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ABSTRACT

We give an algorithm to minimize the total completion time on-line on a single machine, using restarts, with a
competitive ratio of 3/2. The optimal competitive ratio without using restarts is 2 for deterministic algorithms and
e/(e—1) & 1.582 for randomized algorithms. This is the first restarting algorithm to minimize the total completion
time that is proved to be better than an algorithm that does not restart.
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Note: Work carried out under theme SEN4 “Evolutionary Systems and Applied Algorithmics”.

1. INTRODUCTION
We examine the scheduling problem of minimizing the total completion time (the sum of completion
times) on-line on a single machine, using restarts. Allowing restarts means that the processing of a
job may be interrupted, losing all the work done on it. In this case, the job must be started again
later (restarted), until it is completed without interruptions. We study the on-line problem, where
algorithms must decide how to schedule the existing jobs without any knowledge about the future
arrivals of jobs.

We compare the performance of an on-line algorithm A to that of an optimal off-line algorithm
OPT that knows the entire job sequence ¢ in advance. The total completion time of an input o given
to an algorithm ALG is denoted by ALG(0). The competitive ratio R(.A) of an on-line algorithm .4

is defined as Alo)
o

Known results For the case where all jobs are available at time 0, the shortest processing time
algorithm SPT [8] has an optimal total completion time. This algorithm runs the jobs in order of

* Work supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by the European Commu-
nity, Projects APPOL and APPOL II.



2. Algorithm RSPT 2

increasing size. Hoogeveen and Vestjens [4] showed that if jobs arrive over time and restarts are
not allowed, the optimal competitive ratio is 2, and they gave an algorithm DSPT (’delayed SPT’)
which maintained that competitive ratio. Two other optimal algorithms were given by Phillips,
Stein and Wein [5] and Stougie [9].

Using randomization, it is possible to give an algorithm of competitive ratio e/(e — 1) ~ 1.582
[1] which is optimal [10]. Vestjens showed a lower bound of 1.112 for deterministic algorithms that
can restart jobs [12]. This was recently improved to 1.211 by Epstein and Van Stee [2].

We are aware of three previous instances where restarts were proven to help. Firstly, in [6] it
was shown that restarts help to minimize the makespan (the maximum completion time) of jobs
with unknown sizes on m related machines. Here each machine has its own speed, which does not
depend on the job it is running. The algorithm in [6] obtains a competitive ratio of O(logm).
Without restarts, the lower bound is Q(y/m).

Secondly, [11] shows that restarts help to minimize the maximum delivery time on a single
machine, obtaining an (optimal) competitive ratio of 3/2 while without restarts, (v/5 + 1)/2 is
the best possible. In this problem, each job needs to be delivered after completing, which takes a
certain given extra time.

Thirdly, in [3] it is shown that restarts help to minimize the number of early jobs (jobs that
complete on or before their due date) on a single machine, obtaining an (optimal) competitive ratio
of 2 while without restarts, it is not possible to be competitive at all (not even with preemptions).

Our results  Until now, it was not known how to use restarts in a deterministic algorithm for
minimizing the total completion time on a single machine to get a competitive ratio below 2,
whereas a ratio of 2 can be achieved by an algorithm that does not restart. We give an algorithm
RSPT ('restarting SPT’) of competitive ratio 3/2. This ratio cannot be obtained without restarts,
even with the use of randomization.

Our algorithm is arguably the simplest possible algorithm for this problem that uses restarts:
it bases the decision about whether or not it will interrupt a running job J for an arriving job J’
solely on J and J'. It ignores, for example, all other jobs that are waiting to be run. We show
in section 3 that the analysis of our algorithm is tight and that all “rRspT-like” algorithms have a
competitive ratio of at least 1.467845. This suggests that a more complicated algorithm would be
required to get a substantially better competitive ratio, if possible.

2. ALGORITHM RSPT

We present our on-line algorithm RSPT for the problem of minimizing the total completion time on
a single machine, using restarts. See Figure 1. This algorithm has the following properties (where
J, x, s, r and w are defined as in Figure 2.1). OPT is any optimal off-line algorithm (there can be
more than one).

R1 RSPT only interrupts a job J for jobs that are smaller and that can finish earlier than J
(ie.T+w<s+uz).

R2 If RSPT does not interrupt J for a job of size w that arrives at time r, then r +w > %(s + ).
In this case, if RSPT is still running J at time r 4+ w, it runs J until completion.
Proof. Any job J' that arrives after time r + w satisfies v’ + w’ > ' > r+w > 2(s+ ) in
this case, and does not cause an interruption. [l

R3 Suppose that s <t < %(s + ), and RSPT has been running J continuously from time s until
time ¢. Then at time ¢, all jobs smaller than J that are completed by OPT are also completed
by RSPT.
Proof. The property holds for ¢ = s by definition of RSPT. For ¢ > s, a smaller job that OPT
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Figure 1: The algorithm RSPT

RSPT maintains a queue ) of unfinished jobs. A job is put into ) when it arrives. A job is removed
from @) when it is completed. For any time ¢, RSPT deals first with all arrivals of jobs at time ¢
before starting or interrupting any job.

At any time ¢ where either RSPT completes a job, or one or more jobs arrive while RSPT is idle,
RSPT starts to run the smallest (remaining) job in Q. If @ = (), RSPT is idle (until the next job
arrives).

Furthermore, if at time 7 a job J is running that started (most recently) at time s and has size z,
and if at time r a new job J' arrives with size w, then RSPT interrupts J and starts to run J' if
and only if

(s + ). (2.1)

[SCRIN )

r+w<

Otherwise, RSPT continues to run J (and J' is put into Q).

completed and RSPT did not, can thus only have arrived after time s. But then it would have
caused an interruption of J before time ¢. O
R4 Suppose that s <t < %(s + z), and RSPT has been running J continuously from time s until
time ¢. Then at time ¢, OPT has completed at most one job that RSPT has not completed.
Proof. By R3, the only jobs that OPT can have already completed at time ¢ that RSPT has
not, have size at least x. However, we have t < 2z, since t > 2z = %(s +x)>2r=s52>
2z = %s > %:v =5 > %(s +z)=>t> %(s + z), a contradiction. This proves this property. [
R5 At any time ¢, RSPT only interrupts jobs that it cannot finish before time %t. Hence, RSPT
does not interrupt any job with a size of at most half its starting time.
Proof. If there is an interruption at time ¢, then a job arrived at time ¢ for which ¢ + w <
2(s+ =), hence without interruptions J would have finished at time s+ 2 > 3(t + w) > 3¢.0

3. RSPT-LIKE ALGORITHMS
It can be seen that the competitive ratio of RSPT is not better than 3/2: consider a job of size 1
that arrives at time 0, and N jobs of size 0 that arrive at time 2/3 + . RSPT will run these jobs in
order of arrival time and have a total completion time of IV + 1. However, it is possible to obtain
a total completion time of (2/3 + €)(N + 1) + 1 by running the jobs of size 0 first. By letting N
grow without bound, the competitive ratio tends to 3/2 for e — 0.

We define an algorithm RSPT(a) as follows: RSPT(a) behaves exactly like RSPT, but (2.1) is
replaced by

r+w < a(s+x).

It is possible that RSPT(a) outperforms RSPT for some value of a. However, we show that the
improvement could only be very small, if any. To keep the analysis manageable, we analyze only
RSPT.

Lemma 3.1 For all 0 < a < 1, R(RSPT(a)) > 1.467845.

Proof. Similarly to above, we have R(RSPT()) > 1/c.
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Consider the following job sequence. A job J; of size 1 arrives at time 0, a job Ja of size «a at
time €, a job J3 of size 0 at time « (causing an interruption).

For e — 0, the optimal cost for this sequence tends to 3a+1 (using the order J, Js3, J1). However,
RSPT(a) pays ba + 1.

Now consider the same sequence where after job Js3, at time a+¢ one final job Jy of size a(2a) —«
arrives. For this sequence, the optimal cost tends to 4a?+2a+1 whereas RSPT(a) pays 4a®+5a+1.

This implies that R(RSPT(cr)) > max(1/a, Jotl Latlatl) > ;ig\/\/g:; = 1.467845. O

4. ANALysiS oF RSPT

4.1 Outline

Consider an input sequence o. To analyze RSPT’Ss competitive ratio on such a sequence, we will
work with credits and an invariant.

Each job that arrives receives a certain amount of credit, based on its (estimated) completion
time in the optimal schedule and in RSPT’s schedule. We will show that each time that RSPT starts
a job, we can distribute the credits of the jobs so that a certain invariant holds, using an induction.
The calculations of the credits at such a time, and in particular of the estimates of the completion
times in the two schedules, will be made under the assumption that no more jobs arrive later.

We will first give the invariant. Then we need to show that the invariant holds at the first time
that RSPT starts a job. For the induction step, we need to show that the invariant holds again if
RSPT starts a job later,

e given that it held after the previous start of a job;

e taking into account any jobs which arrived after that (possibly updating calculations for some
jobs that had arrived before); and

e assuming no jobs arrive from now on.

Using this structure, the above-mentioned assumption that no jobs arrive after the current start
of a job does not invalidate the proof. There will be one special case where the invariant does not
hold again immediately. In that case, we will show the invariant is restored at some later time
before the completion of ¢. This case will be analyzed in Section 11.

Finally, we need to show that if the invariant holds at the last time that RSPT starts a job, then
RSPT maintains a competitive ratio of 3/2. We begin by making some definitions and assumptions.

4.2 Definitions and assumptions
Definition 1 An event is the start of a job by RSPT.

Definition 2 An event has the property STATIC if no more jobs arrive after this event.

At the time of an event, RSPT completes a job, interrupts a job, or is idle.

In our analysis, we will use ’global assumptions’ and ’event assumptions’. We show that we
can restrict our analysis to certain types of input sequences and schedules and formulate these
restrictions as Global assumptions. Then, when analyzing an event (from the remaining set of
input sequences), we show in several cases that it is sufficient to consider events with certain
properties, and make the corresponding Event assumption. The most important one was already
mentioned above:

Event assumption 1 The current event has the property STATIC.
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The optimal off-line algorithm There can be more than one optimal schedule for a given input o.
For the analysis, we fix some optimal schedule and denote the algorithm that makes that schedule
by opPT. We use this schedule in the analysis of every event. Hence, OPT takes into account jobs
that have not arrived yet in making its schedule, but OPT does not change its schedule between
successive events: the schedule is completely determined at time 0. OPT does not interrupt jobs,
because it can simply keep the machine idle instead of starting a certain job and interrupting it
later, without affecting the total completion time. We can make the following assumption about
RSPT and OPT, because the cost of OPT and RSPT for a sequence is unaffected by changing the
order of jobs of the same size in their schedules.

Global assumption 1 If two or more jobs in o have the same size, RSPT and OPT complete them
in the same order.

Definition 3 An input sequence o has property SMALL if, whenever RSPT is running a job of
some size x from o, only jobs smaller than = arrive. (Hence, jobs larger than x only arrive at the
completion of a job, or when the machine is idle.)

Lemma 4.1 For every input sequence o, it is possible to modify the arrival times of some jobs such
that the resulting sequence o' has the property SMALL, the schedule of RSPT for o' is the same as
it is for o, and oPT(o’) < OPT(0).

Proof. At any time r that a job J arrives that is at least as large as the job that RSPT is running
at that time, we modify o as follows. If there has been an interval before time r in which RSPT
was idle, define u as the end of the last such interval before r; otherwise set u = 0. Define 7’ as the
last time in the interval (u,r) that a job larger than J was interrupted or completed. If there is no
such time, set r’ = u. We change the release time of J to r’.

When RSPT is run on the resulting sequence o', it does not consider running .J during the interval
[r’,7]: it is running smaller or equal-sized jobs in that entire interval. (For the equal-sized jobs, see
Assumption 1.) Hence the schedule of RSPT for ¢’ is the same as it is for o, and oPT(¢’) < oPT(0)
since the optimal cost for a sequence does not increase if the arrival times decrease or remain the
same. O

This Lemma implies that if RSPT maintains a competitive ratio of 3/2 on all the sequences
that have property SMALL, it maintains that competitive ratio overall. Henceforth, we make the
following assumption.

Global assumption 2 The input sequence o has property SMALL.

5. DEFINITIONS AND NOTATIONS

After these preliminaries, we are ready to state our main definitions. A job J arrives at its release
time r(J) and has size (weight) w(J). The size is the time that J needs to be run without
interruptions in order to complete. For a job J;, we will usually abbreviate r(J;) as r; and w(J;)
as w;, and use analogous notation for jobs J', J* etc. When RSPT is running a job .J, we will be
interested in J-large unfinished jobs, that are at least as large as J, and J-small unfinished jobs,
that are smaller, separately. To distinguish between these sets of jobs, the unfinished large jobs will
be denoted by J,J2,J3, ... with sizes z, 2,3 while the small jobs will be denoted by Jy, Ja, . ..
with sizes wy, wa, ...

We let Q(t) denote the queue @ of RSPT at time .

Definition 4 A run-interval is a half-open interval I = (s(I),t(I)], where RSPT starts to run a job
(denoted by J(I)) at time s(I) and runs it continuously until exactly time t(I). At time t(I), J(I)
is either completed or interrupted. We denote the size of J(I) by z(I).
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Definition 5 For a run-interval I, we denote the set of jobs that arrive during I by ARRIVE(I) =
{NhW), ..o Iy (D)}, We write ri(I) = r(Ji(I1)) and wi(I) = w(Ji(I)) for 1 < i < k(I). The
jobs are ordered such that wi(I) < wa(I) < -+ < wyq)(I). We denote the total size of jobs in
ARRIVE(I) by T(I), and write T;(I) = 22:1 w;i(I) for 1 <i<k(I).

RSPT will run the jobs in ARRIVE(I) in the order Ji(I), ..., Ji)(I) (using Global assumpion
1 if necessary) and we have wy)(I) < x(I) using Global assumption 2. Of course it is possible
that ARRIVE(I) = (. In that case I ends with the completion of the job RSPT was running
(t(I) =s(I)+z(1)).

The input sequence o may contain jobs of size 0. Such jobs are completed instantly when they
start and do not have a run-interval associated with them. Thus we can divide the entire execution
of RSPT into run-intervals, completions of 0-sized jobs, and intervals where RSPT is idle. The
following lemma follows immediately from the definition of RSPT.

Lemma 5.1 All jobs in o arrive either in a run-interval or at the end of an interval in which RSPT
is idle.

Lemma 5.2 Suppose RSPT interrupts job J(I) at time t. Then t =ri(I).

Proof. We have t € {ri(I),..., my)(I)}. Note that ¢ < r1(I) is not possible since all jobs
in ARRIVE(I) arrive on or before time t. Suppose t = r;(I) > r1(I) for some i > 1, then
ri(I) +wi(I) < 2(s(I) +z(I)). By the ordering of the jobs in ARRIVE(I) we have w;(I) > w1 (I)

and thus r1(I) + w1 (I) < ri(I) + wi(I) < 2(s(I) + z(I)). But then RSPT interrupts J(I) no later
than at time r1([), so t < r1(I), a contradiction. O

Definition 6 For the jobs in ARRIVE(I), we write

2
ri(I)—i—wi(I):g(s(I)—l—x(I))—i—Ti(I) i=1,...,k(I). (5.1)
We have 7;(I) > 0 for i = 2,...,k(I), and 7 (I) > 0 if J(I) completes at time ¢(I), 71(1) < 0 if it
is interrupted at time ¢(7).

Definition 7 We define fopr(I) as the index of the job that OPT completes first from ARRIVE(I).

Definition 8 An interruption by RSPT at time t is slow if OPT starts to run a job from ARRIVE(I)
strictly before time t; in this case fopr(I) > 1 and Jy .1 () did not cause an interruption when
it arrived.

We call such an interruption slow, because in this case it could have been better for the total
completion time of RSPT if it had interrupted J(I) for one of the earlier jobs in ARRIVE(I)
(i. e. faster); now, at time ¢, RSPT still has to run all the jobs in ARRIVE(I), whereas OPT has
already partially completed J fopr(I) (I). Note that whether an interruption is slow or fast depends
entirely on when OPT runs the jobs in ARRIVE(I). It has nothing to do with RSPT.

We now define some variables that can change over time. We will need their values at time ¢
when we are analyzing an event at time ¢t. They give as it were a snapshot of the current situation.

Definition 9 If job J has arrived but is not completed at time t, s¢(J) is the (next) time at which
RSPT will start J, based on the jobs that have arrived until time t. For a job J that is completed
at time t, s¢(J) is the last time at which J was started (i.e. the time when it was started and not
interrupted anymore). (For a job J that has not arrived yet at time t, s¢(J) is undefined.)
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Lemma 5.3 For every event and every job J, si(J) is at least as high as it was during the previous
event.

Proof. Consider an event at time ¢ and a job J. If J completes before or at time ¢, then s:(J)
is unchanged since the previous event. Any other job J at time ¢, for which s;(J) was already
defined during the previous event, is larger than the jobs in ARRIVE(I) by definition of RSPT and
by Assumption 2. Therefore J will complete after the jobs in ARRIVE(I), i.e. no earlier than
previously calculated. O

By this Lemma, for a job J in Q(t), s¢(J) is the earliest possible time that RSPT will start to run
J.

Definition 10 A job J is interruptable at time t, if s;(J) < 2w(J) and t < 3(s¢(J) +w(J)).

I. e. a job J is interruptable if it is still possible that RSPT will interrupt J after time ¢ (cf. Property
R5).

Definition 11 BEFORE(J) is the set of jobs that RSPT completes before si(J) (based on the jobs
that have arrived at or before time t). by(J) is the total size of jobs in BEFORE(J). £:(J) is the
size of the largest job in BEFORE(J).

Clearly, b;(J) and ¢;(J) can only increase over time, and ¢;(J) < b;(J) for all times ¢ and jobs J.
During our analysis, we will maintain an estimate on the starting time of each job J in the
schedule of OPT, denoted by sPPT(.J). We describe later how we make and update these estimates.
We will maintain the following as part of our invariant (which will be defined in section 7). Denote

the actual optimal completion time of a job J by OPT(J). Then at the time ¢ of an event,

Yo ooer(d) = > (sPPT(T) +w()) (5.2)

Jor(J)<t Jor(J)<t

This equation implies that at the end of the sequence, opT(c) > 3=, (sOFT(J) + w(J)). We will
use the following Lemma to calculate initial values of s°FPT(.J) for arriving jobs in such a way that
(5.2) holds.

Lemma 5.4 For a given time t, denote the most recent arrival time of a job by t' < t. Denote the
job that OPT is running at time t' by ®(t'), and its remaining unprocessed jobs by V(t'). The total
completion time of OPT of the jobs in W(t') is at least the total completion time of these jobs in the
schedule where those jobs are run consecutively in order of increasing size after ®(t') is completed.

Proof. The schedule described in the lemma is optimal in case no more jobs arrive after time ¢
(Local assumption 1). If other jobs do arrive after time ¢, it is possible that another order for the
jobs in ¥(t') is better overall. However, since this order is suboptimal for ¥(¢'), we must have that
the total completion time of the jobs in ¥(¢') is then not smaller. O

The fact that the optimal schedule is not known during the analysis of an event is also the reason
that we check that (5.2) is satisfied instead of checking opT(J) > sOPT(J) 4 w(J) for each job J
separately.

Definition 12 D;(J) = s:(J) — sPTT(J) is the delay of job J at time t.
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6. CREDITS

The credit of job J at time ¢ is denoted by K;(J). A job will be assigned an initial credit at the first
event on or after its arrival. At the end of each run-interval I = (s, ], each job J;(I) in ARRIVE(I)
receives an initial credit of

; (sOPT (D) +wiD) = DUIAD) i =1,..., k(D). (6.1)

If at time ¢ a (non-zero) interval ends in which RSPT is idle, or ¢ = 0, then suppose Q(t) =
{J1,...,Jr} where wy < --- < wy. The initial credit of job J; in Q(t) is then

%H %;wuj) i=1,....k(). (6-2)

This is a special case of (6.1): by Lemma 5.4 and Event assumption 1, OPT will run the jobs in
Q(t) in order of increasing size, hence sOPT(.J;) > s;(J;) for i = 1,. k Therefore D(J;) < 0 for
i =1,...,k. Moreover, by definition of RSPT we have s;(J;) =t + ZJ lwl fori=1,... k.

The 1dea is that the credit of a job indicates how much its execution can still be postponed by
RSPT without violating the competitive ratio of 3/2: if a job has § credit, it can be postponed by
0 time.

For the competitive ratio, it does not matter how much credit each individual job has, and we
will often transfer credits between jobs as an aid in the analysis. During the analysis of events,
apart from transferring credits between jobs, we will also use the following rules.

Rule C1. If s4(J) increased by § since the previous event, then K (J) decreases by 4.
Rule C2. If the estimate sPFT (J) increased by § since the previous event, then K (.J) increases
by 25

s¢(J) cannot decrease by Lemma 5.3. We will only adjust (increase) sOPT(J) in a few special
cases, where we can show that (5.2) still holds if we increase s°FT(J). Both rules follow directly
from (6.1): it can be seen that if s;(J) or sOPT(.J) increases, J should have received more credit
initially.

Theorem 1 Suppose that after RSPT completes any input sequence o, the total amount of credit
in the jobs is nonnegative, and (5.2) holds. Then RSPT maintains a competitive ratio of 3/2.

Proof. We can ignore credit transfers between jobs, since they do not affect the total amount of
credit. Then each job has at the end credit of

S 27T () +w() — (su(7) — P77 (),

where we use the final (highest) value of s?TT(.J) for each job J, and the actual starting time s;(.J)
of each job. This follows from (6.1) and the rules for increasing job credits mentioned above. Thus
if the total credit is nonnegative, we have

S(s(7) ~ 597 () < Z%( OPL (1) + w())
=Y s(J) < —Z OPT( Zw(J)

K(J) =
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This proves the lemma. O

Calculating the initial credit The only unknowns in (6.1) are sPTT(J;(I)) (i = 1,...,k(I)). If
there is an interruption at time ¢, Lemma 5.4, together with the job that OPT is running at time
t, gives us a schedule for OPT that we can use to calculate sPF7T(J;(I)) for all i (if OPT uses a
different schedule, its overall cost is not lower, so (5.2) still holds). We also use the following Event
assumption.

Event assumption 2 If the run-interval I ends in a completion, all jobs in ARRIVE(I) arrive
no later than the time at which OPT completes Jy (1) (1)-

It is known that all jobs in ARRIVE(I) arrive no later than at time ¢(I). Moreover, by the time
OPT completes J fopr( r)(I), rRSPT will not interrupt J(I) anymore by Property R2. Hence Event
assumption 2 does not influence RSPT’s decisions or its total completion time. It is only used so
that we can apply Lemma 5.4 to calculate lower bounds for the completion times of OPT of these
jobs. Since the optimal total cost cannot increase when release times are lower, we have that (5.2)
holds.

Note that if we were to modify the sequence o by actually decreasing release times until Event
assumption 2 holds, the optimal schedule for the resulting sequence might be quite different. This
is the reason we use this assumption only locally, to get some valid lower bounds on the optimal
cost.

Note also that both after a completion and after an interruption, the schedule of OPT is not
completely known even with these assumptions, because we do not know which job OPT was running
at time ¢t. Therefore we still need to consider several off-line schedules in the following analysis.

6.1 Credit requirements
In this section, we describe three situations in which credit is required, and try to clarify some of
the intuition behind the invariant defined in Section 7.

Interruptions Suppose a job J of size x is interrupted at time ri, because job J; arrives, after
starting at time s. Then s < 2z. J; will give away credit to J, J2, J2 and J* as described in Table
1 in the Appendix, and nothing to any other jobs. We briefly describe the intuition behind this.
We have the following properties.

INT1 The amount of lost processing time due to this interruption is r; — s. This is at most
%(s +z)—s= %x — 3, which is monotonically decreasing in s.

INT2 The size of J; is wy. This is at most 2(s +2) — 1 < %(s+ ) — s = 2z — £, which is
monotonically decreasing in s.

So, in Table 1, J; appears to give away more credit if s is larger, but a) it has more (this follows
from (6.1); b) it needs less (we will explain this later); and c) r; — s is smaller.

From Table 1 we can also see how much credit is still missing. For instance if s < z and = < r1q,
then J? receives r; — x from Ji, but it lost 71 — s because it now starts 71 — s time later. We
will therefore require that in such a case, J? has at least  — s of credit itself, so that it still has
nonnegative credit after this interruption. In general, any job that does not get all of its lost credit
back according to the table above, must have the remaining credit itself. We will formalize this
definition in Section 7.

Completions Suppose a job J completes at time s + . We give the following property without
proof.
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s [0, z] [0, z] (z, 3] (z, 3] (3z,2x)

r1 [0, x] (z, 3] (z, 5] (3z, 2a] (5z,2x)
TodJ ||rm—s|rmm+wi—s| rm+w—s |ri+w—s| rm+wi—s
To J? 0 TN —T TN — S rL— S rL—S
To J3 0 0 0 Ty — %:L‘ TN —S
To J* 0 0 0 T — %ac rL— S
Total || r1 — s | 2r;1 +w; 2(ry — ) +wy | 4r1 +wy 4(ry — s) +w

—(s+x) —2s5 — 3x

Table 1: Credit given by Ji to other jobs

COM1 The jobs in ARRIVE(I) (where I = (s,s + x]) need to get at most 3(z — bs(J)) of credit
from J.

By this (“needing” credit) we mean that the amount of credit those jobs receive initially, together
with at most 1(z — bs(J)), is sufficient for these jobs to satisfy the conditions that we will specify
in the next section.

Small jobs As long as a job J has not been completed yet, it is possible that smaller jobs than J
arrive that are completed before J by RSPT. If OPT completes them after J, then D;(J) increases.

7. THE INVARIANT

From the previous section we see that for a job, sometimes credit is required to pay for interruptions
of jobs that are run before it, (e.g. on page 9 below, J? pays = — s for an interruption of .J), and
sometimes to make sure that jobs that arrive during its final run have sufficient credit (COM1).
We will make sure that each job has enough credit to pay both for interruptions of jobs before it
and for its own completion (i.e. for jobs that arrive during its final run).

For a job J, we define the interrupt-delay associated with an interruption as the amount of
increase of Dy(J) compared to the previous event. This amount is at most ¢t — s at the end of a
run-interval (s,t]. (It is less for a job J if sopT(J) also increases).

Credit can also be required because the situation marked “Small jobs” in Section 6.1 occurs. The
small job-delay of J associated with an event at time ¢ is the total size of jobs smaller than J in
ARRIVE(I) that are completed before J by RSPT and after J by OPT.

Interrupt-credit and completion-credit When considering the credit of a job J, we will make a
distinction between interrupt-credit Krnr(J), which is used to pay for interrupt-delays whenever
they occur, and completion-credit Kcopr(J), which is used to “pay for the completion” of J (see
above). (We do not reserve credit for small job-delays since they will be paid for by the small jobs
that cause it.) Accordingly, we now make two important definitions.

Definition 13 N;y7(J,t) is the mazimum amount of credit that J may need to pay for (all the)
interruptions of jobs that RSPT completes before it, as it is known (for the on-line algorithm RSPT)
at time t.

Ie. this is the amount of credit needed if all the jobs before J that have arrived before time t are
interrupted as often as possible. If other jobs arrive later, Nyy7(J,t) can change. For any job J
that is already completed at time ¢ by RSPT, Nyn7(J,t) = 0.

Definition 14 Ngon(J,t) is the mazimum amount of credit that J may need to pay for its own
completion, as known (for the on-line algorithm RSPT) at time t.
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This amount can also change over time, namely if s(J) increases. Again, if J is completed before
time ¢, then Noowm(J,t) = 0.

Consider an event at time ¢. Suppose Q(t) = {J1,..., i}, where w1 <wg < --- < wy. We write
si=si(Ji) =t+ 23;11 wj. From Table 1 it can be seen that

3
NINT(Jia t) = ma,x(O, Wi;—1 — Si—l) + maX(O, 5wi_2 - Si_g) + ma,x(O, 2w; 4 — t), (71)

where each maximum only appears if the corresponding job exists. For the third maximum in this
equation, note that the total interrupt-delay of J; caused by interruptions of the jobs Ji,...,J;_4
is at most 2w; 4 — t after time ¢, since RSPT starts to run J; at time ¢ and does not interrupt any
of the jobs Jq,...,J;_4 after time 2w; 4 by Property 4.

The following table gives upper bounds for Nyy7(J;,t) in all possible cases.

t<2wi 4 |sio< 3wio|si1<wig Nint(J,t)
° ° ° max(0, w;_1+ %wi,g —2si_4 —t)
o o max(0, Swi_o — si_4 — 1)
° ° max(0, w;_1 —8j—3—1)
® ma,x(O, 2’LUZ'_4 - t)
° ° max(0, w;_1+ %wz,2 2s;9)
maX(O, 2’LUZ'_2 - 81_2)
. max(0, w;_1 —8;i—1)
0
Note that in all cases
1 1
NINT(Jia t) < ma,x(O, w;—1 + §wi_2 + §wi_4 - t). (72)
Using property COM1, we have
1
Ncowm(Jiyt) = max ( 0, §(wz —b(J)) ) - (7.3)

Ncowm(Ji,t) can only decrease over time (since s; and b;(J;) only increase).
For all jobs J that have arrived at time ¢, we wish to maintain

|Ki(J) > Neow (J,t) + Ninr(J, ). | (7.4)

This means that each job will be able to pay for the specified parts of its interrupt-delay and for
its completion. I. e. the total credit of each job will be sufficient to pay for both these things.

Invariant We now define our invariant, that will hold at specific times ¢ in the execution, and in
particular when a sequence is completed:

Invariant: At time ¢, for all jobs that have arrived, (7.4) holds; furthermore, (5.2) holds. ‘

Theorem 2 R(RSPT) < 3/2.

Proof outline. The proof consists of a case analysis, which makes up the rest of this paper. In
the rest of this section we show that (5.2) can be maintained and that (7.4) holds for large jobs. In
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section 9 and beyond, we consider all possible interruptions and completions. “All possible” refers
to both the times at which these events occur, and the possible schedules of the off-line algorithm.

For every possible event, we will give a time at which the above invariant holds again, assuming
that it held after the previous event. This will be no later than at the completion of the last job
in 0. At that time, the invariant implies that all completed jobs have nonnegative credit, since
for completed jobs we have Nooa(J,t) = Nynr(J,t) = 0. Also, (5.2) holds. We can then apply
Theorem 1. O

For almost all events, it will be the case that the invariant holds again immediately after the
current event. However, there is one event for which it takes slightly longer: this is a slow inter-
ruption of a job J, where s(J) < Zw(J). If such an event occurs at some time ¢, we will show
that the invariant is restored no later than when RSPT has completed the second-smallest job in
ARRIVE(I).

In order to ensure that the invariant holds again after an event, we will often transfer credits
between jobs. Also, we will use the credit that some jobs must have because the invariant was true
previously, to pay for their interrupt-delay or for their completion. We need to take into account
that Nynr(J,t), sOPT(J) etc. of some jobs that arrived before or at the previous event can change
as a result of the arrival of new jobs, compared to the calculations in that event (that were made
under the assumption that STATIC held).

By the discussion following Theorem 1, (5.2) holds at each event if it held at the previous event
and if sPTT(J) is not changed for any job J that arrived at or before the previous event. We also
have the following lemma.

Lemma 7.1 Suppose Q(t) = {J1,..., i}, where w; < wg < --- < wyg, and RSPT starts J; at time
t. A job J; satisfies (7.4) in any of the following situations.

L K7 2 max0, ] 54w, )

2. Kqi(J )Z%( —wi 1)+ 3 ZJ Twj and t > w;q

3. Ki(J, )2%( — w;_ 1)+ ZJ 1w]—|—(wi_1—t) and t < w;_1
4. Ky(Ji) >

Proof. Note first of all that w;_1 < £;(J;) because RSPT runs the jobs in order of increasing size.

1. We have %23:1 wj—t = L(w; —wi 1) +w; 1+3 Z] Twj—t > $(w; — () + Ninr(Ji, t) >
Necom (Jiyt) + Ninr(Jiy t).

2. Here we have NINT(JZ,t) (wz 9+ wj_4), since t > w;_1 > w;_2 > w;_4. Hence Ky(J;) >
Hwi —wi—1) + 4 Z 1wJ > NCOM(Ji,t) + Nint(Ji) t).

3. Now NINT(JZ, t) (wz 9+ w;_4) + (w;—1 —t) and we are done similarly.

4. This can only happen if Jy,...,J;_1 are completed, because RSPT runs jobs in order of
size. We have Nynr(J;,t') = 0 by (7.1): note that J; is job Ji in (7.1) at time #', since it is
the smallest job available at time ¢’ by definition of RSPT. Furthermore, since w;—; < £y (J;),
Kt’(J) = 2(wz gt’(J)) > NCOM(Jzat) U

$(w; —wi—1) and J; starts to run at time t

Corollary 7.1 Suppose RSPT starts to run jobs at time t, wheret = 0 ort is the end of a (nonzero)
interval in which RSPT was idle. Then (7.4) and (5.2) hold for the jobs that arrive at time t.

Proof. This follows directly from (6.2) and Lemma 7.1, Case 1. O
We can apply this corollary at the arrival time of the first job in o, and anytime after RSPT has
been idle.
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Notation Definition Long notation
t time of the current event

s start of the most recent run-interval I = (s, ¢]

J job that RSPT was running in I = (s, ] J(I)
ARRIVE jobs that arrive in I ARRIVE(I)
J1 smallest job that arrives in I Ji(I)

r1 its arrival time r1(I)

w1 its size w (1)

f index of job in ARRIVE that OPT runs first  fopr(])

Table 2: Notations

Proof overview We will show that for all events, it is possible to restore the invariant before the
sequence completes. This proves that RSPT maintains a competitive ratio of 3/2. We divide the
analysis into the following cases.

1. An interruption of a job J (Lemmas 9.1, 9.2, 9.3) in all but one case, Case 3 below

2. Completion of a job J (Lemmas 10.1, 10.2, 10.3, 10.4)

3. A slow interruption of a job J of size x in the case that RSPT started it before time 2x/3
(Section 11), and OPT does not run any J-large jobs before ARRIVE(I).

8. ANALYSIS OF AN EVENT

As described in the previous section, for the analysis of RSPT we need to analyze every possible
event that can occur during its execution, i. e. show that the invariant holds after the event, if it
holds after the previous event.

For each event, we will only be interested in the credits of jobs at the time of the current event,
denoted by ¢. Hence, we will drop the subscript ¢ and write K (J;) for each job J;. Furthermore,
the job that was interrupted or completed at the time of the event will be denoted by J, and the
set of smaller jobs that arrived during the most recent run of J will be denoted by ARRIVE =
{J1,...,Jk}. The most recent starting time of J will be denoted by s. We will call J-large jobs large,
and others small. Remember that fopr is the index of the job in ARRIVE that OPT completes
first. Our notation is summarized in Table 2.

Lemma 8.1 After oPT completes Jg, then if STATIC holds, OPT does not run any J-large job
until all jobs in ARRIVE are completed.

Proof. This is a direct consequence of Lemma 5.4 and Event assumptions 1 and 2: after Jg,
OPT will complete first the remaining jobs in ARRIVE in order of increasing size, and then the
remaining large jobs - as long as no new jobs arrive. O
Using this lemma, we only need to consider when OPT is running large jobs in relation to the set
ARRIVE (as a whole), as long as we assume STATIC holds. We have the following lemma.

Lemma 8.2 Suppose that there is a job L that RSPT completes on or before time t, whereas OPT
completes it after a job J; in ARRIVE. Then there is %wi of credit available that can be freely
assigned to uncompleted jobs.

Proof. In the analyses of previous events, ARRIVE was not taken into account when considering
the credit of job L. Compared to that analysis, we have that sOPT(L) increases by at least w;.
Rule C2 implies that L now has %wi more credit than calculated at the previous events. But
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Ncom(L,t) = Ninr(L,t) = 0 since L is completed. Hence we can give %wi to other jobs, while L
still satisfies (7.4). O

Suppose that OPT runs at least one large job J' before ARRIVE. In this case we will not use
any lower bound on the optimal starting time of J' (except that it is at least 0). This enables us
to make the following assumption.

Event assumption 3 If OPT runs at least one large job before ARRIVE, opPT runs J before
ARRIVE.

Suppose OPT runs J' # J before ARRIVE, but not J. By Assumption 1, J' is then larger than
J. This can only increase the optimal starting time of jobs in ARRIVE compared to the situation
where OPT does run J before ARRIVE (J' could not start earlier than J because we will only use
that J starts on or after time 0.)

If OPT runs exactly one large job J’ # J before ARRIVE, then sOFT(J) increases by T' by the
arrival of the jobs in ARRIVE, and therefore K (J) increases by %T by Rule C2, that we do not
take into account if we assume OPT runs J before ARRIVE. On the other hand, RSPT starts to
run J' an additional T later by the arrival of ARRIVE (aside from the interrupt-delay, in the case
that J; from ARRIVE causes a restart), hence the credit of J’ decreases by T', in contrast to the
case where OPT runs J' after ARRIVE as well. In addition, consider Nyyp(J',71). Since ' > z,
RSPT runs (after ARRIVE) first J and later J'. Hence Nynr(J',r1) < Nynr(J',s) + %T. J' would
receive the additional %T automatically if OPT completed J' after ARRIVE, because then sPTT (J')
would increase by 1" as well.

Putting these facts together, it is sufficient to analyze the case where OPT runs J before ARRIVE
(not using any lower bounds on J’s starting time), switch J and J', and transfer an additional %T
worth of credit (that we do not take into account in this analysis) from J to J'.

The case where OPT runs two jobs before ARRIVE, none of which is J, can be treated similarly.
We will therefore always make Event assumption 3.

Lemma 8.3 The condition (5.2) can be maintained throughout the execution of o.

Proof. Using Lemma 5.4 we can calculate valid initial values s°FT(J) for any arriving job J. The
only modification we will make in later events, is that for any J(I)-large job J' that OPT completes
after ARRIVE(I), we increase sPTT(J') by Ti(I). (Here we will use Event assumption 3.) Since
the set ARRIVE(I) was not taken into consideration when sOFT(J') was originally determined,
the resulting bound is still valid, so (5.2) holds. O

Lemma 8.4 The large jobs that OPT and RSPT complete after ARRIVE besides J satisfy (7.4).

Proof. Consider such a job J*. It receives extra credit of %T by Rules C1 and C2, since both s(J?)
and sOPT(J %) increase by T. It possibly loses some credit if there was an interruption.

To see that J* # J (still) satisfies (7.4), note that Nooa (J%,t) < Noom(J%, s) for all s > t.
Regarding Nyn7(J¢ t), we use the bound (7.1). This bound refers to three different jobs. For J¢,
some of these jobs may be in ARRIVE and some of them can be the (previously arrived) jobs
J, g2, T

The jobs in ARRIVE can only occur as jobs ”J; 9" and ”J;_4”, since after ARRIVE at least J
is also completed before Ji. Hence the gained credit of %T is sufficient to cover this.

For the remaining jobs, if there is no interruption, the maximums in (7.1) can only decrease since
s(J?) increases by T. In this case we are done. If there is an interruption, we either have that
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this part of IV INT(Ji,t) decreases by at least the amount of credit that is lost, or J* receives the
remaining lost credit back from J;. This follows from Table 1 and (7.1).

As an example, J is interrupted at time 2z/3 after starting at time 0, for a job J; of size 0. Job
J? loses 2z /3 of credit because of this (2z/3 processing time is wasted). But N;y7(J?,22/3) = x/3
and Nyyr(J?,0) =z, so J? still satisfies (7.4).

As a second example, J is interrupted at time 10x/9 after starting at time 2z/3, for a job J;
of size 0. Job J? loses 4z/9 of credit because of this (4x/9 processing time is wasted). It receives
x/9 of credit from J; due to Table 1. Also, Nyy7(J?%,22/3) = x/3 and Nynr(J?,102/9) = 0, a
decrease of x/3. Since 4z/9 = /9 + z/3, J? still satisfies (7.4).

It can be seen that Table 1 and (7.1) complement each other in all cases: the credit from J;
together with the decrease in (7.4) is sufficient for any large job J to keep satisfying (7.4). O

By the results in this section, in the remainder of the paper it is sufficient to check (or ensure)
that J and the jobs in ARRIVE satisfy (7.4). We already have that (5.2) holds and that (7.4)
holds for the J-large jobs besides J. All other jobs have either already been completed by RSPT,
or have not arrived yet.

9. INTERRUPTIONS
Consider an interruption at time r; of a job J that started at time s. The interrupt-delay associated
with this interruption is r; — s for all jobs that were already in ) at time s. The small job-delay
of this event of the jobs that OPT completes before ARRIVE, and RSPT does not, is T' = Zle w;.
The last event before this one was the start of J, at time s. No jobs were completed since then
by RSPT.
We divide the interruptions into three types, based on when OPT runs large jobs relative to the

set ARRIVE:
Large jobs before ARRIVE by OPT ‘ 0 ‘ 1 ‘ 2

Lemma, 19.1]92]93

We need to distinguish between the cases f =1 and f > 1. First suppose f = 1, i. e. OPT runs
the jobs from ARRIVE in the same order as RSPT. The credit reassignments in this case take place
in four steps.

1. On arrival of Jy, the jobs J, Ja,...,Ji are shifted. However, for the moment we keep the
order of those jobs the same (as in the situation where J; does not arrive). We reassign credit
from J; to J so that its credit remains constant. (Some jobs can have negative credit in this
step.)

2. We reorder the jobs so that the order is now Ji,...,J;,J. However, the credits of the jobs
stay “in the same place”, so that e. g. Jo now has the credit that J had in Step 1.

3. We calculate the extra credit that this reordering generates. If a completion is now § time
earlier, there is § more credit available by Rule 1.

4. We reassign credits to make sure all waiting jobs satisfy (7.4). (This step is not always
required.)

A graphical representation of the first three steps of this procedure can be seen in Figure 2.

In case f > 1, we proceed similarly. However, in the first step we consider different orders for
the jobs (which will be described at the time), instead of the order described above. We then put
the jobs in the order they will be executed by RSPT in Step 2 and continue as above.

Lemma 9.1 If RSPT interrupts a job J at time r1, and OPT runs no large jobs before ARRIVE,
and s > 2x/3, and STATIC holds, and the invariant held at time s, then it holds at time ry.
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Figure 2: Credit transfers

Proof. Case 1. f = 1. Only in this very first case will we not use the procedure outlined above,
and instead calculate the credits for the proper order directly. We begin by showing that J; still
satisfies (7.4) after giving credit to J and J-large jobs as described in Table 1. We have initially
K(J)) = %(7'1 + wy). Also, Nyy7(J1,71) =0 and NCOM(Jl,rl) < 2w1 by deﬁnition.

Suppose s < r1 < x. Since s > 2z/3, we have ry < 2(s+2) < 25 < 2s. Then §(r1+w;)—(r1—s) =
%wl +s— %7'1 > %wl.

Suppose s < x < ry. Since r1 + wy < %(s + ), then using Table 1, we have that J; is left with
credit of 3(r1 +w1) — (2r1+wi —s—a) = s+x— 3r — w1>s+9:——( (s+z) —wi1) — swi = w1.

Suppose x < s <11 < %:v Jp is left with %(rl + wl) —2(r1 —s) —wy =28 — 37"1 %wl > wi,
since r1 + w; < %s.

Suppose z < s < ;’:v < r1. We take 2(ry — s) + w1 + 2(r1 — %a:) out of Jy. Jp still has
%(rl +wy)—4r1+2s+3x—wy > — 7 2(s+w)+3w1+25—|—39: = ——s+ x+3w1 > 3w of credit.

Suppose sz < s. We take 4(r1 — s) + w1 out of Jy, leaving it Wlth (r1 +wy) —4r; +4s —wy >
43——(s+a:)+3w1 3s—§$+3w1>3w1

In all cases, K (J;) satisfies (7.4). For 2 < i < k, we have K (J;) = %(r1 +T}) so that we are done
by Lemma 7.1, Case 1. For J, we have that sOPT(J) increases by 3T (see proof of Lemma 8.3).
Note that %T > wy + %wk,1 + %wk,;), —ry > Nynr(J,r1), since rp > s > %:c > %wk. We also have
Ncom(J,m1) < Neowm(J, s), so J still satisfies (7.4).

Case 2. f > 1. We define Dy =1 —7r¢ > 0 (if r; = r¢, then by Lemma 5.4 OPT runs the jobs
in order of increasing size after time r; and hence f = 1) and Dy = (ry + wy) — (r1 + wy1) > 0 (if
Dy = 0, either J; would have already caused a restart before time 1, or J; would not have caused
a restart).

As in Case 1, we begin by checking the credit of J;. In this case, initially, K (J1) = 3(ry +wy) +
%wl — 71 since sOPT(Jl) =rs 4wy and s(J1) = 1. We take an extra wy out of K (Jy) for Jy.

Suppose r1 < z. Then §(rf +wy) — %wl —2r1 +s = %Dg +wi — %rl + s > wi. We have used
r1 < 2(s+ &) < 2s which holds since s > 2z.

Suppose s < x < r1. In this case we take 2r1+2w; —s—z of credit out of J1 Since r1 +wq < ( +

), we have that Jy is left with credit of 2 S(rytwp—wy)—=3r1+s+x = —D2 7"1—1—3—}—33 > 3D2+ w1.

Suppose z < s <11 < %x We take 2(7‘1 — 8) + 2wy of credit out of Jl. Since r1 + w1 < 38 in
this case, again Jp is left with at least %wl + 3D2

Suppose z < s < %:c < r1. We take (rl —8) 4+ 2wy + 2(r; — 5 x) out of Jy. J; still has
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I 1 | 2| 3 final
J1 %wl J1 0 %wl
Jr %rf—}—%wf—rl Jo 0 %wf
1=2,...,f—1:
Ji | 30y +wp+T) = Dy | Jir | wyp —wy | DTS 4 gy - Dy
i=f+1,...,k:
Ji | gy +T) — Dy Ji 0 3(rs +Ti) — Dy
J H NCOM(Ja S) + %T J 0 NCOM(J, 7”1) + N[NT(J, 7’1)

%(rf+wf—w1)—5r1—|—23—|—3$23x+2s—%r1—|—%D2Zx—%rl—l—%Dg—l—&ul23%w1+%D2 of

Table 3: Credits in Lemma 9.1

credit, using 3(r1 + w1) < 2(s + ).
Suppose %ac < s. We take 4(r; — s) + 2wy out of Jq, leaving it with %(rf +wp —wy) —5ry +4s >
43—3%r1+%D2 > 43—%(§(s+:c)—w1)+%D2 > gs—gsc—l—%Dg—i-%wl > %

5 5 7
§SZ §£C> gm

In all cases, (7.4) holds for J;. For the other jobs, we use Table 3.
In this table, the column marked 1 contains the credits of the jobs assuming the order J1, J¢, Ja, . ..
Jr—1,Jf41,- .., Jk, J, and after Ji has given away credit to J-large jobs as described in Table 1.
Column 2 shows the new order of the jobs. The credits stay in the same place, hence e. g. J2 now

has a credit of %rf + %wf —r1. Column 3 shows how much credit is gained by the reordering of

w1 + %Dg since

the jobs. Column 4 shows credit transfers; in this case, %rf is transferred from J to Ja. The last
column contains the final credit of each job. The numbers above the columns refer to the steps in
the procedure described at the start of this section.

We now show that the credit in the last column is sufficient so that all jobs satisfy (7.4). We

3

have wy = (ri +w1) —r1 < 3(s+a) —s =3z — 1s < gz < gz and r; > 22, so J; cannot start
before time wy. Hence Nyyr(J2,71) = 0. Also Neooy(J2,r1) < %(wg — wy). As in Case 1, we use
that sOPT(J) has increased by 37

Suppose r; + w; > wg. Then Nyyr(J,r1) < %(wk_l + wg—3). Therefore J can give %wk of

credit to Jy, and still satisfy (7.4). Then we find K(J2) > Da + %rf. We are done if ry > wy;

otherwise, since ry > %ac, Dy

K(J2) = Dy + 375 > 31y > 32 > Jws.
Suppose 71 + w1 < wi < x. Then %rf —r1>0,s0 K(J2) > %wf > %wg.

For jobs J3,...,Jf, we have Dy = wy — w1 — D2 < wy so we are done by Lemma 7.1, Case 2 if

(rf +wy) — (r1 +w1) > ry + %ac — %(s +x) > %rf. Thus

ry > w;_1. If ry <w;_1, then % +wy— Dy > %rf + %wf — 7y > w; 1 — 7y since 7y > %ac We
are done (Lemma 7.1, Case 3).

For jobs J¢yq,...,J g, we are done if 71 > w;_1 since then K(J;) > %(rf +T;)— Dy > %(wZ —
Wi;—1 —|—T;'72) (using D < UJf). And if r{ < w;_1, then %Tl —D; > %(wz —W;—1 —|—T;'72)+ (wi,l —7"1).

g

Lemma 9.2 If RSPT interrupts a job J at time r1, and OPT runs one large job before ARRIVE,
and STATIC holds, and the invariant held at time s, then it holds at time r1.

Proof. We distinguish between three cases depending on s and f. We ignore that oPT has to run
the jobs in BEFORE(J) too at some point; this can only decrease the optimal cost on the other

jobs.

)
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Case 1. s <x/2. We have ry +w; < %(s—i—x) < z,s0 f =1 by Lemma 5.4. Also bs(J) < s < z.

We have sOPT(Jl) >z and D(J1) <7 —=x,s0 K(J1) > %x + %wl — r1. On arrival of Jy, job J
is in Step 1 shifted by RSPT by r1 +w; — s time. We take r; + 2w; — s of credit out of J; for J, so
that Jj is left with %x + %wl —2(r1+wi)+s> %wl + %x — %s > %wl, so J; satisfies (7.4).

Credit transfers ~ For the Step 1-column, we use (6.1).

1 2 3 final
J1 %wl Jl 0 %wl
J | Nocom(J,s) +wy | Ja 0 Ncom(J, s) + w1

Jo %($+T2)—7“1 J3 | x — wo %($+T1—w2)+(w—r1)

Ii | s@+Ti) —r | J |z —wy | 3(e+Thor —wp) + (z —11)

Jy satisfies (7.4) by Lemma 7.1, Case 1; Jo as well, using that z > wq and bs(J) < b, (J2); the
other jobs too by Lemma 7.1, Case 3.

Case 2. s> x/2 and f = 1. Since f = 1, we have in Step 1 of our calculations that D(J;) <
min(z,ry) for 2 < i < k: after time r; +w;, RSPT first runs J (of size z) whereas OPT runs Ja, ..., Ji
immediately after J and Ji, at most min(z,r;) time earlier. We also have wy < 2(s+z) —ry <
%x — %s < %:c < 8,80 Nynp(J2,7m1) = 0.

If r;1 <z, we are done exactly as in Case 1.

Now suppose 71 > x. Since in this case K (J;) = %(7"1 + w;) initially, we have already checked in

the proof of Lemma 9.1, Case 1, that J; satisfies (7.4) after giving away credit as in Table 1.

Credit transfers (r1 > x)  See the following table.

1 2 3 final
Ji Fw1 Ji| 0 Fw1
J | Ncom(J,s) | Jo| O Ncom(J, s)

Jo %(QT—FTQ)—JT J3 | T — wo %(l‘—f—Tl—’wg)

Jg %(a:—}—Tk)—ac J |z — wyg %(w—l—Tk_l—wk)

Since r1 > x > w; for 1 < i < k, it follows immediately from Lemma 7.1, Case 2, that all jobs
satisfy (7.4).

Case 3. s > x/2 and f > 1. Write 7 = max(z,rf). Suppose r1 < x. Then at time 7 > rq,
OPT will run the remaining jobs in order of increasing size by Lemma 5.4. But then f =1, a
contradiction. Therefore ry >z and D(J;) < 7 — (7 +wy) < 0 using Property R3.

There can be only two jobs in ARRIVE that are interruptable, because the first one must have size
at least p = (r1 +w1)/2 > /2 by Property R5, the second one size at least p’ = (r1 + w1 +p)/2 >
%w, so the third should have size (r1 + w; + p + p')/2 > z, which is not possible for a job in
ARRIVE. Tt follows similarly that if J; is interruptable, then from ARRIVE only J;—1 or J;i1
can be interruptable as well. Moreover, since all jobs in ARRIVE start after time r; > x, for
every job J; in ARRIVE we have w;_1 — s;—1 < 0. Therefore if a job J; is interruptable, then
Nint(Jisr1) = 0. Moreover, in this case T;_1 < w;, because all jobs in ARRIVE start after time
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| Sy | J | Jy
1 %wl —|—%D2 NCOM(Ja S) T+2wf —D1 — T — W
2a J1 J J2
3a 0 0 0
2b J1 J2 J3
3b 0 0 T — wo
4 —%D2 0 %D2
final %wl + Do NCOM(J, S) %(wg - wg)
[ 2<i<f-1) |Jh(f+1<i<k-1)]|Jx
1 Dt py—a HL Dy —u LFf+Ty)— D1 —=
2a || Jia Ji Ik
3a wf — W; 0 0
2b || Jito Jiv1 J
3b T — Wit1 T — w; T — wg
4 0 0 0
final r+wf+Ti2,37wi,2 _ D1 r+Ti,237wi + D2 +wy r+Tk,227wk + D2 +wy

Table 4: Credit transfers in Lemma 9.2, Case 3

r1 > x. Thus in such a case we have
Noow (Ji,r1) = é(wi “T4)  and  Ninp(Jyri) =0 9.1)
If J; is not interruptable, and J;_5 is, then w;_o +w;_1 > = > w; so
Ncom(Jisr1) =0 and Nint(Jiyr1) = ma,x(gwi_g — 8i—2,0).

Since sOPT(J;) > F+wy, we have K (J;) > 3(7+wy)+3wi —r1. Define Dy = (F+wy)—(r1+wy) >
0, and Dy =71 — 7 > 0. We will make much use of the following property:
2 1

2 1
wf—Dgz(rl—i—wl)—fSg(s—i—x)—fggw—gfggw. (9.2)

This property implies D1 = wy — w1 — Dy < wyp — Dy < %9: and Dy < wy.

We consider the various possibilities for s and r; and take credit out of J; as described in Table
1. The calculations are identical to the ones in Lemma 9.1, Case 2, except that r; is replaced by
7 and Do is defined as above. It follows that J; ends up with credit of at least %(Dg + w;) and
satisfies (7.4).

Credit transfers  Since 11 > x, we can again use Case 2 of Lemma 7.1 to check if jobs satisfy (7.4).
We transfer credits as in Table 4. We now have columns for jobs in stead of rows as before, due
to space constraints. Note that in this case, there are two reorderings of the jobs (a and b). Also,
there is an additional row 4, indicating credit transfers between jobs. Note that the entries in this
row add up to 0. The entries in the last row will be explained below.

J1 is not interruptable because wy < %(s—l—x) —s= %m— %s < %x < %rl. Moreover, r1 > x > wa,
so Ninr(J2,71) = Ninr(J3,71) = 0. For Jo, we have Neooa(J,s) = %(x —bs(J)), x > wy and
bs(J) < by, (J2). Therefore Jy satisfies (7.4).
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For J3, we have K (J3) = %(F—i—wf)—Dl—a:—wl—i—a:—wg—i—%Dg = %(F—i—wf)—l—%Dg—wg—wf >
%(7’— 2wy —wy) + %Dg = %(wg — we) + %(f—wg — w3 —wyf + 3Dg) > %(wg — wg) using (9.2).
Fori=4,...,f we find

1
K(J;) = §(F+wf—|—Ti—2)—Dl—x+x—wi_1+wf—wi_2

L

> S(Ft+ws+Tig—wi2) =Dy (9.3)
L

= 5(7"‘}'Tif3—wf—wi72)+D2+w1 (9.4)

_ (it Tig—wio)+ (F-wy—wi+2Ds)  wit+Tig—wi

= 5 > ; ‘

If J; is interruptable, J;_o and earlier jobs are not and we are done. Suppose J; is not interruptable
and s;_9 < %wi,} (If s5_2 > %wi,g, we are done.) Then we use that s;_o > r; and we have from
(9.3)

(7 —wi—2 +T;—3) + gwia-

For J; 1, the calculations are similar, but from (9.4) we now derive K (Jy11) > $Ty_1+3(wyi1—T)
and K(J;) > 3Ty_1 + 0 (using (9.2)). Thus there is sufficient completion-credit, and the case
sp_1 < %wf_l is handled as above.

For i = f+2,...,k we have K(J;) > %(F—i-Tiq) D —z4+z—wi1> (r—i—T 3 — W —
wi—1) + Da + wy.

Suppose 71 < Sw;_9. Then K(J;) +711 > S(F+ T, 2 —wi1) +7 > 3(F + T3 — wi—1) + Sw; o,
and we are done.

Otherwise, s; 2 > > 2wZ 2 so Nint(Jiyr1) < 2w

Suppose wf > 22. Then D, > 1 and thus K (/J, )
T(wi — Da) > $(wi + T;-3 — w;1).

If wy < %:c, then also wy < %:c For this particular case only, we consider when OPT runs
the jobs in BEFORE(J). If any job in BEFORE(J) is completed after J¢, then by Lemma
8.2 there is extra credit available of %wf. We give this to J; which then has credit of at least
(i + Tj—3 —wi—1) + 2(F — w;) > &(w; + Ti—3 — w;—_1). If all jobs in BEFORE,(J) are completed
before J¢, then the credit of Jy is §bS(J ) larger than previously calculated. We give this to J».
Then K(J3) > 2x However, wy < 3w, so we take 63: out of the credit of Js again and give it to
J;. Then K(J) (r+ﬂ 3—wi_1) + x—i— wZ 9 — D1 > %(F—i—Ti,g — wj_1) since D; < %x and
D; < wa < 2wz 2.

For J, we calculate as for J¢;q in case k = f and as for J¢; o and higher in case k > f 4+ 1. (The
calculations for J¢,1,...,Ji hold for any job size at most x, so they also hold when applied to J.)
O

DN |

1
K(J;) + si2 > §(f+wf +Ti3 —wi—2) +7 >

Lemma 9.3 If RSPT interrupts a job J at time ri, and OPT runs at least two large jobs before
ARRIVE, and STATIC holds, and the invariant held at time s, then it holds at time r1.

Proof. Since RSPT only interrupts J before time 2z, we have f = 1: OPT starts to run the jobs in
ARRIVE after RSPT does, and will use the optimal order for them by Lemma 5.4. That Lemma
also implies that OPT runs not more than two large jobs before ARRIVE. If s < z/2, we have
r; < x for all jobs J; € ARRIVE. Then, again by Lemma 5.4, we may assume OPT runs only one
large job before ARRIVE: a contradiction. Hence z/2 < s < 2z and r; > x.
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H 1 ‘ 2 ‘ 3 4 ‘ final
J1 %wl + K7 J1 0 -K; %wl
J Ncowm(J, s) Jo 0 0 Ncowm(J, s)
Jo %T2+D1 J3 | x— wo —%—Dl %(CC—/UJQ)
1=3,...,k—1:
J; T + Dy Jiv1 | ©—w; | —2(z +wi_1) W + Dy
Jk %Tk-i-Dl J T — Wk —%(a:—i—wk,l) M%-FDl
J? | Ncom(J?,s) =Ty +wr | J°> | 0 | +Tk+Di | Ncom(J?% s)+ Dy

Table 5: Credit transfers in Lemma 9.3 (r1 < %a:, k> 3)

Suppose 4s(J) < z. In this case, we ignore that OPT has to run the job of this size too at some
time. This can only help opPT. The interrupt-delay caused by the current interruption is r; — s for
each large job that RSPT has not completed yet.

Credit of J1 and large jobs We define D; = —D(J;) = z +x9 — 11 > %w — %s + w;. We
have K(J1) = %(ac + z2) + %wl — r1. We consider the various possibilities for s and r; and take
credit out of J; as described in Table 1, and an extra w; for the small-job delay of J2. By these
reassignments, and because J and J? satisfied (7.4), we have in Step 1 that K(J) > 3(z — b,(J))
and K (J?) > $(z2 — ) — Ty + w1.

Suppose s < . Then r; < %(s +z) < %:c. We take 2(r1 + wi) — s — x of credit out of J; to
give to J and J?, and we let it keep %wl for itself. We denote the remainder, which will be given
to J2, by Ki. We have r; < %(x + s) — wi, so in this case K1 = %(x +x2) —3r1 — 2wy + s+ x>
o+ 3z — s+ wp > 0+ wi.

Now suppose £ < s < r; < %x In this case we need 2(r; + w;) — 2s for J and J2. Hence
K = %(:L‘-f—l‘g) —3r1 — 2wy + 25 > %(l‘—f—l‘g) — 2z +wy > 9 + wi.

Thirdly, suppose z < s < %w < r1. Now the required credit is in total 2(r; —s+w1) +2(r; — %9:)
Hence K; > %(a: + x2) — %3 — %ac + 3wy > %a: + 3w;.

Finally, if %w < s < ry the jobs require 4(r; — s) + wi, and again K; > %w + 3w;.

Credit transfers We transfer credits as in Table 5.

For 2 <i <k, we have D(J;) < (m+z+Tj—1) — (x +z2+T;—1) = r1 — z2 in Step 1. Using (6.1)
we have K (J;) > %(a:—i—a:g—i—Ti) —(r1 —z2) > %Ti—i—Dl for 2 <3 <k.

J1 is not interruptable by Property R5 since r; > max(x, s) and 1 +w; < %(54—33) < %max(s, x),
hence Nynr(J;,r1) = 0 for 1 < i < 3. Furthermore, D1 = z 4+ z9 — 71 is an upper bound for the
total amount of future interrupt-delays caused by interruptions of jobs before J? that have arrived
so far.

Suppose k < 2. In this case we do not use the table. If k = 1, we are done immediately. If
k = 2, then Nyyp(J,71) = 0 and K(J) = %TQ + D1+ —wy = %(:E — we + wy) + %m + Dq.
Thus J can give %x + D1 to J2, and J; can give an additional K; > %w to J2. Then J? receives
in total x + D1 > we + D1, and it received w; already from J; at the start. Thus J 2 satisfies
(7.4). For job Ja, we have K(J2) = Neom(J,s) = 2(z — bs(J)), > wy and by, (J2) > bs(J), so
K(J2) = Ncom(J2,71).

Suppose k > 3. In this case we use Table 5. J3 can give D; away because Nyyr(Js,r1) = 0. We
distinguish between two cases: 1 < %:v and r1 > %ac
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Case 1. 11 < %w: The jobs Ju, . . ., Ji, J, J? have sufficient interrupt-credit because they have D;.
Since x > w; for i = 4,...,k, all these jobs also have sufficient completion-credit. Ja satisfies (7.4)
as above.

Hence we only need to show that the total transferred credit in Column 4 is at most 0, i. e. we do
not in total give more credit to jobs than we remove from jobs. In other words, all the credit given
to J? is actually available. To see this, note that %(x + w;—1) > w;—; for 2 < i < k. Furthermore,
ifry < %m (shown in the table), we have Kj > z9 > wy, and the additional D; from J3 completes
the credit given to J2.

Case 2. r; > %a:: Denote the jobs that RSPT starts to run at time ry alternatively by Ji,..., J./,
then by (7.1) we have Nyyp(J/,r1) < %w;%. We take D; from J3 as before and also D; from the
very next job Jy (Jy € {Ja,J}). We can do that because Nyy7(Jj,r1) = 0. This makes in total
again at least T}, + D1 to give to Jy, since in this case K; + Dy > xo > wy. Giving it to J? again
ensures that J? satisfies (7.4).

Now suppose £s(J) > z. In this case OPT runs only one more large job than RSPT before
ARRIVE. Hence in this case, J? does not have small-job delay and we are done after Step 3 in the

table: all jobs already satisfy (7.4). O

10. JOB COMPLETIONS

We divide the job completions into cases based on how many large jobs OPT runs before ARRIVE.
The case where no jobs arrived at all while RSPT was running J is treated separately in Lemma
10.1. An overview can be found in the following table.

Large jobs before ARRIVE by OPT ‘ 0 ‘ 1 ‘ 2 ‘ More than 2
Lemma | 10.2 | 10.3 | 10.4 | 10.5,10.10

Remember that to calculate the initial credit of jobs, we will use Event assumption 2. Since all
jobs in ARRIVE are smaller than z, and complete after J, we have immediately Nooas(Ji,t) = 0
for Jl,. ‘e ,Jk.

We use again Event assumption 3.

Lemma 10.1 If RSPT completes a job J and no jobs arrived while it was running J, and STATIC
holds, and the invariant held at time s, then it holds at time t.

Proof. RSPT now starts the run the smallest available job at the time that was calculated in the
analysis of the most recent event. Hence, for the remaining jobs the situation (and the credit) does
not change. The completed job has nonnegative credit. O

Lemma 10.2 If RSPT completes a job J without interruptions and OPT does not run any large
jobs before ARRIVE, and STATIC holds, and the invariant held at time s, then it holds at time t.

Proof. We use similar tables as in Section 9, starting with a job order for which it is easy to
calculate the credits and then reordering the jobs. Here we ignore that RSPT starts to run the jobs
already at time s and not only at time 7;. This gives us a lower bound for the amount of credit
that is actually available.

Applying Lemma 8.2 repeatedly, we have that there is %T of credit available. We give this to J.
We consider first the credit of the jobs if RSPT would run the jobs in the same order as OPT, and
starting at time ry. Then J starts T' time later than calculated at the previous event, and thus
only has %T left of the %T that it just received. In Step 1, we have that RSPT starts each job at
the same time as OPT starts it. See Table 6. We use (6.1).
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1 2 3 final
Jy 3(rs +wy) J | —(z—wy) 0
Ji(i=1..., f=1) | gy +w+T) | Ji | —(z—wy) 5T
Ji (i=f+1,...,k) 3(ri +T5) Ji—1 | —(z — w) 5(T — wy)
J Ncom(J,s) + 3T | Jy 0 Ncom(J,s) + 5T

Table 6: Credits in Lemma 10.2

We use in this table that 3(r; +wys) — (z —wy) = 3wy — 2+ 3rf > s —rs > 0, which holds since

%wf >s+x— %rf. For J¢,...,Jy—1 we also use that x — w; < o — wy. Note that T; —wy > T; 4
for i > f. Hence all the jobs in Table 6 satisfy (7.4) by Lemma 7.1, Case 1. Note that this proof
also holds for f = 1. O

Lemma 10.3 IfRSPT completes J without interruptions and OPT runs one large job before ARRIVE,
and STATIC holds, and the invariant held at time s, then it holds at time t.

Proof. If s < z/2, the jobs in ARRIVE start within a factor of % of their optimal starting time
(and run in the best possible order), so that the credit of J; is at least 3 Zj-:l w; by (6.1): all jobs
in ARRIVE satisfy (7.4) by Lemma 7.1. The same thing holds if s > 2z.

Suppose z/2 < s < 2x. This implies Nyyp(Ji,t) < 2wi—g — t < %wi_4 for 4 < ¢ < k and
Nint(Jist) =0 for 1 <4 < 3. Recall that Nooar(J;,t) =0 for all J; € ARRIVE.

Suppose 1 < f < k. We define vy = sOPT(J;) — 2(s+2) > 0 and § = max(s,z +bs(J)). Suppose
first that OPT runs the jobs in BEFORE(J) before ARRIVE, then sOFT(J;) > § 4 w;. We have

1 3 1 3
K(Jp) 2 5(5 +wy) = (s + 2= 3) = 55+ gwy — (s +2) = Jvp —wy.
If s < @ +bs(J), then wy — vy < 2(s+2) — 5 < 2(z+bs(J) +2) — (x4 bs(J) = 3z — bs(J)). If
s > x+bs(J), then wy —vy < 2z —1s < L(z —bs(J)) as well. Using this bound, we transfer credits
as in Table 7. It can be seen that the entries in Column 4 add up to at most 0, and that all jobs
satisfy (7.4).

| 1 2 | 3 | 4 | final
J %(:c—bs(J)) J 0 —1% x —bs(J)) 10
Jf , %Uf_wf1 J1 0 g(xIbs(J)) SVf
J1 5Vf — Wy + W1 Ja Wy — Wi W1 5Vf
1=2,...,f:
J: §J; —we+ LT J —w; Lwij —w;_1) | 3vp + 31T,

i 2Vf f T2 i+l | Wf — Wi 2 sz Wi-1 2Vf T 34i-2
Jpo | vy —wp+ 25 g | 00 | SR duy [0+ 3Ty
t=f+2,...,k:

T,
Ji | dvp—wp+ T L g |0 0 Sug+ 3Tis

Table 7: Credit transfers in Lemma 10.3 (1 < f < k)

If f = k, then we cannot take %w 7—1 of credit out of J;; because there is no such job. However,

we can now give %S(J) from J to Jy instead of to Jy;1, and %S(J) > L(wp—vyp) > (w1 —vy).

Finally, consider the case where OPT does not run all jobs in BEFORE 4(J) before all the jobs in
ARRIVE. Then OPT runs one job in BEFORE,(J) in particular after job J;, which implies that
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there is an additional %wf of credit available by Lemma 8.2. We can give wy to J; and %wf to
J¢41 (instead of giving those jobs credit from J). For the other jobs, we can still transfer credits
as in Table 7. If f =k, we give %wf = %wk to Ji. O

Corollary 10.1 If RSPT completes J without interruptions and OPT runs one large job before
ARRIVE, and STATIC holds, the jobs in ARRIVE need to receive at most an additional %(wf -
vf) < 2z — bs(J)) of credit in total in order to satisfy (7.4), where vy = sOPT(Jy) — 2(s + z).

Lemma 10.4 IfRSPT completes J without interruptions and OPT runs two large jobs before ARRIVE,
and STATIC holds, and the invariant held at time s, then it holds at time t.

Proof. If /,(J) > x, there is nothing to prove since the same number of jobs is delayed by RSPT
and by OPT, and RSPT starts the jobs in ARRIVE at most a factor of 3/2 after OPT starts them
since s > x. Hence, the jobs in ARRIVE satisfy (7.4) and the remaining large jobs gain credit by
Rule C2 and still satisfy (7.4). (We can assume OPT runs the same two large jobs before ARRIVE
as RSPT, similarly to Event assumption 3.)

Suppose ¢s(J) < z. Denote the largest of the two jobs that OPT completes before ARRIVE by
J?. We distinguish between the cases s < 3 and s > xo.

Case 1. s < x9. Then K(J;) > %(w + z2 + T;). Note that Necom(Ji,t) = 0, and Nynr(Ji,t) <
%Ti_g. We let each job J; keep %Ti_l and give %(ac + 2 + w;) > %wi to J2. This is sufficient to
both pay for the small job-delay of J?, which is T, and to add %T for Kinr(J?), which ensures
K(J?) > Neom(J?,t) + Ninr(J2, ).

Case 2. s > x3. Then the jobs in ARRIVE are not interruptable, hence Ninyp(J;,t) =
Ncowm(Ji,t) = 0 for all jobs J; € ARRIVE. Therefore, Nryr(J2,t) = 0. Consider the set
BEFORE(J) of jobs that RSPT already completed, and suppose OPT completes all these jobs
before Jj.

Then we have K(J;) > 3(max(s,z + 22)) + 3T, — (s + @) > 3T; for i = 1,...,k — 1 and
K(Ji) > 3(max(s,z +z2) +bs(J)) + 2T} — (s + ) > 3bs(J) + 2T}, All the credit of these jobs can
go to J2. The sum is at least 3bs(J) + Tg—1 + swy,. Furthermore, J? receives 3 (z — bs(J)) from J,
and it loses at most T}, because it is delayed by RSPT. Hence in total J? does not lose credit and
still satisfies (7.4).

Finally, suppose there is a job in BEFORE(J) that OPT does not complete before the final job
Ji in ARRIVE. By Lemma 8.2 there is %wk of credit available that we can give to J?2, in addition
to the Ty_1 + %wk that it gets from the jobs in ARRIVE. This is sufficient for J? to satisfy (7.4)
again. U

10.1 OPT runs at least three jobs before ARRIVE

Define 6(t) as the number of jobs OPT has completed minus the number of jobs RSPT has completed
at time ¢. Property R4 implies that if RSPT is running a job of size x at time ¢ < 2z, then §(¢) < 1.
In other words, 6(t) > 2 = ¢t > 2z. Thus as long as §(t) > 2, no jobs are ever interrupted by RSPT
by Property R5.

Lemma 10.5 Ifé(s) < 1, and a job J is completed by RSPT, and STATIC holds, and the invariant
held at time s, then it holds at time t.

Proof. Because of Lemma 10.1, 10.2, 10.3 and 10.4 we only need to consider the case where OPT
runs a > 3 large jobs before ARRIVE. Since §(s) < 1, after time s OPT still starts a—2 > 1 J-large
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job before it runs the jobs in ARRIVE. Therefore, RSPT completes the jobs in ARRIVE no later
than OPT does. Moreover, a = 3 since the jobs in ARRIVE arrive before OPT completes the third
J-large job. We have K (J;) > %(3$ +T;) > 2w;. We give w; to any jobs that RSPT completes after
ARRIVE and oPT before ARRIVE, since the jobs in ARRIVE are not interruptable and do not
need any credit themselves: we have s > z, else a < 2. There are at most two such jobs, and their
credit decreased by T because of the jobs in ARRIVE, using Rule C1. Therefore they get all the
lost credit back from the jobs in ARRIVE, and again satisfy (7.4). O

Suppose d(s) > 2. It can only happen during the final run of a job that J(s) increases from
at most 1 to above 1, because we can apply Property R4 whenever a job is interrupted. For any
maximal interval [a,b) in which §(s) > 2 and where RSPT completes a job at time a, denote the job
that it completes at time a by J(a).

Lemma 10.6 Suppose OPT starts its next J(a)-large job after time a at time sy. Then there is a
time t € (a,s2 +w(J(a))] such that §(t) < 1.

Proof. At time a, RSPT starts to run the J(a)-small jobs that arrived while it was running J(a).
Suppose §(t) > 2 in the entire interval (a, s2 + w(J(a))], then RSPT does not interrupt any job in
this interval. Then in this interval, it certainly completes at least as many jobs as OPT starts and
completes in the interval (a — w(J(a)), s2] (it is possible that OPT decides not to run some small
jobs that have arrived yet, but then it can only complete less jobs in (a — w(J(a)), s2] than RSPT
does in (a, s2 +w(J(a))]). Thus é(s2 +w(J(a))) < d(a) < 1. O

Lemma 10.7 Suppose 6(s) > 2 for a job J. Then J(a) is J-large.

Proof. At time a — w(J(a)), OPT has completed at most one job that RSPT has not completed,
and such a job can only be J(a)-large. At time a, RSPT completes a J(a)-large job, namely J(a)
itself. OPT completes at most one J(a)-large job in the interval (a — w(J(a)),a]. Thus at time a,
OPT has (still) completed at most one J(a)-large job more than RSPT.

By Lemma 10.6, OPT does not complete any other J(a)-large job within the current interval
where §(¢) > 2. On the other hand, at time s RSPT has completed all J-small jobs that have
arrived, so OPT must have completed at least two J-large jobs that RSPT has not completed. Then
J must be J(a)-small. O

Lemma 10.8 Suppose 6(s) > 2 for a job J. Then s > 3.

Proof. J(a) is J-large by Lemma 10.7. At time s, RSPT has completed all J-small jobs that have
arrived. Also it has completed J(a). There are two cases.

If oPT completes J(a) before time s, and at least two other J-large jobs, then s > w(J(a))+2z >
3z. If oPT does not complete J(a) before time s, there must be at least three other J-large jobs
that OPT has completed at time s since §(s) > 2, and thus s > 3z. O

Lemma 10.9 If(s) > 2, then at time s the total size of the smallest §(s) —1 jobs in RSPT’s queue
is at most min(w(J(a)),a/3).

Proof. We begin by showing it holds at time a. At that time, we have that §(a) — 1 jobs that OPT
has completed and RSPT has not, were started and completed by OPT in (a — w(J(a)),a]. Thus
their total size is at most w(J(a)). Then the total size of the §(a) — 1 smallest such jobs is certainly
at most w(J(a)).
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If a > 3w(J(a)), the other bound also follows immediately. Otherwise, if OPT completes two
J(a)-large jobs before time a, we use a — 2w(J(a)) < a/3. Finally, if it completes only one, then
the first J(a)-small job that OPT completes in (a — w(J(a)), a] must complete after time Za, since
it does not cause an interruption. Thus the §(a) — 1 smallest jobs can start and complete in an
interval of size a/3. (Note that if OPT completes a J(a)-large job in (a — w(J(a)),a| in this case,
then 6(a —w(J(a))) <0.)

Now we show that it holds later, by induction. Consider a time s for which (still) d(s) > 2.
Denote the number of jobs that RSPT and OPT complete in (a, s] by ¢; and cg, respectively. From
these ¢y jobs and the last §(a) — 1 jobs that OPT starts and completes in (a —w(J(a)), al, there are
then exactly 6(a) — 1+ ca — c1 = d(s) — 1 jobs that RSPT must still run. The total size of the ¢;
jobs that RSPT completes in (a, s is exactly s — a, so the total size of these §(s) — 1 jobs is again
bounded by min(w(J(a)),a/3). Then this certainly holds for the smallest §(s) — 1 jobs that RSPT
must still complete. O

Lemma 10.10 If 6(s) > 2, and a job J is completed, and STATIC holds, and the invariant held
at time s, then it holds at time t.

Proof. Since §(s) > 2 = s > 3z by Lemma 10.8, the jobs in ARRIVE(I) require 0 credit because
they cannot be interrupted and a larger job completes before them. Because of Lemma 10.9, the
d(s) — 1 smallest waiting jobs also require just 0 credit for the same reason (using s > a).

We first consider an alternative schedule, where RSPT runs the jobs in ARRIVE(I) not just after
J, but after the §(s) —1 > 1 smallest waiting jobs in RSPT’s queue. (If §(s) = 2, this is only
J.) The jobs in ARRIVE(I) then cause only small-job delay for at most one job J', and they are
executed within +s of their optimal starting time. Therefore each such job J; has credit of at least
Hs+T) - 5> gTZ + s > 1T, + 22(I) > w;, which it can give to J' to make up for its small-job
delay. By finally putting the jobs in the correct order (but keeping the credits in the same locations
as usual), the total amount of credit does not decrease. This proves the lemma. [l

Lemma 10.11 If RSPT completes a job J, and STATIC holds, and the invariant held at time s,
then it holds at time t.

Proof. This follows from Lemmas 10.1, 10.2, 10.3, 10.4, 10.5 and 10.10. U

11. INTERRUPTIONS, s < 2z/3
In Section 9, it was shown for several situations that the invariant keeps holding if an interruption
occurs. There is only one case left of the situation where OPT does not complete any large jobs
before ARRIVE, and this is the complement of Lemma 9.1: s < 2z/3.

We will use the following Lemma. We do not use Assumption 2 at time s or r;.

Lemma 11.1 For any input sequence o, where some run-interval I = (s(J),r1] ends with an inter-
ruption, and where s(J) < %w(J), and where OPT does not run any J-large job before ARRIVE(I),
it is possible to modify the release times of some jobs so that o can be divided into two sequences
01,02 so that the schedule of RSPT for o1 is unchanged and the schedule for oo is unchanged starting
from time s(J); no job in o2 arrives before time s(J); J € oo arrives at time s(J); all other J-large
jobs arrive at time r1 or later; and OPT(01) + OPT(02) < OPT(0).

Proof. We divide ¢ into two parts: we let o1 contain the jobs from ¢ that RSPT completes before
time s(J), and o} all the other jobs.
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All jobs in oy are finished by RSPT before time s(.J) < 2w(J). The jobs in o either have size at
least w(J) or arrive after time s(J) by definition of RSPT. Therefore, when processing o, the total
completion time of RSPT of the jobs in o} is the same as it would have been if the jobs in ¢ all
arrived after time s(.J): any job in ¢4 that is running before time s(.J), is interrupted immediately
whenever a job in o; arrives, since such a job from ¢} has size at least w(J).

Moreover, OPT does not start any J-large job in o) before time rq, since OPT runs ARRIVE(I)
before any J-large job and OPT does not complete any job in ARRIVE(I) before time r; by Property
R3. Therefore, the optimal total completion time of the jobs in ¢ is unaffected if we constuct oo
by changing the release time of J to s(J) and the release time of all other J-large jobs in o} that
arrive before time rq, to r1. Clearly, this cannot affect the optimal total completion time of the
jobs in o1. (Note that it is possible that OPT still runs some jobs in o; after time s.)

Thus RSPT(01) + RSPT(02) = RSPT(0), OPT(01) is the cost of o1 in o, OPT(02) is at most the
cost of 04 in o and we are done. O

Thus if there is an interruption at time rq, and s < %x, we can consider all the jobs completed
earlier as a separate job sequence and make the following assumption:

Global assumption 3 The interrupted job was the first job in the input sequence.

Consider such an interruption and make assumption 3. If f = 1, we can in fact assume all jobs
in ¢ arrive at time rq, since both OPT and RSPT start and complete all jobs in ¢ after time ry.
Then we are in the case where r; is the end of an interval in which RSPT was idle, and we apply
Lemma 7.1.

In the remainder of this section, we only need to consider the case f > 1. The important thing
about Assumption 3 is that it implies that the first event of this sequence occurred at time s, and
the job that started then still has all of its original credit. This is much more credit than could be
deduced from the invariant.

Lemma 11.2 If RSPT interrupts a job J at time r1, and OPT runs no large jobs before ARRIVE,
and /3 < s <2x/3, and f > 1, and STATIC holds, then the invariant holds at time ry.

Proof. We use Assumption 3 and consider the credits of the jobs, assuming J arrived at time s.
Again we can assume all J-large jobs besides J arrived at time r; (thus not using Assumption 2 in
this case). Define Dy =71 —ry >0 and Dy = (ry + wys) — (r1 + w1), as before. See Table 8.

I 1 2| 3 | 4 | final
Jy W“L% — D A 0 W %wl + Dy
J1 7rf+w2f+w1 — D1 J2 wf — W1 7w1+2;f_wf %Tf +wi + D2
i=2,..f—1:

retwe+T; retwr+T; 1 —w;

Ji | - Dy | Jig | wp — 0 LT om0 4 Dy 4wy
i=f+1,...,k:
Ji| " -Di | g 0 0 il Dy
T H rf+€k+ﬂc D 7 0 _%rf Tk2+m - D

Table 8: Credit transfers in Lemma 11.2

Jy satisfies (7.4) by Lemma 7.1, Case 1.
For Js3, note that %rf > %s > %x > %w2, and use the same lemma.
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Figure 3: An example of a late interruption

Fori=3,...,f, weuse ws > w;, Do+wy = (ry+wyp)—r1 > ws—ry > wi—1—r1 and Dy+wy > 0.
This shows these jobs satisfy (7.4) by Lemma 7.1, Cases 2 and 3.

Fori=f+1,...,k we use K(J;) > %TZ — D = %(wl —w;—1 + T;—2) + (wi—1 — D1) and note
that w;_1 — D1 > w;—1 —r1 and w;—1 — D1 = w;—1 + D2 —wy +wy > D2 + w1 > 0, and we use the
same Lemma. We can reason analogously for J (implying that we can indeed take %7‘ ¢ out of the
credit of J) and for J-large jobs. O

Note that the proof of Lemma 11.2 works as long as ry > 2/3. From now on, we assume 7 < x/3.
For this case, we use the same credit transfers as described in Table 8. However, in this case, this
may not be enough for job Jy to satisfy (7.4). We make one additional transfer apart from the ones
mentioned in Table 8: we give Dy from J; to Jo. By (5.1), we have Dy = 74 — 7y where 74 > 0 and
71 < 0. See Figure 3.

Lemma 11.3 Consider the jobs involved in a slow interruption as above. If Jo does not satisfy
(7.4), then

1. s(J1) > wy
2. wf>%:v

3. T1—|—’LU1>%£E
4. fe{k—1,k}

Proof. After the above transfers, we have K(J3) = %rf + wy + 2Ds.

1. Suppose 71 < wi. Then wi + Dy = wi + 71 +wp —r1 —wi > wp —1rq > %(wl + wg) —r1, and
wy + Da > 0, so Jo satisfies (7.4).

2. Suppose wy < %a: Then also wy < %x Moreover, since ry + wy > %(s +z) > %x we have
re> L. If Jy does not satisfy (7.4), then (using item 1) %rf +wi +2Dy < 2
thus 5wy + 2Dy < 7 — 7 = 0, a contradiction.

3. Suppose r1 + wy < %x We have Dy > r¢ +wo — (11 +wi) > rf +wy — %a: If wy > %x, then
2Dy > 2wy — x > %wg. If wy < %w, then Dy > 7y +wy — %w > %w and 2Dy > %wg. In both
cases, we find that Jo satisfies (7.4).

4. If f=k—2or f < k— 4, we can take %wf out of the credit of J and still satisfy (7.4). If
f =k —3, we can take w1 out of K(J). O

N[

J2 may not have enough credit to pay for its completion (it does not need to pay for interruptions
of Ji, or of smaller jobs that arrive before Jy starts). The credit to pay for the completion of Jy
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will have to come from another job. We will show that we can use some of the credit of J to pay
for this. To begin with, we transfer 2D of credit from J; to J. Then, we divide the credit of J as
follows. First suppose f = k.

r—ws+ 4D r+rs—(r1+w)+3D 1 3

Kcom(J) = f2 2> =1 12 ) 2> é(m—l—rf) +§D2; (11.1)
1 1

K[NT(J) = §Tf,1 + UJf — D1 Z §Tf,1 + (UJf — 7‘1). (112)

If f =k — 1, note that Jj cannot start before time x > wy since r1 + w1 +wy > 5§+ § = x by
Lemma 11.3. Hence Nynp(J,71) < %Tk_g + %wf —r1. We have

1
KCOM(J) = E(x — wk) + 2D2

1 1 3
Kinr(J) = §Tk—1 + (wr, — Dy) > §Tk72 + (§wk — D)

so J can certainly give 3 (wj, — wy) to its own completion-credit, so that we again have (11.1).

We now consider the events after time r1, using the analysis from the previous sections. Note
that in those analyses, in some cases a job J' transfers its completion-credit Noops(J', s) to another
job: this happens if J' is interrupted. However, the target job can only be a smaller job than J'.
We need to keep track of the job that does not have enough completion-credit. This job will be
called red and be denoted by Jg. Job J above, that was slowly interrupted, will be called green
and be denoted by Jg. It satisfies (11.1) at time r;.

Lemma 11.4 Suppose there exists a red job Jgp and a green job Jg. Until Jp completes, all jobs
besides Jr and Jg satisfy (7.4), and (5.2) holds. Moreover, there will appear no further red jobs
until Jg completes. Jg is the job that was slowly interrupted at time r1, and satisfies (11.1).
Kinr(Ja) = Ninr(Ja,t) holds for all times t where an event occurs, up to and including the
completion of Jg.

Proof. We consider the events in the sequence from the first event after time r; until the last
event before Jr completes, and use induction. At time r; (the base case), all the statements of the
lemma hold.

Since OPT starts J; before time ri, it completes J; before any job that arrives later. Since
wr < wy by induction, we are always in the case where OPT completes at least one J(I)-large job
before ARRIVE(I). This implies in particular that as long as Jg is not completed, there can occur
no further slow interruptions where OPT does not run any large jobs before ARRIVE, so no further
red jobs can appear.

Consider a later event. If it is an interruption (either of Jg, or of smaller jobs), consider the
credit of the jobs in Q). As can be seen from the credit reassignments in lemmas 9.2 and 9.3, if Jr
is interrupted, it is possible that another job in stead of Jg becomes red as a result. However, this
can only be a job smaller than Jgr. Furthermore, job Jg keeps satisfying (11.1) throughout such
interruptions, since of Jg-large jobs only the amount of interrupt-credit can be affected. Also, the
credit of Jg is not transferred to another job, so it is the same job that remains green. If there is an
interruption of a job smaller than Jg, then Jg remains red for the same reason. In both cases, all
other jobs satisfy (7.4) by the analyses in those lemmas, including the job that was Jg if another
job is red now.

Now consider a completion of a job J' before Jgr completes. Then J’' and any smaller jobs that
arrived while J’' was running are all small relative to Jz and Jg. In Lemma 10.3, Jz and Jg are
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then among the large jobs whose credit increases by %T(I "), and remain red and green respectively.
Their completion credit is unaffected. In Lemma 10.4 and Lemma 10.5, the same holds. In Lemma
10.10, the credit of Jg can be moved to another job (that thus becomes red), but then that is again
a smaller job. O

At some point, the red job Jr will complete. By (7.3), as long as we maintain Koo (J) >
2(z — bs(J)), we can take credit out of J to pay for the completion of Jg.

Lemma 11.5 Suppose there is a red job. When it completes, credits can be transferred so that all
jobs satisfy (7.4).

Proof. Denote the set of jobs that arrive during Jgz’s final execution by ARRIVE', and their total
size by T". Note that OPT completes J; > Jp before ARRIVE'. There are thus three cases.

Case 1. OPT completes exactly one Jp-large job before ARRIVE' (i.e. job Jy).

By Corollary 10.1, the jobs in ARRIVE' need at most %(w}, — ) < swr < 3wy of credit to
satisfy (7.4). We have that the credit of J increases by $7".

Claim: K(J) > #(z +1¢) + 2Dy + Ninr(J, ') + 5T

Proof: At the previous event, J satisfied (11.1) and Kinr(J) > Ninr(J,t). If Jg started after
time wp, none of the jobs in ARRIVE' are interruptable and the claim follows. Otherwise, note
that J had enough credit to pay for interruptions of Jr until time wg, because it was green. (By
Table 1, any job following a job J* that is interrupted after it started before time w(J*), needs to
pay for this itself until time w(J*).) This credit can now instead be used for any interruptions of
jobs in ARRIVE' until time 2wg. O

Thus %T’ can go to the jobs in ARRIVE' that need it. Moreover, since w}, — v}, < %wf < %x
using Corollary 10.1, we can also take %(w}, — v},) < %m out of the credit of J and still have
Kcom(J) > Neom(J,t), because we take at most half the size of a job that completes before .J
out of J’s credit, and J actually has at least this amount of credit by (11.1).

If ' < k', we have 37" > w', and hence %(w}, — V) < T+ %(w}, — v},), which is the amount
we could take from J.

If f' =K' > 1, we have 31" > %(w}, +w_;). We can give %w},_l to J} and %w}, to Ji. Also,
we give %(w}, — V) < %w}, from J to J{. It can be seen from the proof of Lemma 10.3 that this
is sufficient.

If f' = k' =1, then 3T’ = lw). Giving this and an additional (w} — v}) < min(z, fw}) from
J to Ji is sufficient as in the proof of Lemma 10.3.

Case 2. OPT completes two Jg-large jobs before ARRIVE'.

If oPT runs two large jobs other than J before ARRIVE', we again have that the credit of J
increases by %T’ and we can reason as above.

Suppose OPT completes J and Jg before ARRIVE'. Following the proof of Lemma 10.4, we
are done immediately if s < z, so suppose s > x. This implies the jobs in ARRIVE' are not
interruptable, so Nyy7(J,t) < Nynr(J,s). Then K(J}) = 3(wg + z) + 3T} — (s + wg) = 3(T] +
wg) + 3z — s. This implies that as long as s < 3z, we can give £ (w} 4+ wys) > w} to J from each
job J!, which is sufficient: J receives in total at least 7", which it lost because s;(.J) increased.

Otherwise, note that we only need to find an extra %w}c, of credit to give to J, since J gets at
least Ty—1 + 2w}, from the jobs in ARRIVE'.

Suppose wg < 3z. If s < & + wg then K(J;,) > $(wr + z) + 3T — wgr > $(x — wg) + Jw), >
tz+ Jwl, > 2w, and if s > x + wg then K(J},) > 3s+ 3T —wp > $(z — wg) + 3w}, > 2w),.
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We can take the last %w}c, < iw r < %w out of the credit of J, and then all the small job-delay is
paid for; J still satisfies Kconm(J) > Neom(J,t).

Finally, if wg = 2z+a for some a > 0, then Dy = (ry+wys)—(r1+w1) > s+ 2z+a—3(s+z)
and we can take 1w}, + 2D, out of Kconm(J) itself, since we then still have Kconr(J) > &(
wyg) + 2Dy — 3wy — 3Dy > L(z — 3(wy — D3)) + D3 > 0. Here we use

>a
x_

2 2
wf—D2:r1+w1—rfSg(s—i—x)—rfggsc.

Since we take only less than half of the size of a job that completes before J out of the credit of J,
we also still have Kcom(J) > Neom(J, s) as before. To complete the missing credit, we can take
%(w}c, — a) out of K(J},); the calculations are similar to above.

Case 8. OPT completes three or more Jg-large jobs before ARRIVE'. Note from the proofs of
Lemmas 10.5 and 10.10 that in this case, no completion credit from Jg is required to pay for any
small job-delay. Hence we are done immediately. O
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