Skip to main content

Constructing Plane Spanners of Bounded Degree and Low Weight

  • Conference paper
  • First Online:
Algorithms — ESA 2002 (ESA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2461))

Included in the following conference series:

Abstract

Given a set S of n points in the plane, we give an O(n log n)- time algorithm that constructs a plane t-spanner for S, with t ≈ 10.02, such that the degree of each point of S is bounded from above by 27, and the total edge length is proportional to the weight of a minimum spanning tree of S. These constants are all worst case constants that are artifacts of our proofs. In practice, we believe them to be much smaller. Previously, no algorithms were known for constructing plane t-spanners of bounded degree.

Research supported in part by the Natural Science and Engineering Research Council of Canada and the Swedish Foundation for International Cooperation in Research and Higher Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736, 1966.

    MATH  MathSciNet  Google Scholar 

  2. P. Bose and P. Morin. Online routing in triangulations. In Proc. 10th Annu. Internat. Sympos. Algorithms Comput., volume 1741 of Lecture Notes Comput. Sci., pages 113–122. Springer-Verlag, 1999.

    Google Scholar 

  3. G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 53–62, 1993.

    Google Scholar 

  4. Das and D. Joseph. Which triangulations approximate the complete graph? In Proc. International Symposium on Optimal Algorithms, volume 401 of Lecture Notes Comput. Sci., pages 168–192. Springer-Verlag, 1989.

    Google Scholar 

  5. G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished Euclidean graphs. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, pages 215–222, 1995.

    Google Scholar 

  6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

    MATH  Google Scholar 

  7. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41–51, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete graphs. Discrete Comput. Geom., 5:399–407, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 425–461. Elsevier Science Publishers, Amsterdam, 2000.

    Chapter  Google Scholar 

  10. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for constructing sparse geometric sp anners. In Proc. 7th Scand. Workshop Algorithm Theory, volume 1851 of Lecture Notes Comput. Sci., pages 314–327, Berlin, 2000. Springer-Verlag.

    Google Scholar 

  11. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean gr aph. Discrete Comput. Geom., pages 13–28, 1992.

    Google Scholar 

  12. C. Levcopoulos and A. Lingas. There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica, 8:251–256, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for constructing fault-tolerant spanners. Algorithmica, 32:144–156, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Smid. Closest point problems in computational geometry. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier Science Publishers, Amsterdam, 2000.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bose, P., Gudmundsson, J., Smid, M. (2002). Constructing Plane Spanners of Bounded Degree and Low Weight. In: Möhring, R., Raman, R. (eds) Algorithms — ESA 2002. ESA 2002. Lecture Notes in Computer Science, vol 2461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45749-6_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45749-6_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44180-9

  • Online ISBN: 978-3-540-45749-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics