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Abstract. It is well known that conditionals need a non-classical en-
vironment to be evaluated. In this paper, we present a formalization of
conditional logic in the framework of institutions. In regarding both qual-
itative and probabilistic conditional logic as abstract logical systems, we
investigate how they can be related to one another, on the one hand,
and to the institution of propositional logic, on the other hand. In spite
of substantial differences between these three logics, we find surprisingly
clear formal relationships between them.

1 Introduction

In [6], Goguen and Burstall introduced institutions as a general framework for
logical systems. An institution formalizes the informal notion of a logical sys-
tem, including syntax, semantics, and the relation of satisfaction between them.
The latter poses the major requirement for an institution: that the satisfaction
relation is consistent under the change of notation. Institutions have also been
used as a basis for specification and development languages, see e.g. [2, 13, 7].

While the examples for institutions in [6] and [7] are based on classical logic,
in [1] it is shown that also probabilistic logic can be formalized as an insti-
tution. In this paper, we will apply the theory of institutions to conditionals,
investigating how the logics of qualitative and probabilistic conditionals fit into
that framework. As default rules, conditionals have played a major role in de-
feasible reasoning (see, e.g., [9]), and assigning probabilities to them opens up
a whole universe of possibilities to quantify the (un)certainty of information. It
is well-known that conditionals are substantially different from classical logical
entities [5]. Nevertheless, we will show that their logic can be formalized as an
institution, and thus be compared to classical logical institutions, e.g. that of
propositional logic. In detail, we will define an institution of conditional logic,
using the semantics of plausibility preorders going back to the works of Lewis
[10] and Stalnaker [14], as well as an institution of probabilistic conditionals,
using the usual semantics of conditional probabilities.

Now that the logic of conditionals has been given an abstract formal frame, we
can also study its relationships to other logics, also being viewed as institutions.
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To do so, the formal tool of institution morphisms [6, 7] can be used. This will tell
us precisely the possibilities how we can interpret e.g. probabilistic conditionals
as qualitative conditionals, or in a propositional setting, and vice versa. We will
prove that indeed, the institutions of propositional logic, conditional logic and
probabilistic conditional logic can be related intuitively, but we will also find
that there is essentially exactly one such connection between each pair of these
logics. In particular, we will necessarily arrive at a three-valued interpretation
of probabilistic conditionals in the propositional framework, reminding us of the
three-valued semantics of conditionals [5].

In Sec. 2, we formalize conditional logic as an institution. In Sec. 3, we
investigate in detail the relationships between the institutions of conditional logic
and of propositional, probabilistic, and probabilistic conditional logic. Section 4
contains some conclusions and points out further work.

2 Institutions and the Logic of Conditionals

After recalling the definition of an institution and fixing some basic notation,
we first present propositional logic in the institution framework. We then for-
malize in three steps probabilistic propositional logic, the logic of probabilistic
conditionals, and the logic of (qualitative) conditionals as institutions.

2.1 Preliminaries: Basic Definitions and Notations

If C is a category, |C | denotes the objects of C and /C/ its morphisms; for
both objects c ∈ |C | and morphisms ϕ ∈ /C/, we also write just c ∈ C and
ϕ ∈ C, respectively. Cop is the opposite category of C, with the direction of all
morphisms reversed. The composition of two functors F : C → C ′ and G : C ′ →
C ′′ is denoted by G ◦ F (first apply F , then G). For functors F,G : C → C ′,
a natural transformation η from F to G, denoted by η : F =⇒ G, assigns to
each object c ∈ |C | a morphism ηc : F (C) → G(C) ∈ /C ′/ such that for every
morphism ϕ : c→ d ∈ /C/ we have ηd ◦F (ϕ) = G(ϕ)◦ηc. SET and CAT denote
the categories of sets and of categories, respectively. (For more information about
categories, see e.g. [8] or [11].) The central institution definition is the following:

Definition 1. [6] An institution is a quadruple Inst = 〈Sig , Mod , Sen, |= 〉
with a category Sig of signatures as objects, a functor Mod : Sig → CAT op
yielding the category of Σ-models for each signature Σ, a functor Sen : Sig →
SET yielding the sentences over a signature, and a |Sig |-indexed relation |=Σ ⊆
|Mod(Σ) |×Sen(Σ) such that for each signature morphism ϕ : Σ → Σ′ ∈ /Sig/,
for each m′ ∈ |Mod(Σ′) |, and for each f ∈ Sen(Σ) the following satisfaction
condition holds: m′ |=Σ′ Sen(ϕ)(f) iff Mod(ϕ)(m′) |=Σ f .

For sets F,G of Σ-sentences and a Σ-model m we write m |=Σ F iff m |=Σ f
for all f ∈ F . The satisfaction relation is lifted to semantical entailment |=Σ

between sentences by defining F |=Σ G iff for all Σ-models m with m |=Σ F we
have m |=Σ G. F • = {f ∈ Sen(Σ) | F |=Σ f} is called the closure of F , and F



is closed if F = F •. The closure operator fulfils the closure lemma ϕ(F •) ⊆
ϕ(F )• and various other nice properties like ϕ(F •)• = ϕ(F )• or (F • ∪ G)• =
(F ∪G)•. A consequence of the closure lemma is that entailment is preserved
under change of notation carried out by a signature morphism, i.e. F |=Σ G
implies ϕ(F ) |=ϕ(Σ) ϕ(G) (but not vice versa).

2.2 The Institution of Propositional Logic

In all circumstances, propositional logic seems to be the most basic logic. The
components of its institution InstB = 〈SigB, ModB, SenB, |=B 〉 will be defined
in the following.

Signatures: SigB is the category of propositional signatures. A propositional
signature Σ ∈ |SigB | is a (finite) set of propositional variables, Σ = {a1, a2, . . .}.
A propositional signature morphism ϕ : Σ → Σ′ ∈ /SigB/ is a function mapping
propositional variables to propositional variables.

Models: For each signature Σ ∈ SigB, ModB(Σ) contains the set of all proposi-
tional interpretations for Σ, i.e. |ModB(Σ) | = {I | I : Σ → Bool} where Bool =
{true, false}. Due to its simple structure, the only morphisms in ModB(Σ) are
the identity morphisms. For each signature morphism ϕ : Σ → Σ′ ∈ SigB, we de-
fine the morphism (i.e. the functor in CAT op) ModB(ϕ) : ModB(Σ′)→ ModB(Σ)
by (ModB(ϕ)(I ′))(ai) := I ′(ϕ(ai)) where I ′ ∈ ModB(Σ′) and ai ∈ Σ.

Sentences: For each signature Σ ∈ SigB, the set SenB(Σ) contains the usual
propositional formulas constructed from the propositional variables in Σ and
the logical connectives ∧ (and), ∨ (or), and ¬ (not). Additionally, the classical
(material) implication A ⇒ B is used as a syntactic variant for ¬A ∨ B. The
symbols > and ⊥ denote a tautology (like a ∨ ¬a) and a contradiction (like
a ∧ ¬a), respectively.

For each signature morphism ϕ : Σ → Σ′ ∈ SigB, the function SenB(ϕ) :
SenB(Σ) → SenB(Σ′) is defined by straightforward inductive extension on the
structure of the formulas; e.g., SenB(ϕ)(ai) = ϕ(ai) and SenB(ϕ)(A ∧ B) =
SenB(ϕ)(A) ∧ SenB(ϕ)(B). In the following, we will abbreviate SenB(ϕ)(A) by
just writing ϕ(A). In order to simplify notations, we will often replace con-
junction by juxtaposition and indicate negation of a formula by barring it, i.e.
AB = A ∧ B and A = ¬A. An atomic formula is a formula consisting of just
a propositional variable, a literal is a positive or a negated atomic formula, an
elementary conjunction is a conjunction of literals, and a complete conjunction
is an elementary conjunction where all atomic formulas appear once, either in
positive or in negated form. ΩΣ denotes the set of all complete conjunctions over
a signature Σ; if Σ is clear from the context, we may drop the index Σ. Note
that there is an obvious bijection between |ModB(Σ) | and ΩΣ , associating with
I ∈ |ModB(Σ) | the complete conjunction ωI ∈ ΩΣ in which an atomic formula
ai ∈ Σ occurs in positive form iff I(ai) = true.

Satisfaction relation: For any Σ ∈ |SigB |, the satisfaction relation |=B,Σ ⊆
|ModB(Σ) | × SenB(Σ) is defined as expected for propositional logic, e.g.



I |=B,Σ ai iff I(ai) = true and I |=B,Σ A∧B iff I |=B,Σ A and I |=B,Σ B for ai ∈ Σ
and A,B ∈ SenB(Σ).

Proposition 1. InstB = 〈SigB, ModB, SenB, |=B 〉 is an institution.

Example 1. Let Σ = {s, t, u} and Σ′ = {a, b, c} be two propositional signatures
with the atomic propositions s – being a scholar, t – being not married, u – being
single and a – being a student, b – being young, c – being unmarried. Let I ′ be the
Σ′-model with I ′(a) = true, I ′(b) = true, I ′(c) = false. Let ϕ : Σ → Σ′ ∈ SigB
be the signature morphism with ϕ(s) = a, ϕ(t) = c, ϕ(u) = c. The functor
ModB(ϕ) takes I ′ to the Σ-model I := ModB(ϕ)(I ′), yielding I(s) = I ′(a) =
true, I(t) = I ′(c) = false, I(u) = I ′(c) = false.

2.3 The Institution of Probabilistic Propositional Logic

Based on InstB, we can now define the institution of probabilistic propositional
logic InstP = 〈SigP , ModP , SenP , |=P 〉. We will first give a very short intro-
duction to probabilistics as far as it is needed here.

Let Σ ∈ |SigB | be a propositional signature. A probability distribution (or
probability function) over Σ is a function P : SenB(Σ)→ [0, 1] such that P (>) =
1, P (⊥) = 0, and P (A ∨ B) = P (A) + P (B) for any formulas A,B ∈ SenB(Σ)
with AB = ⊥. Each probability distribution P is determined uniquely by its
values on the complete conjunctions ω ∈ ΩΣ , since P (A) =

∑
ω∈ΩΣ ,ω |=B,Σ A

P (ω).

For two propositional formulas A,B ∈ SenB(Σ) with P (A) > 0, the conditional

probability of B given A, denoted by P (B|A), is
P (AB)
P (A)

. Any subset Σ1 ⊆

Σ gives rise to a distribution PΣ1 : SenB(Σ1) → [0, 1] by virtue of defining
PΣ1(ω1) =

∑
ω∈ΩΣ ,ω |=B,Σ ω1

P (ω) for all ω1 ∈ ΩΣ1 ; PΣ1 is called the marginal

distribution of P on Σ1.

Signatures: SigP is identical to the category of propositional signatures, i.e.
SigP = SigB.

Models: For each signature Σ, the objects of ModP(Σ) are probability distri-
butions over the propositional variables, i.e.

|ModP(Σ) | = {P | P is a probability distribution over Σ}

As for ModB(Σ), we assume in this paper that the only morphisms in ModP(Σ)
are the identity morphisms.

For each signature morphism ϕ : Σ → Σ′, we define a functor ModP(ϕ) :
ModP(Σ′) → ModP(Σ) by mapping each distribution P ′ over Σ′ to a distri-
bution ModP(ϕ)(P ′) over Σ. ModP(ϕ)(P ′) is defined by giving its value for all
complete conjunctions over Σ:

(ModP(ϕ)(P ′))(ω) := P ′(ϕ(ω)) =
∑

ω′ |=B,Σ′ ϕ(ω)

P ′(ω′)



where ω and ω′ are complete conjunctions over Σ and Σ′, respectively.

Sentences: For each signature Σ, the set SenP(Σ) contains probabilistic facts
of the form A[x] where A ∈ SenB(Σ) is a propositional formula from InstB. x ∈
[0, 1] is a probability value indicating the degree of certainty for the occurrence
of A.

For each signature morphism ϕ : Σ → Σ′, the extension SenP(ϕ) :
SenP(Σ)→ SenP(Σ′) is defined by SenP(ϕ)(A[x]) = ϕ(A)[x].

Satisfaction relation: The satisfaction relation |=P,Σ ⊆ |ModP(Σ) | ×
SenP(Σ) is defined, for any Σ ∈ |SigP |, by

P |=P,Σ A[x] iff P (A) = x

Note that, since P (A) = 1− P (A) for each formula A ∈ SenB(Σ), it holds that
P |=P,Σ A[x] iff P |=P,Σ A[1− x].

Proposition 2. InstP = 〈SigP , ModP , SenP , |=P 〉 is an institution.

2.4 The Institution of Probabilistic Conditional Logic

We now use InstP to define the institution of probabilistic conditionals InstC =
〈SigC , ModC , SenC , |=C 〉.
Signatures: SigC is identical to the category of propositional signatures, i.e.
SigC = SigP = SigB.

Models: The models for probabilistic conditional logic are again probability
distributions over the propositional variables. Therefore, the model functor can
be taken directly from probabilistic propositional logic, giving us ModC = ModP .

Sentences: For each signature Σ, the set SenC(Σ) contains probabilistic con-
ditionals (sometimes also called probabilistic rules) of the form (B|A)[x] where
A,B ∈ SenB(Σ) are propositional formulas from InstB. x ∈ [0, 1] is a probabil-
ity value indicating the degree of certainty for the occurrence of B under the
condition A. – Note that the sentences from InstP are included implicitly since
a probabilistic fact of the form B[x] can easily be expressed as a conditional
(B|>)[x] with a tautology as trivial antecedent.

For each signature morphism ϕ : Σ → Σ′, the extension SenC(ϕ) :
SenC(Σ) → SenC(Σ′) is defined by straightforward inductive extension on the
structure of the formulas: SenC(ϕ)((B|A)[x]) = (ϕ(B)|ϕ(A))[x].

Satisfaction relation: The satisfaction relation |=C,Σ ⊆ |ModC(Σ) | ×
SenC(Σ) is defined, for any Σ ∈ |SigC |, by

P |=C,Σ (B|A)[x] iff P (A) > 0 and P (B | A) =
P (AB)
P (A)

= x

Note that for probabilistic facts we have P |=C,Σ (B|>)[x] iff P (B) = x from
the definition of the satisfaction relation since P (>) = 1. Thus, P |=P,Σ B[x] iff
P |=C,Σ (B|>)[x].

Proposition 3. InstC = 〈SigC , ModC , SenC , |=C 〉 is an institution.



2.5 The Institution of Conditional Logic

The institution of conditional logic is InstK = 〈SigK, ModK, SenK, |=K 〉 with:

Signatures: SigK is again identical to the category of propositional signatures,
i.e. SigK = SigC = SigP = SigB.

Models: Various types of models have been proposed to interpret conditionals
adequately within a formal system (cf. e.g. [12]). Many of them are based on
considering possible worlds which can be thought of as being represented by
classical logical interpretations |ModB(Σ) |, or complete conjunctions ω ∈ Ω
(as defined in Sec. 2.2), respectively. One of the most prominent approaches
is the system-of-spheres model of Lewis [10] which makes use of a notion of
similarity between possible worlds. This idea of comparing worlds and evaluating
conditionals with respect to the “nearest” or “best” worlds (which are somehow
selected) is common to very many approaches in conditional logics. So, in order
to base our conditional logic on quite a general semantics, we take the models
to be total preorders over classical propositional interpretations, i.e.

|ModK(Σ) | = {R | R is a total preorder on |ModB(Σ) |}

where a total preorder R is a reflexive and transitive relation such that for any
two elements I1, I2, we have (I1, I2) ∈ R or (I2, I1) ∈ R (possibly both).

By identifying ModB(Σ) with the set of possible worlds Ω, we will consider
the models R ∈ ModK(Σ) to be total preorders on Ω, ordering the possible
worlds according to their plausibility. By convention, the least worlds are the
most plausible worlds. We will also use the infix notation ω1 �R ω2 instead of
(ω1, ω2) ∈ R. As usual, we introduce the ≺R-relation by saying that ω1 ≺R ω2 iff
ω1 �R ω2 and not ω2 �R ω1. Furthermore, ω1 ≈R ω2 means that both ω1 �R ω2

and ω2 �R ω1 hold.
Each R ∈ ModK(Σ) induces a partitioning Ω0, Ω1, . . . of Ω, such that all

worlds in the same partitioning subset are considered equally plausible (ω1 ≈R ω2

for ω1, ω2 ∈ Ωj), and whenever ω1 ∈ Ωi and ω2 ∈ Ωk with i < k, then ω1 ≺R ω2.
Let Min(R) denote the set of R-minimal worlds in Ω, i.e.

Min(R) = Ω0 = {ω0 ∈ Ω | ω0 �R ω for all ω ∈ Ω}

Each R ∈ ModK(Σ) induces a total preorder on SenB(Σ) by setting

A �R B iff for all ω2 ∈ Ω with ω2 |=B,Σ B
there exists ω1 ∈ Ω with ω1 |=B,Σ A such that ω1 �R ω2

So, A is considered to be at least as plausible as B (with respect to R) iff the most
plausible worlds satisfying A are at least as plausible as any world satisfying B.
In particular, if B |=B,Σ A, then A �R B for each R ∈ ModK(Σ), since ω |=B,Σ B
implies ω |=B,Σ A. Again, A ≺R B means both A �R B and not B �R A. Note
that A ≺R ⊥ for all A 6≡ ⊥.

As before, we only consider the identity morphisms in ModK(Σ) for this
paper.



For each signature morphism ϕ : Σ → Σ′, we define a functor ModK(ϕ) :
ModK(Σ′) → ModK(Σ) by mapping a (total) preorder R′ over ModB(Σ′) to a
(total) preorder ModK(ϕ)(R′) over ModB(Σ) in the following way:

ω1 �ModK(ϕ)(R′) ω2 iff ϕ(ω1) �R′ ϕ(ω2) (1)

Note that on the left hand side of (1) the complete conjunctions ω1 and ω2 are
viewed as models in ModB(Σ), whereas on the right hand side they are sentences
in SenB(Σ).

It is straightforward to check that ModK(ϕ)(R′) is a total preorder (the cor-
responding properties are all directly inherited by R′), so indeed ModK(ϕ)(R′) ∈
ModK(Σ). The connection between R′ and ModK(ϕ)(R′) defined by (1) can also
be shown to hold for propositional sentences instead of worlds:

Lemma 1. Let A,B ∈ SenB(Σ). Then A �ModK(ϕ)(R′) B iff ϕ(A) �R′ ϕ(B).

Corollary 1. Let A,B ∈ SenB(Σ). Then A ≺ModK(ϕ)(R′) B iff ϕ(A) ≺R′ ϕ(B).

Sentences: For each signature Σ, the set SenK(Σ) contains (propositional)
conditionals of the form (B|A) where A,B ∈ SenB(Σ) are propositional formulas
from InstB. For ϕ : Σ → Σ′, the extension SenK(ϕ) is defined as usual by
SenK(ϕ)((B|A)) = (ϕ(B)|ϕ(A)).

Satisfaction relation: The satisfaction relation |=K,Σ ⊆ |ModK(Σ) | ×
SenK(Σ) is defined, for any Σ ∈ |SigK |, by

R |=K,Σ (B|A) iff AB ≺R AB

Therefore, a conditional (B|A) is satisfied (or accepted) by the plausibility pre-
order R iff its confirmation AB is more plausible than its refutation AB.

Proposition 4. InstK = 〈SigK, ModK, SenK, |=K 〉 is an institution.

Example 2. We continue our student-example in this qualitative conditional en-
vironment, so let Σ,Σ′, ϕ be as defined in Example 1. Let R′ be the following
total preorder on Ω′:

R′ : abc ≺R′ abc ≈R′ abc ≺R′ abc ≈R′ abc ≈R′ abc ≈R′ abc ≈R′ abc

Now, for instance R′ |=K,Σ′ (a|>) since >a ≡ a, >a ≡ a, and a ≺R′ a.
Thus, under R′, it is more plausible to be not a student than to be a student.
Furthermore,R′ |=K,Σ′ (c|a) – students are supposed to be unmarried since under
R′, ac is more plausible than ac.

Under ModK(ϕ), R′ is mapped onto R = ModK(ϕ)(R′) where R is the fol-
lowing total preorder on Ω:

R : stu ≺R stu ≈R stu ≺R stu ≺R stu ≈R stu ≈R stu ≈R stu

As expected, the conditionals (t|s) and (u|s), both corresponding to (c|a) in
SenK(Σ′) under ϕ, are satisfied by R – here, scholars are supposed to be both
not married and single.



3 Relating Conditional Logic to Other Logics

Having stepwise developed conditional logic, we now turn to study its interre-
lationships to the other logics. For instance, there is an obvious translation of
sentences mapping A to (A|>) and mapping (A|B) to (A|B)[1]. Furthermore,
there is a similar obvious transformation of a propositional interpretation I to a
conditional logic model viewing I to be more plausible than any other interpre-
tation, which in turn are considered to be all equally plausible. What happens to
satisfaction and entailment when using such translations? In order to make these
questions more precise, we use the notion of institution morphisms introduced
in [6] (see also [7]).

An institution morphism Φ expresses a relation between two institutions Inst
und Inst ′ such that the satisfaction condition of Inst may be computed by the
satisfaction condition of Inst ′ if we translate it according to Φ. The translation
is done by relating every Inst-signature Σ to an Inst ′-signature Σ′, each Σ′-
sentence to a Σ-sentence, and each Σ-model to a Σ′-model.

Definition 2. [6] Let Inst = 〈Sig , Mod , Sen, |= 〉 and Inst ′ =
〈Sig ′, Mod ′, Sen ′, |= ′ 〉 be two institutions. An institution morphism Φ from
Inst to Inst ′ is a triple 〈φ, α, β 〉 with a functor φ : Sig → Sig ′, a natural trans-
formation α : Sen ′ ◦ φ =⇒ Sen, and a natural transformation β : Mod =⇒
Mod ′ ◦ φ such that for each Σ ∈ |Sig |, for each m ∈ |Mod(Σ) |, and for each
f ′ ∈ Sen ′(φ(Σ)) the following satisfaction condition (for institution morphisms)
holds: m |=Σ αΣ(f ′) iff βΣ(m) |= ′φ(Σ) f

′.

Since InstB, InstP , InstC , and InstK all have the same category SigB of
signatures, a natural choice for the signature translation component φ in any
morphism between these institutions is the identity idSigB which we will use in
the following.

3.1 Relating Propositional and Conditional Logic

The sentences of InstB and InstK can be related in an intuitive way by sending
a propositional formula A to the conditional (A|>) having the trivial antecedent
>. It is easy to check that this translation yields a natural transformations

αB/K : SenB =⇒ SenK αB/K,Σ(A) = (A|>)

Similarly, there is also an intuitive way of mapping a propositional model I
to a conditional logic model (which we will denote by RI). This model RI views
I to be more plausible than any other world, and all other worlds are looked
upon as equally plausible. With ωI denoting the unique complete conjunction
with I |=B,Σ ωI , the preorder RI thus partitions Ω into the two sets {ωI} and
Ω\{ωI}. Therfore, ωI ≺RI ω for all ω 6= ωI . Formally, RI is defined by

ω1 �RI ω2 iff I |=B,Σ ω1 or (I /|=B,Σ ω1 and I /|=B,Σ ω2)

It is straightforward to check that this yields a natural transfromation

βB/K : ModB =⇒ ModK βB/K,Σ(I) = RI



Having identified obvious standard translations for sentences and models
from InstB to InstK, the next question is how to use them in relations between
these two institutions. As intuitive as the sentence translation αB/K appears, the
next proposition shows that it can not be used to define an institution morphism
from InstK to InstB:

Proposition 5. There is no β such that 〈 idSigB , αB/K, β 〉 : InstK −→ InstB
is an institution morphism.

When going in the other direction from InstB to InstK using the model
translation βB/K : ModB =⇒ ModK, we must map conditionals to propositional
formulas. A possible choice is to map (B|A) to the formula AB confirming the
conditional, thereby yielding the natural transformation

αK/B : SenK =⇒ SenB with αK/B,Σ((B|A)) = AB

The next proposition shows that βB/K gives rise to exactly one institution mor-
phism from InstB to InstK, namely the one using αK/B for sentence translation:

Proposition 6. 〈 idSigB , α, βB/K 〉 : InstB −→ InstK is an institution mor-
phism iff α = αK/B.

3.2 Relating Conditional and Probabilistic Conditional Logic

It is quite straightforward to relate the sentences of InstK and InstC by sending
a conditional to a probabilistic conditional with trivial probability 1, yielding
the natural transformation

αK/C : SenK =⇒ SenC with αK/C ,Σ((B|A)) = (B|A)[1]

Relating the models of InstK and InstC , however, is far less obvious. Many
different ways can be devised to map preorders and probability distributions
to one another. As a minimal requirement, we would certainly expect the pre-
order to be compatible with the ordering induced by the probabilities. As a first
approach, we define a mapping sending a probability distribution P to a con-
ditional logic model RP . Under RP , all complete conjunctions with a positive
probability are considered most plausible, and all complete conjunctions with
zero probability are taken as less (yet equally) plausible. Thus, RP partitions Ω
into two sets, namely Min(RP ) = {ω ∈ Ω | P (ω) > 0} and {ω ∈ Ω | P (ω) = 0}.
Formally, RP is defined by

ω1 �RP ω2 iff P (ω2) = 0 or (P (ω1) > 0 and P (ω2) > 0)

and it is easy to check that this yields a natural transformation

βC/K : ModC =⇒ ModK with βC/K,Σ(P ) = RP

The next proposition shows that this indeed gives rise to an institution morphism
from InstC to InstK which involves αK/C .

Proposition 7. 〈 idSigB , αK/C , βC/K 〉 : InstC −→ InstK is an institution mor-
phism.



What other possibilities are there to generate a preorder from a probability
distribution so that the intuitive sentence translation αK/C yields an institution
morphism? Although the preordering concept would allow a rather fine-grained
hierarchy of plausibilities, it is surprising to see that the somewhat simplistic
two-level approach of RP is the only possibility to augment αK/C towards an
institution morphism.

Proposition 8. If 〈 idSigB , αK/C , β 〉 : InstC −→ InstK is an institution mor-
phism then β = βC/K.

Going in the other direction, i.e. from InstK to InstC , we have to transform
probabilistic conditionals into qualitative conditionals by a natural transforma-
tion α : SenC =⇒ SenK. We might anticipate problems in handling properly non-
trivial probabilities, but we would certainly expect that αΣ((B|A)[1]) = (B|A).
The next proposition, however, shows even this to be impossible.

Proposition 9. There is no institution morphism 〈 idSigB , α, β 〉 : InstK −→
InstC such that αΣ((B|A)[1]) = (B|A) for all signatures Σ.

3.3 Relating Propositional and Probabilistic Conditional Logic

What is the situation between propositional logic InstB and probabilistic condi-
tional logic InstC? Here, the obvious standard translations are

αB/C : SenB =⇒ SenC αB/C ,Σ(A) = (A|>)[1]

βB/C : ModB =⇒ ModC βB/C ,Σ(I) = PI PI(ω) =
{

1 if I(ω) = true
0 otherwise

In [1] it is shown that no institution morphism using the sentence translation
αB/C exists. When going from propositional logic to probabilistic conditional
logic using the model translation βB/C , we have to map probabilistic conditionals
to propositional sentences. However, possibly a little surpising at first sight, all
probabilistic conditionals with probabilities other than 0 and 1 must be viewed
as contradictory propositions.

Proposition 10. If 〈 idSigB , α, βB/C 〉 : InstB −→ InstC is an institution mor-
phism, then for any Σ ∈ SigB, αΣ maps every sentence (B|A)[x] with x 6= 0 and
x 6= 1 to ⊥.

The only choices left for the translation of probabilistic conditionals is thus
the translation of conditionals with the trivial probabilities 1 and 0. Although
(B|A)[1] represents a conditional if A then B with probability 1, we can not map it
to the classical (material) implication A⇒ B (see [1]). By taking the antecedent
as a context into account, we map (B|A)[1] to A ∧ (A⇒ B), or equivalently, to
AB. (B|A)[0] is mapped to ¬(A⇒ B), or equivalently, to AB, since A∧¬(A⇒
B) = ¬(A⇒ B). This yields the natural tranformation

αC/B : SenC =⇒ SenB with αC/B,Σ((B|A)[x]) =


AB if x = 1
AB if x = 0
⊥ otherwise
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Morphism Sentence translation Model translation

InstB −→ InstP A[x] 7→


A if x = 1

A if x = 0
⊥ otherwise

I 7→ PI

InstC −→ InstP A[x] 7→ (A|>)[x] P 7→ P

InstB −→ InstC (B|A)[x] 7→


AB if x = 1

AB if x = 0
⊥ otherwise

I 7→ PI

InstB −→ InstK (B|A) 7→ AB I 7→ RI

InstC −→ InstK (B|A) 7→ (B|A)[1] P 7→ RP

Fig. 1. Institution morphisms between InstB, InstP , InstC , and InstK

Proposition 11. 〈 idSigB , αC/B, βB/C 〉 : InstB −→ InstC is an institution mor-
phism.

Note that αC/B,Σ reflects the three-valued semantics of conditionals, iden-
tifying the verifying part AB and the falsifying part AB as most important
components of conditional information (cf. [4, 3]).

Figure 1 summarizes our findings with respect to institution morphisms be-
tween the four institutions, where the relationships involving InstP are inves-
tigated in [1]. Using the intuitive standard translations, we have (essentially)
exactly one institution morphism between any pair of the four institutions con-
nected by arrows in Figure 1, but none going in the respective opposite direction.
Moreover, the diagram is a commuting one; for instance, αK/B is the (vertical)
composition of the standard sentence translations αK/C and αC/B, sending (B|A)
first to (B|A)[1] and then to AB. Correspondingly, βB/K is the composition of
the standard model translations βB/P and βC/K, sending I first to PI and then
to RI .



4 Conclusions and Further Work

In this paper, we used the general framework of institutions to formalize qualita-
tive and probabilistic conditional logic as abstract logical systems. This allowed
us to study the structural properties of both syntax and semantics of these
logics, telling us, e.g., how conditionals are interpreted under change of nota-
tion. Moreover, in making use of the formal vehicle of institution morphisms,
we investigated how qualitative and probabilistic conditionals and their respec-
tive models can be related to one another, and to the underlying two-valued
propositional logic.

For qualitative as well as for probabilistic conditionals, the semantics we
based our considerations on are quite standard, in order to make our results most
widely applicable. However, there are lots of different semantics for conditionals,
and it is an interesting question whether other semantics can yield different
relationships between the involved logics. This is a topic of our ongoing research.
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