
Uncertainty and Partial Non-Uniform
Assumptions in Parametric Deductive Databases

Yann Loyer and Umberto Straccia

Istituto di Elaborazione della Informazione -C.N.R.
Via G. Moruzzi,1 I-56124 Pisa (PI) ITALY

Abstract. Different many-valued logic programming frameworks have
been proposed to manage uncertain information in deductive databases
and logic programming. A feature of these frameworks is that they rely
on a predefined assumption or hypothesis, i.e. an interpretation that
assigns the same default truth value to all the atoms of a program, e.g.
in the open world assumption, by default all atoms have unknown truth
value. In this paper we extend these frameworks along three directions:
(i) we will introduce non-monotonic modes of negation; (ii) the default
truth values of atoms need not necessarily to be all equal each other; and
(iii) a hypothesis can be a partial interpretation. We will show that our
approach extends the usual ones: if we restrict our attention to classical
logic programs and consider total uniform hypotheses, then our semantics
reduces to the usual semantics of logic programs. In particular, under
the everything false assumption, our semantics captures and extends the
well-founded semantics to these frameworks.

1 Introduction

An important issue to be addressed in applications of logic programming is the
management of uncertainty whenever the information to be represented is of
imperfect nature (which happens quite often). The problem of uncertainty man-
agement in logic programs has attracted the attention of many researchers and
numerous frameworks have been proposed [1–3, 6, 8–11, 13–17]. Each of them ad-
dresses the management of different kind of uncertainty: (i) probability theory [6,
10, 13–15]; (ii) fuzzy set theory [1, 16, 17]; (iii) multi-valued logic [8, 9, 11]; and
(iv) possibilistic logic [3]. Apart from the different notion of uncertainty they
rely on, these frameworks differ in the way in which uncertainty is associated
with the facts and rules of a program. With respect to this latter point, these
frameworks can be classified into annotation based (AB) and implication based
(IB), which we briefly summarize below. In the AB approach, a rule is of the form
A : f(β1, . . . , βn)← B1 : β1, . . . , Bn : βn, which asserts “the certainty of atom A
is at least (or is in) f(β1, . . . , βn), whenever the certainty of atom Bi is at least
(or is in) βi, 1 ≤ i ≤ n”. Here f is an n-ary computable function and βi is either
a constant or a variable ranging over an appropriate certainty domain. Examples
of AB frameworks include [8, 9, 14, 15]. In the IB approach, a rule is of the form
A

α← B1, ..., Bn, which says that the certainty associated with the implication
B1 ∧ ... ∧ Bn → A is α. Computationally, given an assignment v of certainties
to the Bis, the certainty of A is computed by taking the “conjunction” of the

certainties v(Bi) and then somehow “propagating” it to the rule head. The truth
values are taken from a certainty lattice. Examples of the IB frameworks include
[10, 11, 17] (see [11] for a more detailed comparison between the two approaches).
We recall the following facts [11]: (i) while the way implication is treated in the
AB approach is closer to classical logic, the way rules are fired in the IB approach
has a definite intuitive appeal and (ii) the AB approach is strictly more expres-
sive than the IB. The down side is that query processing in the AB approach is
more complicated, e.g. the fixpoint operator is not continuous in general, while
it is in the IB approaches. From the above points, it is believed that the IB
approach is easier to use and is more amenable for efficient implementation.
Nonetheless both approaches stress important limitations for real-world appli-
cations, which we will address in this paper: (i) they do not address any mode
of non-monotonic reasoning (in particular, no negation operation is defined).
The need of non-monotonic formalisms for real-world applications is commonly
accepted: our knowledge about the world is almost always incomplete and, thus,
we are forced to reason in the absence of complete information. As a result we of-
ten have to revise our conclusions, when new information becomes available; (ii)
they rely on predefined uniform assumptions, i.e. they assign the same default
truth value to all the atoms. Widely used and well known examples of uniform
assumptions are the Open World Assumption (OWA), which corresponds to the
assumption that every atom whose truth can not be inferred from the program
has unknown truth value, and the Closed World Assumption (CWA), which cor-
responds to the assumption that every such atom’s truth value is false. While
only uniform assumptions are used, the need of non-uniform assumptions has
already been highlighted in the domains of (a) logic-based information retrieval
[6], and (b) information integration [12], as shown in the following example.

Example 1 (A motivating example). Consider a legal case where a judge has to
decide whether to charge a person named Ted accused of murder. To do so, the
judge first collects facts from two different sources: the public prosecutor and the
person’s lawyer. The judge then combines the collected facts using a set of rules
in order to reach a decision. For the sake of our example, let us suppose that
the judge has collected a set of facts F = {witness(John), friends(John, Ted)}
that he combines using a set of rules R as follows1:

R =

suspect(X) ← motive(X)
suspect(X) ← witness(X)
innocent(X) ← alibi(X, Y) ∧ ¬friends(X, Y)
innocent(X) ← presumption of innocence(X) ∧ ¬suspect(X)
friends(X, Y) ← friends(Y, X)
friends(X, Y) ← friends(X, Z) ∧ friends(Z, Y)
charge(X) ← suspect(X)
charge(X) ← ¬innocent(X)

The two first rules of R describe how the prosecutor works: in order to support

the claim that a person X is a suspect, the prosecutor tries to provide a motive
(first rule) or a witness against X (second rule). The third and fourth rules of R
describe how the lawyer works: in order to support the claim that X is innocent,
1 For ease of presentation we leave uncertainties out. For instance, there might well

be some uncertainty in the facts and rules, as we will see later on.

the lawyer tries to provide an alibi for X by a person who is not a friend of X
(third rule), or to use the presumption of innocence if the person is not suspect
(fourth rule), i.e. the defendant is assumed innocent until proved guilty. Finally,
the last two rules of R are the judge’s “decision making rules”.

Now, what should the value of charge(Ted) be? Ted should be charged if he
has been proved effectively suspect or not innocent. We can easily remark that
uniform hypotheses, as the CWA and the OWA, do not fit with our expecta-
tion. According to the CWA, then the judge will infer that Ted is not innocent
and must be charged. According to the OWA, then the atoms suspect(Ted),
innocent(Ted) and charged(Ted) are unknown and the judge cannot take a
decision (that semantics is often considered as too weak). Another uniform hy-
pothesis is to assign to all atoms the default value true, but under such an
assumption, the judge will infer that Ted is suspect and must be charged.

An intuitively appealing non-uniform assumption in this situation is to as-
sume by default that the atoms motive(Ted), witness(Ted) and suspect(Ted)
are false, that the atom presumption of innocence(Ted) is true and that the
others are unknown. With such a hypothesis, the judge could infer that Ted is
innocent, not suspect and should not be charged. 2

We believe that we should not be limited to consider logic program without
negation under uniform assumptions only, but be able to associate to any logic
program a semantics based on any given hypothesis, which represents our default
or assumed knowledge. To this end, we will extend the parametric IB framework
[11], a unifying umbrella for IB frameworks, along three directions: (i) we will
introduce negation into the programs, i.e. we will extend the IB frameworks with
the non-monotonic mode of negation and extend to that framework the usual
semantics of logic programs with negation; (ii) we will consider assumptions that
do not necessarily assign the same default truth values to all the atoms; and (iii)
we will not only consider total assumptions but also partial assumptions, i.e. we
will not require that every atom has a default truth value (an atom’s truth
value may be still unknown). We will show that our approach extends the usual
ones: restricting our attention to logic programs and considering total uniform
hypotheses, then our semantics reduces to the usual semantics of logic programs.
In particular, under the everywhere false assumption (i) for programs without
negation we obtain the semantics presented in [11]; and (ii) for Datalog programs
with negation we obtain the Well Founded Semantics (WFS) [18]. On the other
hand, under the almost everywhere empty hypothesis our semantics includes the
Kripke-Kleene semantics of Fitting [4].

In the next section we introduce the syntax of our logical language, we de-
fine the notion of satisfiability and present fixpoint operators, through which in
Section 3 the intended semantics of our logic programs is specified. Section 4
compares our semantics with others, while Section 5 concludes.

2 Syntax and semantics: preliminaries

We recall the syntactical aspects of the parametric IB framework presented in
[11] and extend it with negation. Let L be an arbitrary first order language
that contains infinitely many variable symbols, finitely many constants, and

predicate symbols, but no function symbols. While L does not contain function
symbols, it contains symbols for families of propagation (Fp), conjunction (Fc)
and disjunction functions (Fd), called combination functions.

Let 〈T ,�,⊗,⊕〉 be a certainty lattice (a complete lattice) and B(T) the set of
finite multisets over T . With ⊥ and > we denote the least and greatest element
in T , respectively. A propagation function is a mapping from T × T to T and a
conjunction or disjunction function is a mapping from B(T) to T . Each kind of
function must verify some of the following properties:

1. monotonicity w.r.t. (with respect to) each one of its arguments;
2. continuity w.r.t. each one of its arguments;
3. bounded-above: f(α1, α2) � αi, for i = 1, 2,∀α1, α2 ∈ T ;
4. bounded-below: f(α1, α2) � αi, for i = 1, 2,∀α1, α2 ∈ T ;
5. commutativity: f(α1, α2) = f(α2, α1),∀α1, α2 ∈ T ;
6. associativity: f(α1, f(α2, α3)) = f(f(α1, α2), α3),∀α1, α2, α3 ∈ T ;
7. f({α}) = α, ∀α ∈ T ;
8. f(∅) = ⊥;
9. f(∅) = >;

10. f(α,>) = α, ∀α ∈ T .

We require that [11]: (i) any conjunction function in Fc satisfies properties 1, 2,
3, 5, 6, 7, 9 and 10; (ii) any propagation function in Fp satisfies properties 1, 2,
3 and 10; and (iii) any disjunction function in Fd satisfies properties 1, 2, 4, 5,
6, 7 and 8. We also assume that there is a negation function ¬: T → T that is
anti-monotone w.r.t. � and satisfies ¬¬α = α, ∀α ∈ T and ¬⊥ = >.

Definition 1 (Normal parametric program). A normal parametric pro-
gram P (np-program) is a tuple 〈T ,R, C,P,D〉, defined as follows:

1. T is a set of truth values partially ordered by �. We assume that 〈T ,�,⊗,⊕〉
is a complete lattice, where ⊗ is the meet operator and ⊕ the join operator;

2. R is a finite set of normal parametric rules r (np-rules), each of which is
a statement of the form r : A

αr← B1, ..., Bn,¬C1, ...,¬Cm, where A is an
atomic formula and B1, ..., Bn, C1, ..., Cm are atomic formulas or values in
T and αr ∈ T \ {⊥} is the certainty of the rule;

3. C maps each np-rule to a conjunction function in Fc;
4. P maps each np-rule to a propagation function in Fp;
5. D maps each predicate symbol in P to a disjunction function in Fd.

For ease of presentation, we write r : A
αr← B1, ..., Bn,¬C1, ...,¬Cm; 〈fd, fp, fc〉

to represent a np-rule in which fd ∈ Fd is the disjunction function associated
with the predicate symbol A and, fc ∈ Fc and fp ∈ Fp are respectively the
conjunction and propagation functions associated with r. The intention is that
the conjunction function (e.g. ⊗) determines the truth value of the conjunction
of B1, ..., Bn,¬C1, ...,¬Cm, the propagation function (e.g. ⊗) determines how to
“propagate” the truth value resulting from the evaluation of the body to the
head, by taking into account the certainty αr associated to the rule r, while the
disjunction function (e.g. ⊕) dictates how to combine the certainties in case an
atom is head of several rules. Note that np-programs without negation are para-
metric programs (p-programs) as defined in [11]. We further define the Herbrand

base HBP of a np-program P as the set of all instantiated atoms corresponding
to atoms appearing in P and define P ∗ to be the Herbrand instantiation of P ,
i.e. the set of all ground instantiations of the rules in P . A classical logic program
is a np-program such that ⊗ is the unique conjunction and propagation function,
⊕ is the unique disjunction function and αr = >, for all rules r ∈ P . Such a
program will be denoted in the classical way. If not stated otherwise, with P we
will always denote an np-program.

Example 2. Consider the complete lattice 〈T ,�,⊗,⊕〉, where T is [0, 1], ∀, a, b ∈
[0, 1], a � b iff a ≤ b, a ⊗ b = min(a, b), and a ⊕ b = max(a, b). Consider
fd(α, β) = α + β − α · β, fc(α, β) = α · β, fp = fc and ¬(α) = 1 − α. Then the
following is a np-program P :

P =

suspect(X)
0.6← motive(X) 〈fd,⊗,⊗〉

suspect(X)
0.8← witness(X) 〈fd,⊗,⊗〉

innocent(X)
1← alibi(X, Y) ∧ ¬friends(X, Y) 〈fd, fp,⊗〉

innocent(X)
1← presumption of innocence(X) ∧ ¬suspect(X) 〈fd, fp,⊗〉

friends(X, Y)
1← friends(Y, X) 〈⊕, fp,⊗〉

friends(X, Y)
0.7← friends(X, Z) ∧ friends(Z, Y) 〈⊕, fp, fc〉

charge(X)
1← suspect(X) 〈⊕, fp,⊗〉

charge(X)
1← ¬innocent(X) 〈⊕, fp,⊗〉

witness(John)
1← 1 〈⊕, fp,⊗〉

motive(Jim)
1← 0.8 〈⊕, fp,⊗〉

alibi(Jim, John)
1← 1 〈⊕, fp,⊗〉

friends(John, Ted)
1← 0.8 〈⊕, fp,⊗〉

friends(Jim, Ted)
1← 0.6 〈⊕, fp,⊗〉

Note that e.g. for predicate suspect, the disjunction function fd is associated,
as if there are different ways to infer that someone is suspect, then we would like
to increase our suspicion and not just to choose the maximal value. 2

An interpretation of a np-program P is a function that assigns to all atoms of the
Herbrand base of P a value in T . We denote VP (T) the set of all interpretations
of P . Of course, an important issue is to determine which is the semantics of a
np-program. In the usual approach, the semantics of a program P is determined
by selecting a particular interpretation of P in the set of models of P . In logic
programs without negation, as well as in the parametric IB framework, that
chosen model is usually the least model of P w.r.t. �. Introducing negation in
classical logic programs, and in particular in our parametric IB framework, has
as consequence that some np-programs do not have a unique minimal model.

Example 3. Consider T = [0, 1], fc(α, β) = min(α, β), fd(α, β) = max(α, β),
fp(α, β) = α · β and the usual negation function. Consider the program P = {
A

1← ¬B; 〈fd, fp, fc〉, B
1← ¬A; 〈fd, fp, fc〉, A

1← 0.2; 〈fd, fp, fc〉, B
1← 0.3; 〈fd, fp, fc〉}.

This program will have an infinite number of models Iy
x , where 0.2 ≤ x ≤ 1,

0.3 ≤ y ≤ 1, y ≥ 1 − x, Iy
x(A) = x and Iy

x(B) = y. There are also an infinite
number of minimal models. These models Iy

x are such that y = 1− x. 2

A usual way to deal with such situations in classical logic consists in considering
partial interpretations i.e. interpretations that assign values only to some atoms
of HBP and are not defined for the other atoms. A partial interpretation I of
P is a partial function from HBP to T . A partial interpretation I can also be
seen as the set {A : I(A) | A ∈ HBP and I(A) defined}. Partial interpretations
will be used as functions or as sets following the context. Furthermore, in the
following, given a np-program P , (i) we denote with rA a rule (r : A

αr← B1, ..., Bn,
¬C1, ...,¬Cm; 〈fd, fp, fc〉) ∈ P ∗, whose head is A; (ii) given an interpretation I
such that each premise in the body of rA is defined under I, with I(rA) we
denote the evaluation of the body of rA w.r.t. I, i.e. I(rA) = fp(αr, fc({|I(B1),
. . ., I(Bn), ¬I(C1), . . . ,¬I(Cm)|})); and (iii) I(rA) is undefined in case some
premise in the body is undefined in I, except for the case where there is an i
such that I(Bi) = ⊥ or I(Ci) = >. In that case, we define I(rA) = ⊥.

Definition 2 (Satisfaction of a np-program). A partial interpretation I
satisfies (is a model of) P, denoted |=I P , iff ∀A ∈ HBP :

1. if there is a rule rA ∈ P ∗ such that I(rA) = >, then I(A) = >;
2. if for all rules rA ∈ P ∗, I(rA) is defined, then I(A) � fd(X), where X =
{|I(rA) : rA ∈ P ∗|}. fd is the disjunction function associated with π(A), the
predicate symbol of A.

Example 4. In Example 3, the interpretations Iy
x are all models of P . The inter-

pretation I undefined on A and B is a model of P as well. 2

Restricting our attention to positive programs only, the definition of satisfiability
of np-programs reduces to that of satisfiability of p-programs defined in [11],
where the interpretation I is not partial but total, i.e. defined for all atoms in
HB(P). Note that for total interpretations, case 1 is a consequence of case 2.

From now on, for ease of presentation and without loss of generality, by
“programs” we mean “instantiated” programs. We extend the ordering on T to
the space of interpretations VP (T). Let I1 and I2 be in VP (T), then I1 � I2 if
and only if I1(A) � I2(A) for all ground atoms A. Under this ordering VP (T)
becomes a complete lattice, and we have (I1 ⊗ I2)(A) = I1(A) ⊗ I2(A), and
similarly for the other operators. The actions of functions can be extended from
atoms to formulae as follows: I(fc(X, Y)) = fc(I(X), I(Y)), and similarly for
the other functions. Finally, for all α in T and for all I in VP (T), I(α) = α.

We now define a new operator TH
P inspired by [5, 12]. That operator is pa-

rameterized by an interpretation H on {⊥,>}. That interpretation represents
our default knowledge and we will call it a hypothesis to stretch the fact that it
represents default knowledge and not “sure knowledge”. Such a hypothesis as-
serts that some atoms are assumed ⊥ (false) and some others are assumed to be
> (true). In the context of logic programming with uncertainty, a more general
approach would consist in considering any interpretation over T as a possible
assumption. Nevertheless, the need of non-uniform assumptions like those of the
type defined in this paper, i.e. by default the truth value of an atom maybe true,
false or unknown, where already considered of interest by the literature [6, 12].
We are aware that this is a limitation and that allowing a hypothesis being any

interpretation would give us the most complete approach. But yet unresolved
computational difficulties prevent us to consider the generalised case.

The operator TH
P infers new information from two interpretations: the first

one is used to evaluate the positive literals, while the second one is used to
evaluate the negative literals of the bodies of rules in P .

Definition 3 (Parameterized immediate consequence operator). Let P
and H be any np-program and a hypothesis, respectively. The immediate conse-
quence operator TH

P is a mapping from VP (T)×VP (T) to VP (T), defined as fol-
lows: for every pair (I, J) of interpretations in VP (T), for every atom A, if there
is no rule in P with A as its head, then TH

P (I, J)(A) = H(A), else TH
P (I, J)(A) =

fd(X), where fd is the disjunction function associated with π(A), the predicate
symbol of A, and X = {|fp(αr, fc({|I(B1), . . . , I(Bn),¬J(C1), ...,¬J(Cm)|})) : (r :
A

αr← B1, ..., Bn,¬C1, ...,¬Cm; 〈fd, fp, fc〉) ∈ P |}.
Note that in case negation is absent and H assigns the value ⊥ to all the atoms,
then TH

P reduces to the immediate consequence operator defined in [11].

Proposition 1. TH
P is monotonic in its first argument, and anti-monotonic in

its second argument w.r.t. �.

Using Proposition 1 and the Knaster-Tarsky theorem, we can define an operator
SH

P , likewise [7] and derived from TH
P , that takes an interpretation J as input,

first evaluates the negative literals of the program w.r.t. J , and then returns
the model of the resulting “positive” np-program obtained by iterations of TH

P
beginning with H. But, in order to deal with non-uniform hypotheses, we need
first to define the notion of stratification w.r.t. positive cycles.

Definition 4 (Extended positive cycle). A positive cycle of P is a set of
rules {rA1 , ..., rAn} of P such that for 1 ≤ i ≤ n, Ai (resp. An) appears positively
in the body of rAi+1 (resp. rA1). An extended positive cycle is a positive cycle C
extended with the rules in P whose head is the head of one of the rules of C.

Definition 5 (Stratification w.r.t. extended positive cycles). A stratifi-
cation w.r.t. extended positive cycles of a np-program P is a sequence of np-
programs P1, ..., Pn such that for the mapping σ from rules of P to [1...n],

1. P1, ..., Pn is a partition of P and every rule r is in Pσ(r);
2. for any r1 and r2 in P , where the head of r2 appears in the body of r1 and

there is no extended positive cycle of P containing r1, σ(r1) = σ(r2) holds;
3. for any r1 and r2 in P appearing in the same extended positive cycle, σ(r1) =

σ(r2) holds;
4. if r1 and r2 in P are such that the head of r2 appears in the body of r1

and there is an extended positive cycle of P containing r1 but no extended
positive cycle of P containing both r1 and r2, then σ(r2) < σ(r1) holds.

Note that every np-program has a stratification w.r.t. extended positive cycles.

Proposition 2. Given a np-program P with a stratification P1 = P w.r.t. ex-
tended positive cycles, an interpretation J be over T and a partial hypothe-
sis H over {⊥,>} such that for all extended positive cycles {rA1 , ..., rAk

} of
P , H(A1) = ... = H(Ak) holds. Then the sequence defined by a0 = H and
an+1 = TH

P (an, J) converges.

Definition 6 (The parameterized alternating operator SH
P). Consider P

with stratification w.r.t. the extended positive cycles P1, ..., Pn and let J be an
interpretation over T . Let H be an interpretation over {⊥,>} such that for all
extended positive cycles {rA1 , ..., rAk

} of P , H(A1) = ... = H(Ak) holds. Then
SH

P (J) is the limit of the following sequence: (i) a1 is the iterated fixpoint of the
function λx.TH

P1
(x, J) obtained when beginning the computation with H; (ii) ai is

the iterated fixpoint of the function λx.TH
P1∪...∪Pi

(x, J) obtained when beginning
the computation with ai−1.

Intuitively, during the computation of SH
P (J), we fix the value of the negative

premises in P with their values in J . Then we consider the “positive program”
and evaluate that program stratum by stratum. After the evaluation of a stra-
tum, we know that the knowledge obtained cannot be modified by what we will
infer by activating the rules of the next strata. While a program may have more
than one stratification w.r.t. extended positive cycles, the result of the computa-
tion does not depend on the stratification used for the computation. Note that
the notion of stratification and the condition on H that we have introduced are
indispensable for the convergence of the computation.

Example 5. Let H = {A : >, B : ⊥, C : ⊥, D : ⊥} be a hypothesis and let P =
{A← ⊥, B ← ⊥, C ← A,D ← B,C ← D,D ← C}. If we compute the sequence
I0 = H, Ii = TH

P (Ii−1, J) then we have I1 = {A : ⊥, B : ⊥, C : >, D : ⊥},
I2 = {A : ⊥, B : ⊥, C : ⊥, D : >}, I3 = {A : ⊥, B : ⊥, C : >, D : ⊥}, . . . This
computation does not terminate. If we consider the definition of SH

P , then we
have a stratification of P with two strata: the first one contains the two first rules
of P and the second one the four last rules of P . The computation terminates,
and we have I1 = I2 = {A : ⊥, B : ⊥, C : ⊥, D : ⊥}. 2

Example 6. Let P = {A ← B,B ← A} and H = {A : >, B : ⊥}. The condi-
tion on H is not satisfied, i.e. H(A) 6= H(B), and the computation does not
terminate. 2

3 Semantics under non-uniform assumptions

In this section we will determine what model, among all the models, is the
intended model of a np-program w.r.t. a given hypothesis. For the rest of the
paper, if not stated otherwise, any hypothesis is supposed to assign the same
default value to the atoms that are heads of rules of a same extended positive
cycle. From Proposition 1, we derive the following property of SH

P .

Proposition 3. Given P and a total non-uniform hypothesis H, SH
P is anti-

monotone w.r.t. � and, thus SH
P ◦ SH

P is monotone.

There is a well-know property, which derives from the Knaster-Tarski theorem
and deals with anti-monotone functions on complete lattices:

Proposition 4 ([19]). For a anti-monotone function f on a complete lattice
T , there are two extreme oscillation points of f , µ and ν in T , such that: (i) µ
and ν are the least and greatest fixpoint of the composition f ◦f ; (ii) f oscillates
between µ and ν, i.e. f(µ) = ν and f(ν) = µ; (iii) if x and y are also elements
of T between which f oscillates then x and y lie between µ and ν.

Under the ordering �, SH
P is anti-monotone and VP (T) is a complete lattice,

so SH
P has two extreme oscillation points under this ordering. Let I⊥ be the

interpretation that assigns the value ⊥ to all atoms of HB(P), i.e. the minimal
element of VP (T) w.r.t. �, while let I> be the interpretation that assigns the
value > to all atoms of HB(P), i.e. the maximal element of VP (T) w.r.t. �.

Proposition 5. Let P and H be any np-program and a total non-uniform hy-
pothesis, respectively. SH

P has two extreme oscillation points, SH
⊥ = (SH

P ◦SH
P)∞(I⊥)

and SH
> = (SH

P ◦ SH
P)∞(I>), with SH

⊥ � SH
> .2

Similarly to van Gelder’s alternating fixpoint approach [7], SH
⊥ and SH

> are re-
spectively a under-estimation and an over-estimation of P , but w.r.t. any hy-
pothesis H. As the meaning of P we propose to consider as defined only the
atoms whose values coincide in both limit interpretations. The truth value of
atoms, whose truth value oscillates the “unknown” value is assigned.

Proposition 6. Let P and H be any np-program and a total non-uniform hy-
pothesis, respectively. Then |=SH

⊥∩SH
>

P .

The interpretation SH
⊥ ∩ SH

> is a model of P , and will be the intended meaning
or semantics of P w.r.t. the assumption H.

Definition 7 (Compromise semantics). The compromise semantics of np-
program P w.r.t. a total non-uniform assumption H is defined by MH(P) =
SH
⊥ ∩ SH

> .

Example 7. Let P be the np-program of Example 2 and I⊥, then we have3

M I⊥(P) ⊃ {s(John):0.8, s(Jim):0.6, s(Ted):0, i(John):0, i(Jim):0.664, i(Ted):0,
c(John):1, c(Jim):0.6, c(Ted):1}. Now let H be the following hypothesis H =
{m(X):0, w(x):0, s(X):0, p(X):1, a(X,Y):0, f(X,Y):0, i(X):1, c(X):0}. Then we
have MH(P) ⊃ {s(John):0.8, s(Jim):0.6, s(Ted):0, i(John):0.2, i(Jim):0.7984,
i(Ted):1, c(John):0.8, c(Jim):0.6, c(Ted):0}. 2

Finally, let us briefly show the difficulties introduced in case generalised hypothe-
ses are allowed, as anticipated previously.

Example 8. Given the np-program P = {A ← B,C; B ← A; B ← D} and
the hypothesis H such that H(A) = 0.3,H(B) = 0.3,H(C) = 0.5,H(D) =
0.5. As disjunction and conjunction functions, we will consider the functions
fd(x, y) = min{1, x + y} and fc(x, y) = max{0, x + y− 1}, which are also known
as the Lukasiewicz disjunction and conjunction, respectively. Consider any in-
terpretation J for negative literals. Now, it can be verified that the iterated
fixpoint a1 of the function λx.TH

P (x, J) obtained when beginning the computa-
tion with H, as specified in Definition 6, does not exist. Indeed, the iteration
oscillates between the two interpretations I = {A: 0, B: 0.8, C: 0.5, D: 0.5} and
I ′ = {A: 0.3, B: 0.5, C: 0.5, D: 0.5}. Therefore, the limit of SH

P (J) is undefined
and, thus, the compromise semantics of P is undefined as well. 2

2 For ease, we omit the P in SH
⊥ and SH

> .
3 In the following, for ease of presentation, we will denote each predicate symbol of

P by its first letter. Moreover, in the different semantics of P , we will indicate only
the values of atoms associated to the symbols of predicates suspect, innocent and
charge.

Until know we dealt with total non-uniform assumptions. Let us now address
the case where assumptions may be partial. A possible idea to deal with such
a situation is to introduce a new logical value u and define a new lattice T ′ =
T ∪ {u}. That value represents an unknown or undefined value that means that
u is used to replace a value in T that is currently not known. We would like to
extend conjunction and disjunction functions in the following way: (i) fc(u, x) =
if x 6= ⊥ then u else ⊥; and (ii) fd(u, x) = if x 6= > then u else >. We need also
to extend the order � in T to T ′. We know that for all x ∈ T ′, ⊥ � x � >.
But, from the first constraint it follows that u � x for all x 6= ⊥ and, similarly,
from the second one it follows that x � u for all x 6= >. But then, there is a
solution only if T = {⊥,>}. We follow another way: a partial hypothesis H on
{⊥,>} can be seen as the intersection between two total interpretations H and
H, where H is as H except that ⊥ is assumed for the unknown atoms, while H is
as H except that > is assumed for the unknown atoms. Note that H∩H = H. In
order to assign a semantics to a np-program w.r.t. such a partial interpretation,
we propose to consider the intersection or consensus between the two semantics.

Proposition 7. Let P be any np-program and let H be a partial non-uniform
hypothesis. It follows that |=

MH(P)∩MH(P)
P .

Definition 8 (Consensus semantics w.r.t. H). Let P be any np-program
and let H be a partial non-uniform hypothesis. The consensus semantics of P

w.r.t. H, CH(P), is defined by CH(P) = MH(P) ∩MH(P). 4

Example 9. Given P of Example 2 and H as suggested in the introduction, i.e.
H = {m(X):0, w(x):0, s(X):0, p(X):1}, it follows that CH(P) ⊃ {s(John) : 0.8,
s(Jim):0.6, s(Ted):0, i(Ted):1, c(John):0.8, c(Jim):0.6, c(Ted):0}. 2

4 Comparisons with usual semantics

One obvious question would be whether hypothesis maybe simulated by just
adding the facts to the program and compute the semantics according to classical
approach. This is not true as the following example shows.

Example 10. Let P = {A ← B; B ← A; D ← C; C ← D} and consider the
assumption H such that H(A) = ⊥, and H(B) = ⊥. The consensus semantics
is {A:⊥, B:⊥}. Now, suppose that we add A ← ⊥ and B ← ⊥ to P . Then
we can consider two cases, whether we are using the OWA or the CWA. In the
former case, the classical semantics of the program will be ∅, while in the latter
example the classical semantics of the program will be {A:⊥, B:⊥, C:⊥; D:⊥},
which are both different from the consensus semantics. 2

Our semantics extends the Lakshmanan and Shiri’s semantics [11] of paramet-
ric programs to normal parametric programs. This is due to the fact that the
machinery developed in order to deal with negation has no effect on positive
programs, thus for the everywhere false hypothesis I⊥, we have

4 Note that any compromise semantics is also a consensus semantics.

Proposition 8. If P is a np-program without negation then the compromise
semantics M I⊥(P) of P (or equivalently the consensus semantics CI⊥(P)) w.r.t.
the hypothesis I⊥ coincides with the Lakshmanan and Shiri’s semantics of P .

Now, we compare our semantics with the well-founded semantics [18].

Proposition 9. Let P be a Datalog program with negation. The compromise
semantics M I⊥(P) of P (or equivalently the consensus semantics CI⊥(P)) w.r.t.
the hypothesis I⊥ coincides with the well-founded semantics of P .

Our approach extends the well-founded semantics to the IB framework as well.

Example 11. Consider Example 2 and hypothesis I⊥. Given the Datalog program
with negation P ′ replacing in P all the truth values by 1, fd = ⊕ and fc =
⊗, CI⊥(P ′) ⊃ {s(John):1, s(Jim):1, s(Ted):0, i(John):0, i(Jim):0, i(Ted):0,
c(John):1, c(Jim):1, c(Ted):1} follows. 2

Finally, we can compare the semantics with the usual semantics and in particular
with the Kripke-Kleene semantics [4]. Let us define the almost everywhere empty
hypothesis HP w.r.t. P as follows: H(A) = ⊥ if A is not the head of any rule,
else H(A) is undefined.

Proposition 10. Let P be a Datalog program with negation and HP the almost
everywhere empty hypothesis w.r.t. P . Let WFS(P) be the well-founded seman-
tics of P and KK(P) be the Kripke-Kleene semantics of P . Then KK(P) ⊆
CHP (P) ⊆WFS(P) holds.

The consensus semantics CHP (P) of P represents more knowledge than the
Kripke-Kleene semantics of P , but less than the well-founded semantics of P .
This results shows the well-known fact that the Kripke-Kleene semantics of P is
weaker than the well-founded semantics of P .

Example 12. For P = {B ← A,B ← ¬A,A ← A}, KK(P) = ∅ ⊂ CHP (P) =
{B :>} ⊂WFS(P) = {A :⊥, B :>} holds. 2

5 Conclusion

We have presented a framework for reasoning about uncertainty and negation
in deductive databases and logic programming. Our framework uses parameter-
ized semantics of implication-based logic programming with negation under non-
uniform assumptions for the missing information. We have also seen that when
we restrict our framework to uniform assumptions only, our approach captures
and extends the semantics of conventional logic programs. Obviously, having
considered a restricted, still useful, form of hypothesis, puts the generalisation
to arbitrary hypothesis to be our primary topic for future work.

References

1. True H. Cao. Annotated fuzzy logic programs. Fuzzy Sets and Systems, 113(2):277–
298, 2000.

2. Alex Dekhtyar and V.S. Subrahmanian. Hybrid probabilistic programs. Journal
of Logic Programming, 43(3):187–250, 2000.

3. Didier Dubois, Jérome Lang, and Henri Prade. Towards possibilistic logic pro-
gramming. In Proc. of the 8th Int. Conf. on Logic Programming (ICLP-91), pages
581–595. The MIT Press, 1991.

4. Melvin Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic
Programming, 2(4):295–312, 1985.

5. Melvin Fitting. The family of stable models. Journal of Logic Programming, 17(2/3
& 4):197–225, 1993.

6. Norbert Fuhr. Probabilistic datalog: Implementing logical information retrieval for
advanced applications. Journal of the American Society for Information Science,
51(2):95–110, 2000.

7. Allen Van Gelder. The alternating fixpoint of logic programs with negation. In
Proc. of the 8th ACM SIGACT SIGMOD Sym. on Principles of Database Systems
(PODS-89), pages 1–10, 1989.

8. M. Kifer and Ai Li. On the semantics of rule-based expert systems with uncertainty.
In Proc. of the Int. Conf. on Database Theory (ICDT-88), number 326 in Lecture
Notes in Computer Science, pages 102–117. Springer-Verlag, 1988.

9. Michael Kifer and V.S. Subrahmanian. Theory of generalized annotaded logic
programming and its applications. Journal of Logic Programming, 12:335–367,
1992.

10. Laks V.S. Lakshmanan and Nematollaah Shiri. Probabilistic deductive databases.
In Int’l Logic Programming Symposium, pages 254–268, 1994.

11. Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to de-
ductive databases with uncertainty. IEEE Transactions on Knowledge and Data
Engineering, 13(4):554–570, 2001.

12. Y. Loyer, N Spyratos, and D. Stamate. Integration of information in four-valued
logics under non-uniform assumptions. In Proceedings of the 30th IEEE Interna-
tional Symposium on Multi-Valued Logics (ISMVL 2000), pages 185–191, Portland,
Oregon, 2000. IEEE Press.

13. Thomas Lukasiewicz. Probabilistic logic programming. In Proc. of the 13th Eu-
ropean Conf. on Artificial Intelligence (ECAI-98), pages 388–392, Brighton (Eng-
land), August 1998.

14. Raymond Ng and V.S. Subrahmanian. Stable model semantics for probabilistic
deductive databases. In Zbigniew W. Ras and Maria Zemenkova, editors, Proc. of
the 6th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-91), number 542
in Lecture Notes in Artificial Intelligence, pages 163–171. Springer-Verlag, 1991.

15. Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming. Informa-
tion and Computation, 101(2):150–201, 1993.

16. Ehud Y. Shapiro. Logic programs with uncertainties: A tool for implementing
rule-based systems. In Proc. of the 8th Int. Joint Conf. on Artificial Intelligence
(IJCAI-83), pages 529–532, 1983.

17. M.H. van Emden. Quantitative deduction and its fixpoint theory. Journal of
Philosophical Logic, (1):37–53, 1986.

18. Allen Van Gelder, Kenneth A. Ross, and John S. Schlimpf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650, January
1991.

19. S. Yablo. Truth and reflection. Journal of Philosophical Logic, 14:297–349, 1985.

