new results on these radio labeling problems are summarized in the
following table.

Graphs with Graphs with a Cographs
a bounded ∆ given k-coloring

RL P [8] P [8] P [3, 2]

p-RL(l) P [∗] P [∗] ???

p-RL(∗) P [∗] NP for k ≥ 3 [∗] NP [∗]

In this table, an entry P denotes solvable in polynomial time, NP denotes NP-hard,
[∗] denotes a contribution from this paper, and ??? marks an open problem.

For the results in the middle column, we assume that k is a fixed integer that is
not part of the input. Note that the class of graphs with a given k-coloring contains
important and well-studied graph classes such as the class of planar graphs and the
class of graphs with bounded treewidth.

2. Upper bounds for the minimum span. Let G = (V,E) denote a graph on
n vertices, and let V ′ ⊆ V and L′ : V ′ → N+ be a fixed subset of V and a prelabeling
for V ′, respectively. We define the parameter M , which will be very useful in the rest
of the paper:

M := max

{
n, max

v∈V ′
L′(v)

}
.

Clearly, M is straightforward to compute if G and L′ are known, and clearly, M is a
lower bound on the span of any radio labeling in G extending the prelabeling L′ of
G. A natural question is how far M can be away from the minimum span of such a
labeling. We will show that the answer to this question heavily relies on the girth of
the graph G.

Theorem 2.1. Let L′ be a prelabeling of a graph G. Then there is a radio labeling
in G extending L′

(a) with span ≤ 	(7M − 2)/3
;
(b) with span ≤ 	(5M + 2)/3
 if G has girth at least 4;
(c) with span ≤ M + 3 if G has girth at least 5.

All these bounds are best possible. The third bound is even best possible for the class
of paths.

Proof. Let us start the proof of Theorem 2.1 by showing that all the stated bounds
indeed are best possible: For (a), let x be a positive integer and y an integer such that
M = 3x+y and −1 ≤ y ≤ 1. We consider the complete graph on M vertices in which
x vertices are prelabeled with labels 2, 5, 8, . . . , 3x− 1, whereas the remaining 2x + y
vertices are unlabeled. Since we cannot use the labels 1, 2, . . . , 3x at the unlabeled
vertices, and the labels at these vertices have to differ by at least two, the span of any
radio labeling extending the prelabeling is at least 3x+2(2x+ y)− 1 = 7x+2y− 1 =
	(7M − 2)/3
.
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For (b), let x be a positive integer and y be an integer such that M = 3x+ y and
0 ≤ y ≤ 2. We consider the complete bipartite graph Kx+1,2x+y−1 on M vertices.
The x + 1 vertices in the first part of the bipartition are prelabeled with the labels
2, 5, 8, . . . , 3x − 1 and with 3x + y, whereas the 2x + y − 1 vertices in the second
part of the bipartition are unlabeled. Note that the prelabeling forbids the labels
1, . . . , 3x + y + 1 for the unlabeled vertices. Thus the span of any radio labeling
extending the prelabeling is at least 5x + 2y = 	(5M + 2)/3
.

Finally, for (c) let M ≥ 7, and let x and y be integers such that M = 2x + y + 7
and 0 ≤ y ≤ 1. We consider the path v1 − v2 − · · · − vM . The prelabeling assigns
L′(vk) = 2k+7 for 1 ≤ k ≤ x, and L′(vx+7+k) = 2k+6 for 1 ≤ k ≤ x+y. Furthermore,
we have L′(vx+1) = 7, L′(vx+3) = 3, L′(vx+5) = 5, and L′(vx+7) = 1. Then all but
the three vertices vx+2, vx+4, vx+6 are prelabeled. Since we cannot use the labels
2, 4, and 6 at these three vertices, every radio labeling of this path extending the
prelabeling L′ has a span of at least M + 3.

The greedy preprocessing step. In several of our proofs, we use the same prepro-
cessing step. We denote this step as greedy preprocessing.

Greedy preprocessing is done as follows. We extend the prelabeling by assigning
labels from {1, . . . ,M} to unlabeled vertices, such that all labels are different and
such that adjacent vertices have labels that differ by at least two. This preprocessing
step terminates when we get stuck: Then either all vertices have been labeled or, for
every unused label c ∈ {1, . . . ,M} and for every unlabeled vertex v, v is adjacent to
a vertex labeled with c− 1 or v is adjacent to a vertex labeled with c + 1. Note that
this greedy preprocessing step does not change the value of M .

Blocked labels. Let L′ : V ′ → N+ be a prelabeling of a graph G. We call a label
c blocked if either it is used in the prelabeling or every vertex of V \ V ′ is adjacent to
a vertex labeled by c− 1 or c + 1. Thus label c cannot be used for extending of L′.

Proof of Theorem 2.1(a). It is sufficient to consider the case where G is the
complete graph on n vertices. Assume that there are l = |V ′| prelabeled vertices and
that we start with the available labels 1, 2, . . . , N = 	(7M − 2)/3
. Hence there are
at most min{3l,M + 1} blocked labels. Order the remaining available (nonblocked)
labels increasingly, and assign the labels at the odd positions in the ordering to the
remaining n − l vertices. Note that we need at most min{3l,M + 1} + 2(n − l) − 1
labels. If 3l ≤ M + 1, then this number is at most

3l + 2(n− l) − 1 = 2n + l − 1 ≤ 2M +
M + 1

3
− 1 =

7M − 2

3
.

If 3l ≥ M + 1, then this number is at most

M + 1 + 2(n− l) − 1 = M + 2n− 2l ≤ M + 2M − 2
M + 1

3
=

7M − 2

3
.

Therefore, in both cases we obtain a feasible radio labeling with span at most 	(7M −
2)/3
.

Proof of Theorem 2.1(b). We start with N = 	(5M + 2)/3
 available labels
1, 2, . . . , N , perform the greedy preprocessing described above, and from now on con-
sider the labeling thus obtained. If all vertices are labeled, then we are done and there
is nothing to show. Otherwise, consider some fixed label c ∈ {1, . . . ,M} that is not
used in this labeling. Then every unlabeled vertex v must be adjacent to a vertex
labeled with c+1 or to a vertex labeled with c−1. Denote the set of unlabeled vertices
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adjacent to c− 1 by A, and denote the set of unlabeled vertices that are adjacent to
c + 1 but not to c − 1 by B. Then A must be an independent set. (Any edge in A
together with the vertex labeled with c−1 would induce a triangle and bring the girth
of G down to 3.) Also B must be an independent set.

Assume that l vertices are labeled. Since every label blocks at most two other
labels, there are at most min{3l,M + 1} blocked labels and we have at least

	(5M + 2)/3
 − min{3l,M + 1} ≥ n− l

available labels for the remaining n− l vertices. The displayed inequality can be seen
as follows. If 3l ≤ M +1, then 	(2M +2)/3
 ≥ 2l. Adding M − 3l ≥ n− 3l yields the
desired inequality in this case. If 3l ≥ M +2, then n− l ≤ M−�(M +2)/3�. Together
with M − �(M + 2)/3� ≤ 	(5M + 2)/3
 −M − 1, we get the desired inequality also
for this second case.

Now we distinguish three subcases. In the first subcase, there are vertices a ∈ A,
b ∈ B, such that a is not adjacent to b. We assign the |A| smallest of the n − l
available labels to the vertices in A and the |B| largest of these labels to the vertices
in B. This is done in such a way that vertex a receives the largest label in A, and
such that vertex b receives the smallest label in B. This gives a radio labeling with
span ≤ 	(5M + 2)/3
.

In the second subcase, either A or B is empty. In this case, we use the n − l
available labels on the n− l vertices in A or B.

In the third subcase, we assume that none of A and B is empty and that they
span a complete bipartite graph, i.e., each vertex in A is adjacent to each vertex in
B. Consider an arbitrary label d ∈ {1, . . . ,M} that is not used in the prelabeling.
Then every unlabeled vertex v ∈ A ∪ B must be adjacent to the vertex labeled with
d + 1 or to the vertex labeled with d − 1. There are only two possibilities for this:
Either all vertices in A are adjacent to the vertex labeled with d + 1 and all vertices
in B are adjacent to the vertex labeled with d− 1, or all vertices in A are adjacent to
the vertex labeled with d− 1 and all vertices in B are adjacent to the vertex labeled
with d+1. As a consequence, there are at most min{2l,M +1} blocked labels in this
subcase, and at least

	(5M + 2)/3
 − min{2l,M + 1} ≥ n− l + 1

available labels for the remaining n − l vertices. We assign the |A| smallest of these
labels arbitrarily to the vertices in A and the |B| largest of these labels arbitrarily to
the vertices in B.

Proof of Theorem 2.1(c). We start with the greedy preprocessing described above,
and from now on consider the labeling thus obtained. Denote by C = {c1, . . . , ck}
with c1 < c2 < · · · < ck the set of all unused labels from {1, . . . ,M} in the labeling
obtained after the preprocessing. Denote by U the set of unlabeled vertices. It is
clear that |U | ≤ |C|. We prove that the labeling obtained by the greedy preprocessing
can always be extended to a radio labeling of G using at most three additional labels
M + 1, M + 2, and M + 3.

Without loss of generality, we assume that after the greedy preprocessing there is
a vertex of G labeled with M . (If this is not the case, the same proof produces a span
≤ M + 2.) For the sake of convenience we shall identify each labeled vertex with its
label. If |U | = 1, we just label the only unlabeled vertex with label M +2. If |U | = 2,
then either the two unlabeled vertices are nonadjacent and we can label them with
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Fig. 1. A step in the proof of Theorem 2.1(c).

M + 2 and M + 3, or at least one of them is not adjacent to M (since G contains no
3-cycles), and we label this vertex with M + 1 and the other vertex with M + 3.

From now on we assume |U | ≥ 3. If C contains two consecutive labels d and
d + 1, then every vertex in U must be adjacent to the vertices labeled with d − 1
and d + 2. This yields a cycle of length four in G and contradicts the assumption
on the girth of G. Therefore, there are no consecutive labels in C, and in particular
c3 − 1 > c1 + 1.

Next, we first discuss the case |U | ≥ 4. Then |C| ≥ 4 and c3 < M . Suppose for
the sake of contradiction that c1 = 1. Then all vertices in U are adjacent to label 2,
and at least two vertices of U are adjacent to c3 − 1 or to c3 + 1. This would yield
a cycle of length four. This contradiction shows c1 ≥ 2. There cannot be more than
two vertices of U adjacent to c1 − 1 because otherwise at least two of them would be
adjacent to c3 +1 or to c3 − 1, and we again would obtain a 4-cycle. Similarly, we see
that at most two vertices of U are adjacent to c1 + 1. As a consequence, each of the
vertices c1 − 1 and c1 + 1 has exactly two neighbors in U . This implies that |U | = 4
and that each vertex of U is adjacent to exactly one of c1 − 1 and c1 + 1. Denote the
four vertices in U by u1, u2, u3, u4 such that u1 and u2 are the neighbors of c1 − 1,
and u3 and u4 are the neighbors of c1 + 1. Moreover, we may assume that u1 and u3

are adjacent to c3 − 1 and that u2 and u4 are adjacent to c3 + 1; see Figure 1.
For every label c ∈ C \ {c1, c3} we have that |{c− 1, c+1}∩{c1 − 1, c1 +1, c3 − 1,

c3 + 1}| = 0. Otherwise, we either obtain a 4-cycle or can use the label c at one of
the vertices in U ; as an example, consider the case that c− 1 = c1 + 1: Then we can
use the label c at u1 or u2 unless both are adjacent to c1 + 3, yielding a 4-cycle with
c1 − 1; the other cases are similar. However, then there are only two possibilities for
the vertices in U to be the neighbor of c − 1 or c + 1 without creating a 4-cycle: u1

and u4 should be adjacent to one of these labels and u2 and u3 to the other. Since
|C \ {c1, c3}| ≥ 2 and C does not contain consecutive integers, we obtain a 4-cycle in
G, which is a contradiction. Therefore, the case |U | ≥ 4 cannot occur at all.

We are left with the case that |U | = 3. By similar arguments as above, we may
assume that c1−1 is adjacent to u1, that c1 +1 is adjacent to u2 and u3, that c3 +1 is
adjacent to u1 and u2, and that c3−1 is adjacent to u3 (the other cases are analogous).
The girth condition implies that the graph induced by the vertices {u1, u2, u3} has
at most one edge, the edge {u1, u3}. If such an edge exists, then M is nonadjacent
to one of these two vertices, and we label this vertex with M + 1 and the other one
with M + 3; in that case the vertex u2 is labeled with M + 2. If there is no such
edge, then M is nonadjacent to at least one of the vertices ui (otherwise we obtain a
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4-cycle) and we label this vertex with M + 1 and the other two vertices with M + 2
and M + 3. This completes the proof of Theorem 2.1(c).

Note that the proof of Theorem 2.1(c) yields a linear time approximation algo-
rithm determining a radio labeling extending a prelabeling in graphs with girth ≥ 5
with a span that is at most an additive 3 away from the minimum span.

3. Graphs with bounded degeneracy. In this section, we apply the tech-
niques from the proof of Theorem 2.1 to t-degenerate graphs, i.e., graphs with the
property that each of their nonempty subgraphs has a vertex of degree at most t.
We will also use the easy fact that a t-degenerate graph on n vertices has at most
t(n − t) + t(t − 1)/2 edges. First we consider the case without any prelabeling and
obtain the following result, which is easy to prove. This result will be used in the case
where a prelabeling is assumed.

Lemma 3.1. If G is a t-degenerate graph on n vertices, then it has a radio labeling
with span ≤ n + 2t.

Proof. Let G be a counterexample to Lemma 3.1 with the least number of vertices.
Remove a vertex v of minimum degree from G and consider a radio labeling with span
≤ n− 1 + 2t in G− v (which exists by the choice of G). If we started with the n+ 2t
available labels 1, 2, . . . , n+ 2t, there are 2t+ 1 unused labels left. Since v has degree
at most t and each neighbor of v forbids the use of at most two labels at v, we can
choose a suitable label for v.

We now turn to the variant in which a prelabeling is assumed. We obtain an
upper bound for the minimum span of a radio labeling extending the prelabeling in a
t-degenerate graph, depending on M and t only.

Theorem 3.2. If G is a t-degenerate graph and L′ is a prelabeling of G, then
there exists a radio labeling extending L′ with span ≤ M + (4 +

√
3)t + 1.

Proof. We again start with the greedy preprocessing step as described in the
preceding section, and with available labels 1, 2, . . . ,M . Denote by U the set of
unlabeled vertices after this step. We only consider the case where |U | = 2p for some
positive integer p; the case with odd |U | is similar and left to the reader. Denote by
C = {c1, . . . , c2p} with c1 < · · · < c2p the set of the first 2p unused labels. It is clear
that C cannot contain three consecutive labels c−1, c, c+1 (otherwise, we can use the
label c at some vertex of U). Thus for every i we have ci +1 < ci+2 − 1. Consider the
set C ′ of vertices labeled by ci − 1 and ci + 1 for every odd i = 1, 3, . . . , 2p− 1. Then
C ′ contains at most 2p vertices and each unlabeled vertex of U must be adjacent to
a vertex labeled by ci − 1 or ci + 1 for every odd i = 1, 3, . . . , 2p − 1. The graph
induced by the set U ∪ C ′ has at most 4p vertices. Denote the number of edges of
this graph by x. We have 2p2 ≤ x ≤ (4p− t)t + (t− 1)t/2 = 4pt− t2/2 − t/2. Thus
(p − t)2 ≤ 3t2/4 − t/4 ≤ 3t2/4, yielding 2p ≤ (2 +

√
3)t. Using Lemma 3.1 and the

fact that G[U ] is t-degenerate, we can label the unlabeled vertices of U with the labels
{M + 2, . . . ,M + 	(4 +

√
3)t
 + 1}. This completes the proof.

The above results imply a polynomial time approximation algorithm for solving
the radio labeling problem (with prelabeling) in t-degenerate graphs. It is possible
that the bound in Theorem 3.2 can be improved considerably. We pose the following
conjecture.

Conjecture. If G is a t-degenerate graph and L′ is a prelabeling of G, then
there exists a radio labeling extending L′ with span ≤ M + 3t.

The upper bound in the above conjecture cannot be improved. For t = 1 this is
clear from earlier examples. (See the discussion on case (c) of Theorem 2.1.) Let us
show it here for general t by the following example. Let V be the union of disjoint sets
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A, B, C, and D, with |A| = |B| = |C| = t, |D| = t+1. Let A be a clique, and assume
that each vertex of B ∪ C is adjacent to every vertex from A. Finally assume B ∪D
induces a complete bipartite graph with bipartition (B,D). Let G be the graph on V
with the described edges. One easily checks that G is a t-degenerate graph. Prelabel
the vertices of C with labels 3, 7, . . . , 4t−1 and of D with labels 1, 5, . . . , 4t+1. Then
M = 4t + 1 and none of the even labels less than M can be used for labeling A ∪B.
Since each vertex of A is adjacent to all other vertices of A∪B, we lose t labels more,
and the largest label we have to use is at least 7t + 1 = M + 3t.

4. Graphs with a bounded maximum degree. We now turn to graphs with
a bounded maximum degree. Using similar proof techniques as in the previous section,
we will prove that p-RL(∗) is polynomially solvable within this class of graphs. We
first prove the next technical result on t-degenerate graphs.

Theorem 4.1. Let G = (V,E) be a t-degenerate graph with maximum degree ∆
and let V ′ ⊆ V be the set of vertices that is prelabeled by L′. If the number p = |V \V ′|
of unlabeled vertices satisfies p ≥ 4∆(t+1), then L′ can be extended to a radio labeling
of G with span M .

Proof. Let H = G[V \ V ′] be the graph induced by the unlabeled vertices, and
start with the available labels 1, 2, . . . ,M . As long as H has edges we will apply
the following labeling procedure. Consider a vertex v of minimal positive degree in
H. It has at most t neighbors. We can label them all with unused labels because
there are at most 2∆ − 2 blocked labels among the unused labels and the number
of available labels in every step is at least the number of unlabeled vertices at that
moment, which is always at least 4∆. Adapt H by removing the neighbors of v. In
each step we reduce the number of unlabeled vertices by at most t and increase the
number of isolated vertices by one. Since p ≥ 4∆(t + 1), we have q ≥ 4∆ isolated
vertices in H when H becomes edgeless.

We now show that the set Q of the remaining q isolated vertices of H can be
labeled with unused labels from the set {1, . . . ,M}. Denote the set of such labels by
C (it is clear that |C| ≥ q) and consider the auxiliary bipartite graph G′ with vertex
partition Q ∪ C where an edge {v, c} exists if and only if the vertex v of Q can be
labeled with the label c. It is sufficient to show that G′ has a matching saturating all
vertices of Q. Suppose that there is no such matching. Then by standard matching
theory there is a set A ⊂ Q such that |A| = a and |N(A)| ≤ a− 1 (where N(A) is the
neighborhood of A in G′). Let B = C \N(A). We have |B| ≥ q−a+1. Note that each
label could be forbidden for at most 2∆ vertices and, vice versa, that for every vertex
at most 2∆ labels could be forbidden. Therefore, since there are no edges between A
and B, we have a ≤ 2∆ and q− a+1 ≤ |B| ≤ 2∆, but this implies q ≤ 4∆− 1, which
is a contradiction. This completes the proof.

From Theorem 4.1 we easily obtain the following complexity result for graphs
with a bounded maximum degree.

Corollary 4.2. Let k be a fixed positive integer. For every graph G with maxi-
mum degree ∆ ≤ k and prelabeling L′, p-RL(∗) can be solved in polynomial time.

Proof. Each graph with maximum degree ∆ is clearly ∆-degenerate. If at most
4∆(∆ + 1) vertices of G are not prelabeled by L′, then one can use a brute force
algorithm to find a radio labeling extending L′ with a minimum span, e.g., by checking
all admissible labelings. The time complexity of such a brute force algorithm is
O(n4∆(∆+1)). If more than 4∆(∆ + 1) vertices are unlabeled, then by Theorem 4.1
there is a radio labeling extending L′ with span M (which is clearly the minimum),
and from the proof of Theorem 4.1 it is not difficult to check that such a labeling can
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be found in polynomial time.
The above corollary shows that p-RL(l) and p-RL(∗) have the same complexity

behavior as RL for graphs with a bounded maximum degree, i.e., all three of the
problems can be solved in polynomial time. This picture changes if we restrict our-
selves to graphs which are k-colorable and for which a k-coloring is given (as part of
the input) for some fixed positive integer k. This is the topic of the next section.

5. Graphs with a bounded chromatic number. In this section we concen-
trate on radio labeling algorithms for graphs with a bounded chromatic number, in
particular for the case where a k-coloring of the graph (for a fixed constant k) is
provided as part of the input.

Related to Proposition 1.1 we discussed the useful equivalence between RL and
TSP(2,1). We now adapt this equivalence to capture the restrictions of the prela-
beling problem. Let L be a labeling of a graph G = (V,E) on n vertices. The path
P = (v1, v2, . . . , vn) corresponding to L visits the vertices by increasing labels, i.e., for
all 1 ≤ a < b ≤ n we have L(va) < L(vb). P is a path in the complete graph KG; its
weight w(P ) is measured according to the edge weights w in KG as introduced in the
paragraph preceding Proposition 1.1.

Lemma 5.1. Let L′ be a prelabeling of a subset V ′ ⊆ V of a graph G = (V,E),
and let P = (v1, v2, . . . , vn) be an ordering of the vertices of G. Then the path P
in KG corresponds to some extension L of L′ to V if and only if the following two
conditions are satisfied:

(T1) For any 1 ≤ a < b ≤ n with va, vb ∈ V ′, the weight w(va, va+1, . . . , vb) of the
subpath from va to vb is at most L′(vb) − L′(va).

(T2) Let c be the smallest index with vc ∈ V ′. If c �= 1, then the weight w(v1, v2, . . . ,
vc) of the subpath from v1 to vc is at most L′(vc) − 1.

For any path P that satisfies (T1) and (T2), a labeling L extending L′ with the
smallest possible span can be computed in polynomial time O(n).

Proof. Suppose P corresponds to a labeling L that extends L′. Let a < b, va,
vb ∈ V ′. Consider the path va, va+1, . . . , vb. By induction, we see that for all i with
0 ≤ i ≤ b−a, L(va+i) is at least the sum of L(va) and the weight w(va, va+1, . . . , va+i)
of the subpath from va to va+i. Therefore, L(vb) ≥ L(va) + w(va, va+1, . . . , vb), and
(T1) follows. In a similar way, it can be shown that (T2) must hold.

The “if”-statement remains to be proved. Consider a path P that satisfies (T1)
and (T2). We construct the following labeling L: If v1 ∈ V ′, then we set L(v1) =
L′(v1), and if v1 /∈ V ′, then we set L(v1) = 1. For i ≥ 2 and vi ∈ V ′, we set L(vi) =
L′(vi). Finally for i ≥ 2 and vi /∈ V ′, we set L(vi) = L(vi−1) + 1 if {vi, vi−1} �∈ E and
we set L(vi) = L(vi−1) + 2 otherwise.

It can be seen that the above procedure in fact computes a labeling L with the
smallest possible span for P among all labelings that extend L′.

Now let G = (V,E) be a graph with a given k-coloring with color classes I1, I2, . . . ,
Ik. Let L′ be a prelabeling of a subset V ′ ⊆ V with |V ′| = l. Let L be a radio labeling
of G that extends L′, and let P = (v1, v2, . . . , vn) be the path corresponding to L.
Consider two consecutive vertices va and va+1 along this path with va ∈ Ii and
va+1 ∈ Ij . If i = j, then va and va+1 form a monochromatic edge. If i �= j, then va
and va+1 form a bichromatic edge of type (i, j).

Lemma 5.2. Let G = (V,E) be a graph with a k-coloring with color classes
I1, I2, . . . , Ik. Let L′ be a prelabeling of a subset V ′ ⊆ V with |V ′| = l. Then there
exists a radio labeling L of G extending L′ with the smallest possible span, such that
its corresponding path P satisfies the following two conditions:
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Fig. 2. A step in the proof of property (P1) in Lemma 5.2.

(P1) For any bichromatic edges {va, va+1} and {vb, vb+1} of type (i, j) with a < b
and i�=j, there exists a prelabeled vertex vc ∈ V ′ on the subpath (va+1, . . . , vb).

(P2) P contains at most (l + 1)k(k − 1) bichromatic edges.
Proof. Among all radio labelings of G that extend L′ with the smallest possible

span, consider a labeling L for which the corresponding path P = (v1, v2, . . . , vn)
contains the maximal possible number of monochromatic edges.

Suppose that this path P violates property (P1). Then there exist two bichromatic
edges {va, va+1} and {vb, vb+1} of type (i, j) with a < b and i �= j, such that none of
the vertices on the subpath (va+1, . . . , vb) are prelabeled; see Figure 2. We replace the
subpath (va, va+1, va+2, . . . , vb−1, vb, vb+1) of P by (va, vb, vb−1, vb−2, . . . , va+1, vb+1),
and thus produce a new path P ∗. Since the edges {va, vb} and {va+1, vb+1} are
monochromatic, whereas the edges {va, va+1} and {vb, vb+1} were not, the new path
P ∗ has more monochromatic edges than P . Moreover, if we compute a labeling L∗ for
P ∗ as indicated in the proof of Lemma 5.1, then the span of L∗ is at most the span
of L. This contradicts our choice of the labeling L. Hence, P satisfies property (P1).

Property (P2) is a simple quantitative consequence of property (P1): The prela-
beled vertices split P into l + 1 subpaths, and any such subpath contains at most
one bichromatic edge of type (i, j). Since there are only k(k − 1) possible types of
bichromatic edges, the bound in property (P2) follows.

Theorem 5.3. Let G = (V,E) be a graph with a given k-coloring with color
classes I1, I2, . . . , Ik. Let L′ be a prelabeling of a subset V ′ ⊆ V with |V ′| = l. Then
a radio labeling L of G extending L′ with the smallest possible span can be computed
in time O(n4(l+1)k(k−1)).

Proof. The proof is based on Lemma 5.2. The idea is to use a brute force
algorithm that enumerates all possible subsets of bichromatic edges as described in
property (P2) and then tries to extend them to a radio labeling. This is done in the
following way.

1. Compute all possible subsets S of at most (l + 1)k(k− 1) bichromatic edges.
2. For each such subset S, compute all possible functions f : S → {1, . . . , n−1}.

The interpretation of f(va, va+1) = m is that va is the mth vertex and that
va+1 is the (m + 1)th vertex on the path.

3. Compute all possible functions g : V ′ → {1, . . . , n}. The interpretation of
g(vc) = m is that vc is the mth vertex on the path.

4. For each subset S and all functions f and g, determine whether there exists a
compatible path. If such a path exists, then compute a corresponding labeling
with the smallest possible span according to Lemma 5.1.

5. Output the detected labeling with the minimum span.
There are O(n2(l+1)k(k−1)) possible subsets S in the first step, and there are
O(n(l+1)k(k−1)) possible functions f in the second step. Furthermore, there are O(nl)
possible functions g in the third step. Below, we will show that the fourth step
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can be performed in O(n2) time. This yields an overall time complexity of at most
O(n4(l+1)k(k−1)).

How do we check compatibility in the fourth step? If any vertex is assigned to two
or more distinct positions (for instance, since it is incident with two or more bichro-
matic edges in S), then there clearly exists no compatible path. Also, if there are two
or more distinct vertices assigned to the same position (for instance, by f and by g),
then there clearly exists no compatible path. Therefore, from now on we will assume
that every vertex goes to at most one position, and any position receives at most one
vertex. Then the functions f and g fully determine the positions of all prelabeled ver-
tices and the positions of all vertices on bichromatic edges in the corresponding path.
What about the empty positions? Consider a maximal piece Z of empty positions,
and let z� and zr be the vertices assigned to the position immediately to the left of Z
and immediately to the right of Z, respectively. Then z� and zr must belong to the
same color class Ij . Otherwise, there is a missing bichromatic edge, and there cannot
be a compatible path. Therefore, we will assume that z� and zr belong to the same
color class Ij ; then the vertices that go into positions in Z must all be in Ij . This
determines the color class for all empty positions.

We randomly assign the remaining vertices to the empty positions, subject to
the condition that every empty position receives a vertex of the right color class. If
no such assignment exists, then there cannot be a compatible path. Otherwise, all
these random assignments yield a path with the same sequence of edge weights w in
KG. We finally check whether conditions (T1) and (T2) of Lemma 5.1 are satisfied
by the resulting path and use this lemma to compute a corresponding labeling with
the smallest possible span.

For each of the graph classes in the following corollary, it is possible to construct
a vertex coloring with a constant number of colors in polynomial time. Hence we have
the following.

Corollary 5.4. The radio labeling problem p-RL(l) is polynomially solvable
• on the class of planar graphs;
• on any class of graphs of bounded treewidth;
• on the class of bipartite graphs.

The above results show that p-RL(l) is solvable in polynomial time for graphs
with a bounded chromatic number and a given coloring. This result does not carry
over to the more general labeling problem p-RL(∗) where the number of prelabeled
vertices is part of the input. We next show that p-RL(∗) is NP-hard even when
restricted to 3-colorable graphs with a given 3-coloring; this result then easily gen-
eralizes to k-colorable graphs (k ≥ 4) with a given k-coloring. We use a polynomial
time transformation from the following problem.

Partition into Triangles

Instance: A graph G = (V,E) with |V | = 3q for a positive integer q.
Question: Is there a partition of V into triangles, i.e., into V1, V2, . . . , Vq

such that G[Vi] = K3?
This problem remains NP-hard even when the graph G = (V,E) is 3-colorable and a
partition of V into independent sets I1, I2, I3 with |I1| = |I2| = |I3| is given. This can
be proved by replacing Exact Cover by 3-Sets in the reduction on pages 68–69
of Garey and Johnson [10] by 3-Dimensional Matching.

Theorem 5.5. For any fixed k ≥ 3, problem p-RL(∗) is NP-hard even when the
input is restricted to graphs with a given k-coloring.

Proof. Let us first prove the theorem for k = 3. Let G = (V,E) be a graph and
let I1, I2, I3, |I1| = |I2| = |I3| = q be a partition of V into three independent sets. We
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construct a graph F = (VF , EF ) and a prelabeling L′ of F such that there is a radio
labeling of F with span ≤ K extending L′ if and only if V can be partitioned into
triangles.

The graph F is obtained as follows: VF is the disjoint union of four independent
sets V A

1 , V B
1 , V2, V3 of cardinality q. (The vertices of V A

1 , V B
1 correspond to I1, the

vertices of V2 to I2, and those of V3 to I3. Also for simplicity we denote vertices from
VF and the corresponding vertices from V by the same letters.)

EF = {{u, v} : u ∈ V A
1 , v ∈ V2 and {u, v} �∈ E}∪,(1)

{{u, v} : u ∈ V B
1 , v ∈ V3 and {u, v} �∈ E}∪,(2)

{{u, v} : u ∈ V2, v ∈ V3 and {u, v} �∈ E}∪,(3)

{{u, v} : u ∈ V A
1 , v ∈ V3}∪,(4)

{{u, v} : u ∈ V B
1 , v ∈ V2}.(5)

The vertices of V A
1 are prelabeled with integers 4i − 3 and the vertices of V B

1 are
prelabeled with 4i, where 1 ≤ i ≤ q.

Notice that F is 3-colorable because the sets V A
1 ∪ V B

1 , V2, V3 are independent.
We claim that there is a radio labeling with span at most K = 4q in F extending the
prelabeling if and only if the vertex set V of G can be partitioned into q triangles.

If there is such a radio labeling in F with span K, then every label from {1, 2, . . . ,
K} should be used in this labeling. Then for every i with 1 ≤ i ≤ q, the vertices
labeled with 4i − 3 and 4i are in V A

1 and V B
1 (because of the prelabeling). Then by

(4), the vertices labeled with 4i− 2 should be in V2, and by (5), the vertices labeled
with 4i−1 should be in V3. Then by (1), (2), and (3), the vertices in G corresponding
to vertices labeled with 4i− 3, 4i− 2, 4i− 1, 4i induce a triangle in G. Hence, V can
be partitioned into q triangles.

For the converse, consider a partition into triangles of V in G. For every triangle
with vertex set {v1, v2, v3}, vi ∈ Ii, 1 ≤ i ≤ 3, the corresponding four vertices
vA1 ∈ V A

1 , vB1 ∈ V B
1 , v2 ∈ V2, v3 ∈ V3 in F can be labeled with four consecutive

labels. The vertices vA1 , v
B
1 are prelabeled with 4j − 3 and 4j for some j; by (1),

vertex v2 can be labeled with 4j − 2, and by (2) and (3), vertex v3 can be labeled
with 4j− 1. Therefore, F has a radio labeling extending the prelabeling with at most
4q = K labels. This settles the case for 3-colorable graphs with a given 3-coloring.

To prove the theorem for any fixed k ≥ 3, we add to the graph F two disjoint
cliques of size k and prelabel the vertices of one clique with labels {4q+ 1, 4q+ 3, . . . ,
4q + 2k− 1} and of the other clique with {4q + 2, 4q + 4, . . . , 4q + 2k}. Then the new
graph is k-colorable, and using the previous arguments it is clear that this graph has
a radio labeling with 4q + 2k labels extending the prelabeling if and only if the graph
G has a partition into triangles. This completes the proof.

6. NP-completeness results for cographs. We now turn to the last class
of graphs for which RL is known to be polynomially solvable, namely the class of
cographs, i.e., graphs without an induced path on four vertices. Using an easy reduc-
tion from 3-Partition we show that p-RL(∗) is NP-hard for cographs.

Theorem 6.1. Problem p-RL(∗) is NP-hard for cographs.
Proof. We use a reduction from the problem 3-Partition stated below to

p-RL(∗).
3-Partition

Instance: A set A of nonnegative integers a1, . . . , a3m and a bound
B, such that for all i with 1 ≤ i ≤ 3m, (B+1)/4 < ai < B/2 and∑

1≤i≤3m ai = mB.
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Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am

such that
∑

ai∈Aj
ai = B for every j with 1 ≤ j ≤ m?

3-Partition is NP-complete in the strong sense (Problem SP15 in Garey and John-
son [10]).

Let the set A = {a1, . . . , a3m} and the bound B be an instance of 3-Partition.
Consider a complete (3m + 1)-partite graph GA with vertex partition V = V0 ∪ V1 ∪
· · · ∪ V3m, where |V0| = m − 1 and |Vi| = ai for every i with i = 1, . . . , 3m. This
means there is an edge between a vertex v ∈ Vi and a vertex w ∈ Vj if and only if
i �= j. Clearly, GA is a cograph because it obviously does not contain a path on four
vertices as an induced subgraph. Prelabel the vertices v1, . . . , vm−1 of V0 using the
labels L′(vj) = j(B + 5) − 1, where j = 1, . . . ,m− 1 and let K = m(B + 5) − 3. We
show that the prelabeling L′ of GA can be extended to a radio labeling with span
≤ K if and only if A can be 3-partitioned.

If there is a 3-partition A1, . . . , Am, then each of the sets Ai contains exactly
three elements ai1 , ai2 , and ai3 . Consider then for every i = 1, . . . ,m the following
labeling:

• Vertices of the set Vi1 are labeled with
{(i− 1)(B + 5) + 1, . . . , (i− 1)(B + 5) + ai1};

• vertices of the set Vi2 are labeled with
{(i− 1)(B + 5) + ai1 + 2, . . . , (i− 1)(B + 5) + ai1 + ai2 + 1};

• vertices of the set Vi3 are labeled with
{(i− 1)(B + 5) + ai1 + ai2 + 3, . . . , (i− 1)(B + 5) + ai1 + ai2 + ai3 + 2}.

Since ai1 + ai2 + ai3 = B, this produces a radio labeling extending the prelabeling L′

with span ≤ K.
For the converse, suppose that a radio labeling of GA extending the prelabeling L′

with span ≤ K exists. For j = 1, . . . ,m, let Bj = {(j−1)(B+5)+1, . . . , j(B+5)−3}
where j = 1, . . . ,m. We call Bj a range. Vertices in V1 ∪ · · · ∪ V3m must get a label
in a range Bj , 1 ≤ j ≤ m. Note that for each range Bj , |Bj | = B + 2. Each range
must have at least two unused labels: Labels given to vertices in different sets Vi

must differ by at least two, and each |Vi| = ai < B/2; thus each range contains either
vertices from at least three sets Vi, and hence at least two unused labels, or vertices
from at most two sets Vi, and hence at least B + 2− 2(B/2− 1/2) = 3 unused labels.

Since
∑3m

i=1 |Vi| =
∑3m

i=1 ai = mB =
∑m

j=1(|Bj | − 2), there are exactly two unused
labels in each range Bj . For each i, 1 ≤ i ≤ 3m, consider the highest label �i given
to a vertex in Vi. The label �i + 1 either does not belong to a range (this is true for
exactly m such labels, as there are m ranges) or is an unused label in a range. Thus,
every unused label in a range is one larger than the highest label among all vertices
in a set Vi, for some i, 1 ≤ i ≤ 3m. As a consequence, all labels of a set Vi must be
assigned to the same range. Now, let Aj be the set of values ai such that vertices of
Vi have their label in Bj . As Bj contains exactly B used labels, we have for each j,∑

ai∈Aj
ai = B. This completes the proof.

We do not know whether p-RL(l) is NP-hard for cographs and leave it as one of
the open problems in the next section.

7. Open problems. In this paper we initiated the study of two versions of the
radio labeling problem in which a prelabeling is assumed. Many questions remain
open, a few of which are listed below:

• We leave the complexity of any of the variants of Radio Labeling (RL,
p-RL(l), and p-RL(∗)) for interval graphs as open problems.

• Another open problem concerns the computational complexity of p-RL(l)
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for cographs. Recall that NP-hardness of p-RL(∗) restricted to cographs is
proved in this paper and that RL is polynomial for cographs.

• Our results imply that p-RL(l) is polynomial for bipartite graphs. On the
other hand, we proved that p-RL(∗) is NP-hard for 3-partite graphs even if
a 3-coloring of the graph is given. The complexity of p-RL(∗) for bipartite
graphs is open.

• By Theorem 5.3, p-RL(l) is polynomial for planar graphs and graphs of
bounded treewidth. The complexity of p-RL(∗) for these graph classes is
open.

Acknowledgment. We are grateful to Dieter Kratsch for fruitful discussions on
the topic of this paper.
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