Skip to main content

Non-abusiveness Helps: An % MathType!MTEF!2!1!+- % feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbuLwBLnhiov2DGi1BTfMBaeHb % d9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaadeWaaq % aadaqbaaGcbaGaaGOmamaaCaaaleqabaGagiiBaWMaei4Ba8Maei4z % aCgaaOWaaWbaaSqabeaadaahaaadbeqaamaaBaaabaWaaWbaaeqaba % GaaGymaiabgkHiTiabgIGiodaaaeqaaaaaaaGcdaahaaWcbeqaaiab % d6gaUbaaaaa!4546! \[ 2^{\log } ^{^{_{^{1 - \in } } } } ^n \] (1)-Competitive Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2462))

Abstract

In the online traveling salesman problem OlTsp requests for visits to cities arrive online while the salesman is traveling. We study the F max-OlTsp where the objective is to minimize the maximum flow time. This objective is particularly interesting for applications. Unfortunately, there can be no competitive algorithm, neither deterministic nor randomized. Hence, competitive analysis fails to distinguish online algorithms. Not even resource augmentation which is helpful in scheduling works as a remedy. This unsatisfactory situation motivates the search for alternative analysis methods.

We introduce a natural restriction on the adversary for the F max-OlTsp on the real line. A non-abusive adversary may only move in a direction if there are yet unserved requests on this side. Our main result is an algorithm which achieves a constant competitive ratio against the nonabusive adversary.

Research supported by the German Science Foundation (DFG, grant GR 883/10)

Supported by the TMR Network DONET of the European Community ERB TMRXCT98- 0202

Partially supported by Algorithmic Methods for Optimizing the Railways in Europe (AMORE) grant HPRN-CT-1999-00104

Partially supported by Algorithmic Methods for Optimizing the Railways in Europe (AMORE) grant HPRN-CT-1999-00104

Supported by the TMR Network DONET of the European Community ERB TMRXCT98- 0202

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems: Minimizing the completion time. In Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer Science, pages 639–650. Springer, 2000.

    Google Scholar 

  2. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the on-line traveling salesman. Algorithmica, 29(4):560–581, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online-TSP against fair adversaries. Informs Journal on Computing, 13(2):138–148, 2001.

    Article  MathSciNet  Google Scholar 

  4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998.

    Google Scholar 

  5. E. Feuerstein and L. Stougie. On-line single server dial-a-ride problems. Theoretical Computer Science, 2001. To appear.

    Google Scholar 

  6. D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride problem under reasonable load. Theoretical Computer Science, 2001. A preliminary version appeared in the Proceedings of the 4th Italian Conference on Algorithms and Complexity, 2000, vol. 1767 of Lecture Notes in Computer Science.

    Google Scholar 

  7. H. Kellerer, Th. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability results for minimizing total flow time on a single machine. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pages 418–426, 1996.

    Google Scholar 

  8. E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. In Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, pages 394–400, 1994.

    Google Scholar 

  9. S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the online traveling repairman. In Proceedings of the 26th International Symposium on Mathematical Foundations of Computer Science, volume 2136 of Lecture Notes in Computer Science, pages 487–499, 2001.

    Google Scholar 

  10. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Google Scholar 

  11. K. Pruhs and B. Kalyanasundaram. Speed is as powerful as clairvoyance. In Proceedings of the 36th Annual IEEE Symposium on the Foundations of Computer Science, pages 214–221, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumke, S.O. et al. (2002). Non-abusiveness Helps: An % MathType!MTEF!2!1!+- % feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbuLwBLnhiov2DGi1BTfMBaeHb % d9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaadeWaaq % aadaqbaaGcbaGaaGOmamaaCaaaleqabaGagiiBaWMaei4Ba8Maei4z % aCgaaOWaaWbaaSqabeaadaahaaadbeqaamaaBaaabaWaaWbaaeqaba % GaaGymaiabgkHiTiabgIGiodaaaeqaaaaaaaGcdaahaaWcbeqaaiab % d6gaUbaaaaa!4546! \[ 2^{\log } ^{^{_{^{1 - \in } } } } ^n \] (1)-Competitive Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Problem. In: Jansen, K., Leonardi, S., Vazirani, V. (eds) Approximation Algorithms for Combinatorial Optimization. APPROX 2002. Lecture Notes in Computer Science, vol 2462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45753-4_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45753-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44186-1

  • Online ISBN: 978-3-540-45753-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics