
ar
X

iv
:1

40
3.

73
47

v1
 [

cs
.L

O
]

 2
8

M
ar

 2
01

4

Axiomatization of Finite Algebras

Jochen Burghardt

GMD FIRST, Kekulestraße 7, D–12489 Berlin, jochen@first.gmd.de

Abstract. We show that the set of all formulas in n variables valid in
a finite class A of finite algebras is always a regular tree language, and
compute a finite axiom set for A. We give a rational reconstruction of
Barzdins’ liquid flow algorithm [BB91]. We show a sufficient condition
for the existence of a class A of prototype algebras for a given theory Θ.
Such a set allows us to prove Θ |= ϕ simply by testing whether ϕ holds
in A.

1 Introduction

Abstraction is a key issue in artificial intelligence. In the setting of mathemat-
ical logic and model theory, it is concerned with the relation between concrete
algebras and abstract statements about them in a formal language. For purely
equational theories, the well–known construction of an initial model (e.g. [DJ90])
allows one to compute a kind of prototypical algebra for a given theory. In the
other direction (i.e. from concrete algebras to theories), however, no computable
procedures are yet known. While it is trivial to check whether a given formula
is valid in a given finite algebra, it is not clear how to find a finite description
of all valid formulas.

In 1991, Barzdin and Barzdin [BB91] proposed their liquid–flow algorithm
which takes an incompletely given finite algebra and acquires hypotheses about
what are probable axioms. We give a rational reconstruction of this work that
is based on well–known algorithms on regular tree grammars. We give a corre-
spondence between Barzdins’ notions and grammar notions, showing that the
liquid–flow algorithm in fact amounts to a combination of classical grammar
algorithms (Thm. 10).

The correspondence leads to synergies in both directions: Barzdins’ approach
could be extended somewhat, and a classical algorithm seems to be improvable
in its time complexity using the liquid–flow technique.

Next, we focus on a completely given algebra and show how to compute finite
descriptions of the set of all variable–bounded formulas valid in it. This set is
described by a grammar (Thm. 11) and by an axiom set (Thm. 13).

We relate our work to Birkhoff’s variety theorem [MT92], which states that
a class A of algebras can be characterized by equational axioms only up to its
variety closure vc(A). If A is a finite class of finite algebras such that vc(A) is
is finitely axiomatizable at all, we can compute an equational axiom set for it
(Cor. 15).

http://arxiv.org/abs/1403.7347v1

As an application in the field of automated theorem proving, we give a suffi-
cient criterion for establishing whether a class A of algebras is a prototype class
for a given theory Θ (Cor. 17). If the criterion applies, the validity of any formula
ϕ in n variables can be decided quickly and simply by merely testing ϕ in A,
avoiding the search space of usual theorem proving procedures: Θ |= ϕ if and
only if ϕ is satisfied in every A ∈ A.

Section 2 recalls some formal definitions. In order to make this paper self–
contained, we refer well–known results on regular tree grammars that are used in
the sequel. Section 3 first gives a rational reconstruction of Barzdins’ liquid flow
algorithm; then we show how to compute an axiom set for a finite class of finite
algebras. In Sect. 4 and 5, we discuss the applications to Birkhoff characteri-
zations and prototype algebras in theorem proving, respectively. A full version
including all proofs can be found in [Bur02].

2 Definitions and Notations

Definition 1. [Sorted term, substitution] We assume familiarity with the classic
definitions of terms and substitutions in a many–sorted framework. Let S be a
finite set of sorts. A signature Σ is a set of function symbols f , each of which
has a fixed domain and range. Let V be an infinite set of variables, each of a
fixed sort. For S ∈ S and V ⊆ V, TV,S(Σ) denotes the set of all well–sorted
terms of sort S over Σ and V ; let TV (Σ) :=

⋃
S∈S TV,S(Σ). Let sort(t) denote

the unique sort of a term t. σ = {x1 7→ t1, . . . , xn 7→ tn} denotes a well–sorted
substitution that maps each variable xi to the term ti. ⊓⊔

Definition 2. [Algebra] We consider w.l.o.g. term algebras factorized by a set
of operation–defining equations. In this setting, a finite many–sorted algebra A
of signature Σ is given by a nonempty finite set AS of constants for each sort
S ∈ S and a set EA consisting of exactly one equation f(a1, . . . , an) = a for
each f ∈ Σ with f : S1 × . . .× Sn → S and each a1 ∈ AS1

, . . . , an ∈ ASn
, where

a ∈ AS . The AS are just the domains of A for each sort S, while EA defines
the operations from Σ on these domains. Define ΣA := Σ ∪

⋃
S∈S AS . We write

(=A) for the congruence relation induced by EA; each ground term t ∈ T{},S(ΣA)
equals exactly one a ∈ AS. ⊓⊔

We will only allow closed quantified equations as formulas. This is sufficient
since an arbitrary formula can always be transformed into prenex normal form,
and we can model predicates and junctors by functions into a dedicated sort
Bool.

Definition 3. [Formula, theory] For a k–tuple x = 〈x1, . . . , xk〉 ∈ Vk such that
xi 6= xj for i 6= j, define Q(x) := {q1x1 . . . qkxk | q1, . . . , qk ∈ {∀, ∃}} as the
set of all quantifier prefixes over x. Any expression of the form Q : t1 =S t2
for Q ∈ Q(x) and t1, t2 ∈ Tx,S(Σ) is called a formula over Σ and x. We will
sometimes omit the index of (=S). We denote a formula by ϕ, and a set of
formulas, also called theory, by Θ. ⊓⊔

When encoding predicates and junctors using a sort Bool, in order to obtain
an appropriate semantics1 it is necessary and sufficient to fix the interpretation
of the sort Bool accordingly for every algebra under consideration. Therefor, we
define below the notion of an admitted algebra, and let the definition of sat, |=,
etc. depend on it.

We tacitly assume that,

– when we consider only equations, each algebra is admitted, while,

– when we consider arbitrary predicates, junctors and a sort Bool, only alge-
bras with an appropriate interpretation of Bool are admitted.

Definition 4. [Admitted algebras] Let a signature Σ be given. Let Sfix ⊆ S be
a set of sorts; and let Σfix be the set of all f ∈ Σ that have all argument and
result sorts in Sfix. Let a fixed Σfix–algebra Afix be given; we denote its domain
sets by Afix,S.

We say that a Σ–algebra A is admitted if AS = Afix,S for each S ∈ Sfix and
t1 =A t2 ⇔ t1 =Afix

t2 for all t1, t2 ∈ T{},S(ΣA) and S ∈ Sfix. ⊓⊔

Definition 5. [Validity] For an admitted Σ–algebra A and a formula ϕ, we
write A sat ϕ if ϕ is valid in A, where equality symbols (=S) in ϕ are interpreted
as identity relations on AS , rather than by an arbitrary congruence on it. For
a class of admitted Σ–algebras A, and a theory Θ, we similarly write A sat ϕ,
A sat Θ, and A sat Θ. Define Θ1 |= Θ2 if A sat Θ1 implies A sat Θ2 for each
admitted Σ–algebra A.

If we choose Sfix := {}, each algebra is admitted. Choosing Sfix := {Bool},
Σfix := {(¬), (∧), (∨), (→), (↔)}, and Afix as the two–element Boolean algebra,
we prescribe the interpretation of Bool for each admitted algebra. ⊓⊔

Definition 6. [Complete theorem sets] For a Σ–algebra A, and a tuple x of
variables as in Def. 3, define T Hx(A) :=

{Q : t1 =S t2 | Q ∈ Q(x), S ∈ S, t1, t2 ∈ Tx,S(Σ), A sat (Q : t1 =S t2)}

as the set of all formulas over Σ and x that are valid in A. The elements of
T Hx(A) can be considered as terms over the extended signature

Σ ∪ {(=S) | S ∈ S} ∪ {(Q :) | Q ∈ Q(x)}.

For a class A of Σ–algebras, define T Hx(A) :=
⋂

A∈A
T Hx(A). ⊓⊔

Example 7. The algebra A2, defined by ANat := {0, 1} and EA = {0+0 =
0, 0+1 = 1, 1+0 = 1, 1+1 = 0}, is a Σ–algebra for Σ = {0, (+)}. The set
T H〈x,y〉(A2) contains the formula ∀x∃y : x+y=0, but not ∀x∃y : x+y=1, since
1 6∈ Σ. ⊓⊔

1 If in some algebra A we had ABool = {a} and (true = a), (false = a) ∈ EA, any
formula ϕ was valid in A.

Definition 8. [Regular tree grammar] A regular tree grammar G consists of
rules N ::= f1(N11, ..., N1n1

) | . . . | fm(Nm1, ..., Nmnm
) or N ::= N1 | . . . | Nm

where N,Ni, Nij are nonterminal symbols and fi ∈ Σ. Note that ni may be also
0. Each fi(Ni1, . . . , Nini

) or Ni is called an alternative. N,Ni, Nij are assigned
a sort each that have to fit with each other and with fi.

The size | G | of G is its total number of alternatives. We denote the set of
nonterminals of G by N . The language produced by a nonterminal N of G is
denoted by LG(N), it is a set of ground terms over Σ; if N is the start symbol of
G, we also write L(G). G is called deterministic if no different rules have identical
alternatives.

Define the generalized height hg(t) of a ground term t by

hg(f(t1, . . . , tn)) := max{hg(t1), . . . , hg(tn)}+ hg(f),

where max{} := 0, and hg(f) ∈ IN may be defined arbitrarily. For a nonterminal
N of a grammar G, define hg(N) as the minimal height of any term in LG(N),
it is ∞ if LG(N) is empty. ⊓⊔

Theorem 9. [Properties of regular tree grammars]

1. Incorporating [McA92, Sect.6]
Given a finite many–sorted Σ–algebra A, a grammar G = incorporate(A)
of size |EA | can be computed in time O(|EA |) such that

∀S ∈ S, a ∈ AS ∃Na ∈ N : LG(Na) = {t ∈ T{}(ΣA) | t =A a}.

2. Externing [McA92, Sect.3]
Given a deterministic grammar G, a set E of | G | ground equations can be
computed in time O(|G |) such that for all ground terms t1, t2:

t1 =E t2 ⇔ ∃N ∈ N : t1, t2 ∈ LG(N),

where (=E) denotes the congruence induced by E.
3. Lifting [CDG+99, Thm.7 in Sect.1.4]

Given a grammar G and a ground substitution σ, a grammar G′ = lift(G, σ)
of size |G | + |N | · |domσ | can be computed in time O(|G′ |) such that

∀N ∈ N ∃N ′ ∈ N ′ : LG′ (N ′) = {t ∈ Tdomσ | σt ∈ LG(N)},

where N and N ′ is the set of nonterminals of G and G′, respectively. Note
that the signature gets extended by domσ; these variables are treated as con-
stants in G′.

4. Intersection [CDG+99, Sect.1.3]
Given n grammars G1, . . . ,Gn, a grammar G = intersect(G1, . . . ,Gn) of size
|G1 | · . . . · |Gn | can be computed in time O(|G |) such that for each

∀Ni1 ∈ N1, . . . , Nin ∈ Nn∃Ni1,...,in ∈ N : LG(N) =

n⋂

j=1

LGi
(Nij).

5. Restriction [special case of 4]
Intersection of one grammar G1 with a term universe TV,S(Σ), such that

∀N1 ∈ N1∃N ∈ N : LG(N) = LG1
(N1) ∩ TV,S(Σ)

can be done in time O(|G1 |) by removing all symbols not in Σ.
6. Union [CDG+99, Sect.1.3]

Given n grammars G1, . . . ,Gn, a grammar G = unite(G1, . . . ,Gn) of size
n+ |G1 |+ . . .+ |Gn | can be computed in time O(n) such that

L(G) =
n⋃

i=1

L(Gi)

by adding one rule.
7. Composition [Trivial]

Given an n–ary function symbol f , a grammar G, and nonterminals
N1, . . . , Nn, a grammar G′ = tag(G, f(N1, . . . , Nn)) of size | G | +1 can
be computed in time O(1) such that

LG′(N) = {f(t1, . . . , tn) |
n∧

i=1

ti ∈ LG(Ni)}

for a certain nonterminal N , by adding one rule.
8. Weight computation [AM91, Sect.4]

Given a grammar G, the heights hg(N) can be computed for all nonterminals
N ∈ N simultaneously in time O(|N |2).

9. Language enumeration [BH96, Fig.21]
Given a grammar G and the heights of all nonterminals, the elements of
LG(N) can be enumerated in order of increasing height in time linear in the
sum of their sizes by a simple Prolog program. ⊓⊔

3 Equational Theories of Finite Algebras

First, we give a rational reconstruction of the liquid flow algorithm of Barzdin
and Barzdin [BB91]. They use labeled graphs to compute an axiom set from an
incompletely given finite algebra. Their approach can be reformulated in terms
of regular tree languages using the correspondence of notions shown in Fig. 1.
Our following theorem corresponds to their main result, Thm. 2. It is in fact
a slight extension, as it allows for sorts and for substitutions that map several
variables to the same value.

On the other hand, the liquid flow algorithm turns out to be an improve-
ment of the weight computation algorithm from Thm. 9.8. Both are fixpoint
algorithms, and identical except for minor, but important, modifications. The
algorithm from Thm. 9.8 has a complexity of O(| N |2), while Barzdins’ algo-
rithm runs in O(| N |), exploiting the fact that always hg(f) 6 1 and therefor
the first value < ∞ assigned to some hg(N) must be its final one already. Since

in each cycle at least one N must change its assigned hg value2, by an appropri-
ate incremental technique (water front), linear complexity can be achieved. A
formal complexity proof of this improved grammar fixpoint algorithm, extended
to somewhat more general weight definitions, shall appear in [Bur02].

Theorem 10. [Reconstruction of Barzdin] Given a Σ–algebra A, domain el-
ements b1, ..., bn ∈ AS0

, a11, ..., an1 ∈ AS1
, . . . , a1k, ..., ank ∈ ASk

, and defining
σi = {x1 7→ ai1, . . . , xk 7→ aik} for i = 1, . . . , n and V := {x1, . . . , xk}, the set of
terms T = {t ∈ TV,S0

(Σ) |
∧n

i=1 σit =A bi} is a regular tree language. A gram-
mar for it can be computed in time O(| EA |n). After computing nonterminal
weights in time O(|EA |2n), the language elements can be enumerated in order
of increasing height in linear time.

Proof. Using the notions of Thm. 9, let G0 := incorporate(A), and Gi :=
lift(G0, σi) for i = 1, . . . , n. We have

LGi
(Na) = {t ∈ TV (ΣA) | σit =A a}.

Let G := intersect(G1, . . . ,Gn, TV (Σ)), then

LG(Na1,...,an
) = {t ∈ TV (Σ) |

n∧

i=1

σit =A ai}.

Hence T = LG(Nb1,...,bn). Note that G itself does not depend on b1, . . . , bn.
Compute the height of all nonterminals of G using Thm. 9.8, using hg(xi) := 0
for xi ∈ V and hg(f) := 1 for f ∈ Σ. Use Thm. 9.9 to enumerate the terms of
LG(Nb1,...,bn). ⊓⊔

Barzdin and Barzdin allow to specify an algebra incompletely, since their
main goal is to acquire hypotheses about what are probable axioms.

We now investigate the special case that the substitutions σ1, . . . , σn in
Thm. 10 describe all possible assignments of algebra domain elements to the
variables x1, . . . , xk. This way, we obtain certainty about the computed axioms
– they are guaranteed to be valid in the given algebra.

Theorem 11. [Computing complete theorem sets] Let x = 〈x1, . . . , xk〉 be a
k–tuple of variables, A be a finite Σ–algebra and A a finite class of finite Σ–
algebras, then T Hx(A) and T Hx(A) are regular tree languages.

Proof (sketch). Define Ax := Asort(x1) × . . .×Asort(xk). For each a ∈ Ax,
let σa := {x1 7→ a1, . . . , xk 7→ ak}. Let G = incorporate(A) and Ga =
intersect(lift(G, σa), Tx(Σ)) for a ∈ Ax. For S ∈ S and a ∈ AS , let Ga,a =
tag(Ga, Na =S Na), where (=S) is a new binary infix function symbol. Let
G′
a
= unite({Ga,a | S ∈ S, a ∈ AS}) for each a ∈ Ax. We have

L(G′
a
) = {t1 =S t2 | S ∈ S, t1, t2 ∈ Tx,S(Σ), σat1 =A σat2}.

2 Unless the fixpoint has been reached already

Barzdin [BB91] Tree Grammars

sample P equations EA from Def. 2

open term, level term in TV(Σ), height

closed term term in T{}(ΣA)

sample graph grammar G = incorporate(A)

domain node nonterminal Na

functional node expression f(Na1
, . . . , Nan)

upper node Na, if Na ::= . . . f(Na1
, . . . , Nan) . . .

lower nodes Na1
, . . . , Nan

node weight language height hg(N) from Def. 8

chain of dotted arcs rule rhs with alternatives ordered by increasing height

annotated sample
graph

grammar with heights of nonterminals obtained from
Thm. 9.8

liquid–flow algorithm (improved) height computation algorithm from Thm. 9.8

α–term term in T{}(ΣA) ∩
⋃

a∈AS
L(Na)

minimal α–term of
domain node d

term t ∈ L(Nd) of minimal height

minimal α–term of
functional node

term t ∈ L(f(Na1
, . . . , Nan)) of minimal height

Theorem 2 Theorem 10

Theorem 1 Theorem 10 for n = 1

Fig. 1. Correspondence of notions between [BB91] and regular tree grammars

Now, for each Q ∈ Q(x), apply set operations corresponding to Q to the Ga; e.g.
if k = 2 and Q = (∀x1∃x2), let

GQ = intersect({unite({Ga1,a2
| a2 ∈ Asort(a2)}) | a1 ∈ Asort(a1)}).

In general, we get

L(GQ) = {t1 =S t2 | S ∈ S, t1, t2 ∈ Tx,S(Σ), A sat (Q : t1 = t2)}.

For each Q ∈ Q(x), let G′
Q = tag(GQ, Q : GQ), where (Q :) is a new unary prefix

function symbol. Let G′ = unite({G′
Q | Q ∈ Q(x)}), then T Hx(A) = L(G′).

From this, we immediately get a grammar for T Hx(A) by Thm. 9.4. ⊓⊔

Example 12. Let us compute T Hx(A2) for the algebra A2 from Exm. 7 and
x = 〈x, y〉. We have the substitutions σ00, σ01, σ10, σ11 and use the naming con-
vention

L(Nijkl) = L(G00,i) ∩ L(G01,j) ∩ L(G10,k) ∩ L(G11,l),

e.g. L(N0011) = {t ∈ Tx(Σ) | A2 sat (σ00t = σ01t = 0∧ σ10t = σ11t = 1)}. A “*”
may serve as don’t care symbol, e.g. L(Ni∗k∗) = L(G00,i) ∩ L(G10,k).

From Thm. 11, after incorporating, lifting, and restricting, we obtain e.g.
G00, with nonterminals N0∗∗∗ and N1∗∗∗. As L(N1∗∗∗) turns out to be empty, we
simply have

N0∗∗∗ ::= 0 | x | y | N0∗∗∗ +N0∗∗∗.

N0000 ::= 0 | N0000 +N0000 | N0011 +N0011 | N0101 +N0101 | N0110 +N0110

N0011 ::= x | N0000 +N0011 | N0011 +N0000 | N0101 +N0110 | N0110 +N0101

N0101 ::= y | N0000 +N0101 | N0011 +N0110 | N0101 +N0000 | N0110 +N0011

N0110 ::= N0000 +N0110 | N0011 +N0101 | N0101 +N0011 | N0110 +N0000

N0∗0∗ ::= N0000 | N0001 | N0100 | N0101

N0∗1∗ ::= . . .

N∀∀ ::= N0000 = N0000 | N0011 = N0011 | N0101 = N0101 | N0110 = N0110

N∀∃ ::= N0∗0∗ = N0∗0∗ | N0∗1∗ = N0∗1∗ | N0∗∗0 = N0∗∗0 | N0∗∗1 = N0∗∗1

| N∗00∗ = N∗00∗ | N∗01∗ = N∗01∗ | N∗10∗ = N∗10∗ | N∗11∗ = N∗11∗

| N∗0∗0 = N∗0∗0 | N∗0∗1 = N∗0∗1 | N∗1∗0 = N∗1∗0 | N∗1∗1 = N∗1∗1

N∃∀ ::= N00∗∗ = N00∗∗ | N01∗∗ = N01∗∗

| N∗∗00 = N∗∗00 | N∗∗01 = N∗∗01 | N∗∗10 = N∗∗10 | N∗∗11 = N∗∗11

N∃∃ ::= N0∗∗∗ = N0∗∗∗ | N∗0∗∗ = N∗0∗∗ | N∗1∗∗ = N∗1∗∗

| N∗∗0∗ = N∗∗0∗ | N∗∗1∗ = N∗∗1∗ | N∗∗∗0 = N∗∗∗0 | N∗∗∗1 = N∗∗∗1

N ::= ∀x∀y : N∀∀ | ∀x∃y : N∀∃ | ∃x∀y : N∃∀ | ∃x∃y : N∃∃

Fig. 2. Grammar G′ for T Hx(A) in Exm. 12

N

∀x∀y : N∀∀

∀x∀y : N0110 = N0110

∀x∀y : N0011 + N0101 = N0101 + N0011

∀x∀y : x + y = y + x

N

∀x∃y : N∀∃

∀x∃y : N0∗∗0 = N0∗∗0

∀x∃y : N0110 = N0000

∀x∃y : N0011 + N0101 = 0
∀x∃y : x + y = 0

Fig. 3. Example derivations from G′ in Exm. 12

We obtain G′
00 by just adding the rule N= ::= (N0∗∗∗ = N0∗∗∗). To compute

G∀∀, we build all intersections Nijkl without “*”; only four of them turn out to
be nonempty, their rules are shown in Fig. 2. The grammar G∀∀ consists of these
rules and an additional one for its start symbol N∀∀. The grammars G∀∃, G∃∀,
and G∃∃ have similar starting rules, which use only nonterminalsNijkl containing
a “*”. Since the rules for the latter are trivial, only the one for N0∗0∗ is shown.
Finally, the grammar G′ for T Hx(A2) consists of all these rules and an additional
one for its start symbol N . Figure 3 show some example derivations. ⊓⊔

Theorem 13. [Computing complete axiom sets] The sets T Hx(A) and T Hx(A)
obtained from Thm. 11 can be represented as the deductive closure of a finite set
of formulas, called AXx(A) and AXx(A), respectively. We have:

∀t1, t2 ∈ Tx(Σ) : A sat t1 = t2 ⇔ AXx(A) |= t1 = t2 , and
∀t1, t2 ∈ Tx(Σ) : A sat t1 = t2) ⇔ AXx(A) |= t1 = t2 .

Proof (sketch). First, we consider the purely universal formulas in T Hx(A).
Using the notions of Thm. 11, the grammar G∀...∀ is deterministic since no union
operations were involved in its construction. Using Thm. 9.2, we get a finite set
E∀...∀ of equations, each of which we compose with the appropriate universal
quantifier prefix (∀x1 . . . ∀xk :). The resulting formula set E′

∀...∀ implies any
purely universal equation valid in A. By construction of E∀...∀, it can reduce
each term t in any quantified equation in T Hx(A) to a unique normal form. Let
NF denote the set of all those normal forms; it is finite since |N | is finite.

Next, for any quantifier prefix Q containing some “∃”, let

E′
Q := {Q : t1n = t2n | t1n, t2n ∈ NF, (t1n = t2n) ∈ L(GQ), t1n 6= t2n}.

Any formula Q : t1 = t2 in L(G′
Q) can then be deduced from ∀ . . . ∀ : t1 = t1n

and ∀ . . . ∀ : t2 = t2n in E′
∀...∀ and Q : t1n = t2n in E′

Q, where t1n and t2n are
the normal forms of t1 and t2, respectively.

Finally, let AXx(A) =
⋃

Q∈Q(x) E
′
Q. The proof for AXx(A) is similar. ⊓⊔

Observe that the variables in x are introduced as constants into the gram-
mars, hence E∀...∀ in the above proof is a set of ground equations. A closer look
at the algorithm referred by Thm. 9.2 reveals that it generates in fact a Noethe-
rian ground–rewriting system assigning unique normal forms. Anyway, no proper
instance of any formula from AXx(A) is needed to derive any one in T Hx(A).
By permitting proper instantiations, we may delete formulas that are instances
of others, thus reducing their total number significantly. To find such subsumed
formulas, an appropriate indexing technique may be used, see e.g. [Gra94].

Example 14. Continuing Exm. 12, and referring to the notions the proof of of
Thm. 13, we obtain the set E∀∀ shown at the top of Fig. 4, where we chose the
normal form of N0000, N0011, N0101, andN0110 as 0, x, y, and x+y, respectively3,

3 The algorithm of Thm. 9.2 can easily be modified to work with arbitrary chosen
normal forms instead of external constants.

∀∀ : N0000 : 0 = 0 + 0 = x+ x = y + y = (x+y) + (x+y)

N0011 : x = 0 + x = x+ 0 = y + (x+y) = (x+y) + y

N0101 : y = 0 + y = x+ (x+y) = y + 0 = (x+y) + x

N0110 : x+y = 0 + (x+y) = y + x = (x+y) + 0

∀∃ : N0∗0∗ : 0 = y N0∗∗0 : 0 = x+y N0∗1∗ : x = x+y N0∗∗1 : x = y

∃∀ : N00∗∗ : 0 = x N01∗∗ : y = x+y

∃∃ : N0∗∗∗ : 0 = x = y = x+y N∗0∗∗ : 0 = x N∗1∗∗ : y = x+y

N∗∗0∗ : 0 = y N∗∗1∗ : x = x+y N∗∗∗0 : 0 = x+y N∗∗∗1 : x = y

Fig. 4. Axioms AXx(A) in Exm. 14

which are each of minimal size. From each rule alternative in Fig. 2, we get one
equation that is universally valid in A. The equations between marked terms
remain nontrivial if instantiations are allowed.

For each of the Nijkl with a “*”, we check which of the above 4 normal
forms are member of L(Nijkl). This can be decided quickly by matching the
index; e.g. N0∗0∗ contains 0 and y since 0∗0∗ matches with 0000 and 0101. Each
pair of normal forms in the same L(Nijkl) gives rise to an equation, shown at
the bottom of Fig. 4. Note that equations between terms of different Nijkl are
neither in T Hx(A) nor in AXx(A). For example, “crossing” N0∗0∗ and N0∗∗0

yields the forbidden formula ∀x∃y : y = x+ y which does not hold in A.
After removing all redundancies4, we get

{ ∀x : 0 = x+x, ∀x∀y : x+y = y+x, ∀x∃y : 0 = x+y,

∀x : x = x+0, ∀x∀y : x = (x+y)+y }

as a set of formulas implying every closed formula over {x, y, 0, (+), (=)} that
is valid in A. Note that the associativity law is not implied, since it requires 3
variables. ⊓⊔

4 Application to Equational Theories

We now show some consequences of axiomatization properties in a purely equa-
tional setting. Remember our convention made before Def. 4, that in this setting,
each algebra is considered to be admitted. We restrict T H and AX to the set

U := {∀ . . .∀ : t1 =S t2 | S ∈ S, t1, t2 ∈ TV,S(Σ)},

which is trivially a regular tree language.
For a given signature Σ and a class A of Σ–algebras, let vc(A) denote the

smallest variety containing A, i.e., the class of all Σ–algebras obtainable from
algebras in A by building subalgebras, Cartesian products, and homomorphic

4 E.g. ∃x∀y : y = x+ y follows from ∀x : x = x+ 0 and ∀x∀y : x+ y = y + x.

images. For a set E of equations, let Mod(E) denote the class of all Σ–algebras
A with A sat E. From Birkhoff’s variety theorem [MT92], it is well known that
each class A of algebras can be characterized by universal equations only up to
its variety closure vc(A). However, it is not clear in general how to find such an
axiom set E with Mod(E) = vc(A).

If A is a finite class of finite algebras, we can at least construct an increasing
sequence of tree languages characterizing vc(A) in the limit (Cor. 15). Whenever
there exists any finite axiom set E for vc(A) at all, the sequence of corresponding
model classes eventually becomes stationary, and, using Thm. 13, we can obtain
a finite axiom set that uniquely characterizes vc(A). However, convenient criteria
for detecting if and when the sequence becomes stationary are still unknown.

Corollary 15. [Variety Characterization] For any finite class of finite algebras
A, we can compute a sequence TH1 ⊆ TH2 ⊆ . . . of sets of universal equations
such that vc(A) = Mod(

⋃∞
i=1 THi). If vc(A) = Mod(E) for any finite E, we

already have Mod(THn) = vc(A) for some n ∈ IN . In this case, we can compute
a finite axiom set for vc(A) from THn. ⊓⊔

Proof. Assuming V = {x1, x2, . . .}, let xi := 〈x1, . . . , xn〉 for i ∈ IN . Let THi :=
T Hxi

(A)∩U and TH∞ :=
⋃∞

i=1 THi; then, THi ⊆ THi+1 ⊆ TH∞. By Thm. 11,
TH∞ consists of all universal equations that hold in A.

By Birkhoff’s variety theorem, vc(A) = Mod(E) for some set E of equations.
Since A sat E, we have E ⊆ TH∞, hence Mod(TH∞) ⊆ Mod(E) = vc(A). Vice
versa, we have vc(A) ⊆ Mod(TH∞), since A ⊆ Mod(TH∞), and Mod(TH∞) is
closed wrt. subalgebras, products, and homomorphic images.

If E is finite, let n ∈ IN such that all variables in E occur in xn, then
Mod(THn) = vc(A) as above. ⊓⊔

5 Application to Theorem Proving

Next, we extend our results to arbitrary formulas of first–order predicate logic.
This can easily be achieved by including a sort Bool and encoding predicates
and junctors as functions to Bool. We admit only algebras with an appropriate
interpretation of Bool, cf. the convention before Def. 4.

Thus, the equation set T Hx(A), and AXx(A) corresponds to the set of all
formulas in x valid in A, and a finite axiomatization of it, respectively. Moreover,
we can arbitrarily restrict the set of junctors that may occur in a formula. Note,
however, that we cannot get rid of any equality predicate5, as they are core
components of our approach, cf. Def. 6. Hence, we cannot compute the set of all
Horn formulas valid in a given algebra.

Example 16. As an example of computed predicate–logic axiomatizations, con-
sider (IN mod 2) with one function (+) and one predicate (<), where the sort
Bool is interpreted by the two–element Boolean algebra, as required.

5 Logical equivalence in Bool

x+x = 0
0+x = x

x+0 = x
(y+x)+y = x
(x+y)+y = x

(x+x)+y = y
(x+y)+x = y

y+x = x+y

0<x ∧ 0<y ∧ 0<x+y ↔ false
0<x ∧ 0<y ∧ x<y ↔ false

0<x ∧ 0<y ∧ y<x ↔ false
0<x ∧ x<y ↔ false
x<y ∧ y<x ↔ false

x<0 ↔ false
x<x ↔ false

x+y<x ↔ 0<x∧ 0<y
x+y<y ↔ 0<x∧ 0<y

0<x ∧ 0<x+y ↔ y<x
y<x∧ (0<x ∨ x<y) ↔ y<x

y<x+y ↔ y<x

(0<x ∧ 0<y) ∨ y<x ↔ 0<x
0<y ∧ 0<x+y ↔ x<y

x<x+y ↔ x<y
0<y ∧ (0<x ∨ x<y) ↔ 0<y
(0<x ∧ 0<y) ∨ x<y ↔ 0<y

0<x+y ∧ (0<x ∨ x<y) ↔ 0<x+y
x<y ∨ y<x ↔ 0<x+y

(0<x∧ 0<y) ∨ 0<x+y ↔ 0<x ∨ x<y
0<x∨ 0<y ↔ 0<x ∨ x<y

0<x ∨ 0<x+y ↔ 0<x ∨ x<y
0<y ∨ 0<x+y ↔ 0<x ∨ x<y

0<y ∨ y<x ↔ 0<x ∨ x<y

Fig. 5. Axiom Set in Exm. 16

Any universally quantified formula in the variables x, y and with ∧ and ∨
as the only logical junctors that holds in (IN mod 2) follows from the set of
formulas given in Fig. 5; formulas with other quantifier prefixes are omitted.

Pure ground formulas and formulas that are instances of others have been
manually deleted, as well as formulas that follow from propositional tautologies
or symmetry of equality. Equations in Nat are listed first, with index Nat omit-
ted, followed by equations in Bool, =Bool written as ↔. Note that (=Nat) is not
contained in the signature of this example but was introduced by our method;
consequently, no equality predicate appears in the equations of sort Bool, e.g.
in a law like x < y ∨ x = y ∨ y < x ↔ true.

No formula at all can be reduced to true by the axioms in Fig. 5, indicating
that no valid statements about (IN mod 2) can be expressed in Σ, except for
trivial propositional instances like true∨x < y. In fact, every expressible formula
(i.e. term in T{x,y},Bool(Σ)) can be falsified by instantiating both x and y to 0.

⊓⊔

In Cor. 17, we give an application in the field of automated theorem proving.
Here, it is common practice to test a conjecture ϕ in a finite class A of models
of the background theory Θ before attempting to prove ϕ from Θ. If the test
fails, it is clear that Θ |= ϕ cannot hold. If the test succeeds, i.e. A sat ϕ, we are
usually still faced with the task of proving Θ |= ϕ.

We call A a class of prototype algebras for Θ, if from a succeeding test we
always can conclude the validity of Θ |= ϕ. In this case, we can decide quickly
whether Θ entails a formula ϕ, merely by testing whether ϕ holds in each member
of A.

Corollary 17 provides a sufficient criterion for establishing the existence of
prototype algebras for an equational – or by the above argument – first–order
predicate–logic theory Θ. Since we cannot deal with arbitrarily many variables,
we have to restrict the syntactic class of ϕ to Tx(Σ ∪ {(=Bool)}) for some finite
tuple x of variables.

Example 18 gives a set of prototype algebras for an equational theory, and
at the same time shows that they do not exist for arbitrary theories. It remains

to be seen whether it is feasible to extend the prototype approach by adding
certain infinite algebras that allow easy testing6 of ϕ to A.

Corollary 17. [Prototype algebras] Let Θ be a set of formulas, let A be a finite
class of finite admitted Σ–algebras such that A sat Θ and Θ |= AXx(A). Then,
A is a class of prototype algebras for Θ and x. Formally, for any formula ϕ over
Σ and x we have Θ |= ϕ iff A sat ϕ.

Proof.
“⇒”: trivial: A sat Θ |= ϕ

“⇐”: A sat ϕ

⇒ AXV (A) |= ϕ by Thm. 13
⇒ Θ |= ϕ since Θ |= AXV (A)

Note that the Corollary holds for arbitrary Sfix and Afix, not only for Bool.
However, we need to fix Bool in order to get the notion of |= used in theorem
proving. ⊓⊔

Example 18. Let Θ consist of the axioms for an Abelian group of characteris-
tic 2. Referring to Exm. 14, we can see that Θ implies AX 〈x,y〉(A2). Hence, in
order to prove a formula ϕ over {x, y, 0, (+), (=)} to be a consequence of Θ, it
is sufficient by Cor. 17 just to test it in A2.

Unfortunately, we cannot get rid of “characteristic” equations: In any finite
algebra with an associative binary operation (+), a law n1x = n2x holds for
some n1 > n2, where we abbreviate nx := x + . . . + x (n times). Hence, each
axiom set obtained from finitely many of such algebras necessarily entails a law
of this form. ⊓⊔

Acknowledgments. Ingo Dahn drew our attention to the application area of proto-
type algebras in automated theorem proving. Martin Simons provided the literature
reference to the many–sorted version of Birkhoff’s variety theorem. Angela Sodan gave
us some valuable advice on the presentation.

References

[AM91] A. Aiken and B. Murphy. Implementing regular tree expressions. In ACM

Conference on Functional Programming Languages and Computer Archi-

tecture, pages 427–447, August 1991.
[BB91] J.M. Barzdin and G.J. Barzdin. Rapid construction of algebraic axioms

from samples. Theoretical Computer Science, 90:199–208, 1991.
[BH96] Jochen Burghardt and Birgit Heinz. Implementing anti–unification modulo

equational theory. Arbeitspapier 1006, GMD, Jun 1996.
[Bur02] Jochen Burghardt. Axiomatization of finite algebras. Arbeitspapier, GMD,

2002. forthcoming.
[CDG+99] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree Automata Techniques and Applications. WWW,
Available from www.grappa.univ-lille3.fr/tata, Oct 1999.

6 In an equational setting, the singleton class containing the initial algebra is always
a prototype. However, equality in the initial algebra is generally undecidable.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems, volume B of Hand-

book of Theoretical Computer Science, pages 243–320. Elsevier, 1990.
[Gra94] Peter Graf. Substitution tree indexing. Technical Report MPI-I-94-251,

Max–Planck–Institut für Informatik, Saarbrücken, Oct 1994.
[McA92] David McAllester. Grammar rewriting. In Proc. CADE–11, volume 607 of

LNAI. Springer, 1992.
[MT92] K. Meinke and J.V. Tucker. Universal Algebra, volume 1 of Handbook of

Logic in Computer Science. Clarendon, Oxford, 1992.

