

An Agent Enhanced Framework to Support
Pre-dispatching of Tasks

in Workflow Management Systems

Jianxun Liu1, Shensheng Zhang1, Jian Cao1, and Jinmin Hu2

1 CIT Lab, Dept. of Comp. Sci. and Eng., Shanghai Jiao Tong University,
Huasan Road 1954, Shanghai 200030, P.R.China

{Ljx70@263.net}
2 Department of Computer Science, University of Twente, Netherlands

Abstract. In a traditional workflow management system, it�s usually assumed
that: 1) a task can start to execute if and only if all the pre-conditions of that
task are satisfied (such as all information it requires are prepared well); 2)a data
object of a task can be released if and only if that task is completed. In practice,
these assumptions are strict to some extent. It�s shown from the example in this
paper that even partial pre-conditions of a task is satisfied, that task can be
started to work. Thus overlapping execution of tasks can be achieved. Aiming
at this goal, this paper introduces first the concept of task pre-dispatching into
WfMS and then presents a multi-agent enhanced WfMS framework to support
it. A formalized workflow model, which can support the idea, and some imple-
mentation considerations are analyzed, too. With this approach, the duration of
a process can be shortened. Even in the worst case, i.e., the overlapping of exe-
cution cannot be achieved, the pre-dispatching mechanism can still act as a
messenger to inform actors when some tasks will arrive.

1 Introduction

A workflow is a collection of cooperating, coordinated tasks(activities) designed to
carry out a well-defined complex process, such as trip planning, health care and busi-
ness processes[1]. WfMS(Workflow management system) is a system that completely
defines, manages and executes �workflows� through the execution of software whose
order of execution is driven by a computer representation of the workflow logic[2].
When a business process is represented in a corresponding workflow, the number of
tasks and their relationships in the workflow are dependent on a workflow designer�s
policy and workflow system environment[3].

Workflow has also a strong temporal aspect: activity sequencing, deadlines, rout-
ing conditions, and scheduling all involve the element of time[4]. Pozewaunig et
al[5,13] mentioned time management issues in workflow management systems such
as computing activity deadlines, checking time constraints, and monitoring escala-
tions by extending PERT. While activity deadlines in [5] were statically set at work-
flow build-time, Panagos et al [6] studied a way to manage dynamic deadline adjust-
ment of activities and escalations. Son et al [3] addressed a suitable scheme that can

Y. Han, S. Tai, and D. Wikarski (Eds.): EDCIS 2002, LNCS 2480, pp. 80-89, 2002
© Springer-Verlag Berlin Heidelberg 2002

 An Agent Enhanced Framework to Support Pre-dispatching of Tasks 81

maximize the number of workflow instances satisfying the given deadline. They first
presented a method to find out a set of critical activities, and then developed a method
to determine the minimum number of servers for the critical activity such that this ac-
tivity should be finished without delay for a given input arrival rate. Hai et al[7] pro-
posed a timed workflow process model through incorporating the time constraints, the
duration of activities, the duration of flow (where flow denotes the passing of control
or data from activity to activity.), and the activity distribution with respect to the mul-
tiple time axes into the conventional workflow processes. This extension enables their
proposed approach to a planning tool for shortening the execution duration of global
workflow applications. These approaches aimed at optimizing the static workflow
process (through distributing works in different time zone to reduce workflow in-
stance duration) as in[7], reducing the escalation cost[6], or increasing the processing
capacities for certain activities[3]. However, they neglected one situation, i.e., the
processing capacities for an activity may not be fully utilized all the time, even that
for the critical activities. Thus, a question if there is still space to reduce the workflow
instance duration and to improve the processing efficiency of WfMS should be asked.
To this question, an idea of task pre-dispatching is presented in this paper. When a
task is processed, the actor for its successors will be informed to prepare if it is free.
Hence, some overlapping execution of tasks can be achieved. The whole lifecycle of
the process can be shortened and the efficiency will be improved. Although some
similar ideas are studied and used in shop-floor process control[9], computer architec-
ture[10] and network application(where the key idea of pre-fetching is to take advan-
tage of the idle periods to fetch the files that will very likely be requested in the near
future, so that the users average waiting time can be reduced[11].), few researchers
applied it to workflow management systems either in literature or in workflow prod-
ucts.

The rest of the paper goes as follows. Through the analysis of an example process,
section 2 introduces the concept of task pre-dispatching in WfMS. A multi-agent en-
hanced WfMS architecture and a formalized workflow model, which supports this
concept, and some implementation considerations are presented and analyzed in sec-
tion 3. Finally, section 4 concludes this paper and mentions out some further studies.

2 The Concept of Task Pre-dispatching in Workflow

To introduce the concept of task pre-dispatching in workflow, let�s first take a simple
clinical management process as an example. This process is composed of four tasks
(S and E are dummy tasks which denote start and end of the process separately. Ar-
rowed edge denotes the control flow between tasks and dotted line from �Diagnosis�
to �Cashier� and ��Getting Medicine� denotes the data flow between these tasks, i.e.
both �Cashier� and �Getting Medicine� require the information, prescription, gener-
ated by �Diagnosis�). After a patient comes to the hospital and finishes �Registra-
tion�, a �Diagnosis� task is activated, in which a doctor will prescribe for this patient
at his computer. The patient then pays for his prescription at cashier room, and only
after he has paid, he can get the medicines from medicine warehouse.

82 Jianxun Liu et al.

S Registration Diagnosis Cashier Getting
Medicine E

Prescription

Fig. 1. A simple clinical process for patients in a hospital

In a workflow, a task has the following properties: task name, task type(subflow,
atomic flow, etc.), pre- and post-task conditions and other scheduling constraints. And
when a task can start to execute is dependent on the pre- and post task conditions[2].
While In traditional WfMS, the following assumptions are held:
! A task can be started if and only if all the pre-conditions of that task are satis-

fied (such as all information it requires are prepared well, the related events
happened.);

! A data object used or generated by a task can be released if and only if that
task is completed or aborted.

In practice, these assumptions are strict to some extent. For example, as in Fig.1,

the task �Getting Medicine� can be started to collect medicines when the information,
prescription, is released, even while �Cashier� is not finished. However, if the �Cash-
ier� is not finished, the patient is not allowed to get his medicine, i.e. �Getting Medi-
cine� cannot be finished at all until all its pre-conditions are satisfied. Thus, we define
pre-dispatching of tasks in WfMS as that starting to execute a task instance when only
partial pre-conditions on it are satisfied. Here, we should make an assumption that the
actor of a task instance holds the knowledge what can do and what cannot do accord-
ing to the satisfied pre-conditions. Otherwise, it may lead to some errors due to the
unsatisfied pre-conditions. Nevertheless, with a multi-agent enhanced WfMS frame-
work, the assumption can be easily achieved.

3 A Multi-agent Enhanced WfMS Framework

According to the assumption in the previous section, the actor of a task instance
should hold the knowledge what can do and what cannot do according to the pre-
conditions satisfied. This means the actor should have some extra intelligence to de-
termine how the task can be divided into several steps and which steps in the task can
be executed when the task is pre-dispatched. To support it, we present a multi-agent
framework to enhance WfMS. For each actor, a SA(software agent) is associated. The
actor executes the tasks of the workflow process; the agent assists and presents the ac-
tor in the system. Fig.2 shows the architecture.

Definition 1. A SA is a three-tuple, SA=(C, E, KB), where C denotes the commu-
nication module, which enables the SA to communicate with other SAs, the WfMS
and end users; E denotes the environment module which contains information of each
agent�s operational characteristics such as their business objectives; KB represents
knowledge module which will be detailed next.

 An Agent Enhanced Framework to Support Pre-dispatching of Tasks 83

Agent Agent Agent

Task

Workflow
Management
System
Layer

Agent
Layer

Actor ActorActor

The KB of a SA includes: 1)some basic data and knowledge belong to the actor

it represents, such as the personal schedule of the actor, the workload of the actor; 2)
the data and knowledge that a SA needs to carry out a task, such as the state of a task
instance, the constraints imposing on the task and some rule-based knowledges; 3)the
knowledge that a SA needs to implement the coordination and cooperation with other
SAs or WfMS.

In this

Fig. 2. An agent enhanced WfMS architecture

 architecture, we assume that only after a task has been pre-dispatched and
as

3.1 A Workflow Model Supporting Pre-dispatching of Tasks

In order to support the task pre-dispatching, a workflow model, which has some
ext

le, Pre-W =
(T

signed to a SA, the SA can then exchange information and events with WfMS about
this task. Because the SA has the knowledge of carrying out the task, thus the SA
knows which steps of a task can be executed and which can�t when the task is pre-
dispatched and assigned to the SA to execute. With this approach, the actor can keep
from making mistakes resulted from the incompletely satisfied pre-conditions of a
pre-dispatched task. For instance, as in Fig.1, when the information, prescription, is
ok for a patient and the �Getting Medicine� is pre-dispatched, the SA which repre-
sents the medicine warehouse man determines whether it should display this informa-
tion on the screen according to the actor�s policy and the workload of the actor. When
this task shows up on the screen, the actor can go to collect different medicines. How-
ever, the patient can�t take the medicines away while his payment is not finished, be-
cause the SA keeps the knowledge that when �Getting Medicine� task is in pre-
dispatched state, a patient can�t take his medicines away.

ensions to the model proposed by WfMC[2], is presented as follows:

Definition 2. A pre-dispatching workflow model Pre-W is a two-tup
S, D), where TS is a set of tasks, },......,,{ TTTTS = , Nn ∈ , N is a natural

number; D is the bi-relation among ta

21 n

sks.

84 Jianxun Liu et al.

Definition 3. The task layer numbers are assigned starting from the end, but task
�E� does not have a layer number because it is a dummy task. Therefore, in Fig.1, the
task in the bottom layer, �Getting Medicine�, is defined to be in layer 1 and the layer
number of �Cashier� is 2. In this way, each task can be assigned layer by layer. The
higher layer number should be chosen if there are conflicts when deciding layer num-
bers[12]. For example, while a task T has more than two immediate successors(in
Fig.1, �Cashier� is the immediate successor of �Diagnosis�), the layer number of T is
assigned the maximal layer number among these immediate successors pluses 1.

Definition 4. A task T is the atomic scheduling unit of a workflow engine. T=(Id,

Pre-trigger, Layer, Stride, KB, ted, tec,,�), where Id is the identification of the task;
Pre-trigger represents the triggering logic (pre-conditions) of the task; Layer is just
the task layer number defined in definition 3; Stride represents how far from its� run-
ning predecessors by layer this task should do pre-dispatching computation. For ex-
ample, Stride=2 means that when the task with layer number equal to T.Layer + 2 is
running, T should be done pre-dispatching computation; KB denotes that the knowl-
edge or guide lines for the actor as how to do this task; ted denotes the estimated dura-
tion of the task; tec represents the estimated time point when the task can be activated,
i.e. the time point when all its pre-conditions are satisfied. The other attributes of a
task such as the roles, are all left out consideration in this paper.

Table 1. Pre-triggers for tasks in Fig. 1

Registration ON Event S
DO Action ST(�Registration�)

Diagnosis ON Event END(�Registration�)
DO Action ST(�Diagnosis�)

Cashier ON Event END(�Diagnosis�)
DO Action ST(�Cashier�)

Getting ON Event END(�Cashier�)
Medicine DO Action ST(�Getting Medicine�)

ON Event Released(�Diagnosis�, �Pre-
scription�)
DO Action PreD (�Getting Medicine�)

* Event S means the event of starting the process, END(T) de-

notes the event of the completion of task T, Released(T,x) denotes
task T has released information x. Action ST(T) means start to
execute T and PreD(T) means pre-dispatching T.

Though a task is an atomic scheduling unit of the workflow, from the actor�s point

of view, it�s still possible to be divided into many steps. For example, the Task �Get-
ting Medicine� can be divided into two steps: �Collecting Medicine� and �Giving to
the patient�. Here may turn out a question, why do not further divide such a task into
several tiny tasks while modeling, for instance, into two tasks to achieve such concur-

 An Agent Enhanced Framework to Support Pre-dispatching of Tasks 85

rency? The reason here is that 1)the integrity of a task may be destroyed and the proc-
ess will become more complex, which makes the management more difficult; 2) It�s
not easy to model the physical and social world around us well, because the modeling
of business process is dependent on a workflow designer�s policy, knowledge level,
and workflow system environment[3].

Definition 5. Pre-trigger is a set of ECA rules which determine the state transition

and the action of a task instance such as when the task should be started or be pre-
dispatched.

Definition 6. Each ECA rule r is a triple, r=(e，C，A), where e is the event; C is

the set of conditions, which represent the different situations in the system environ-
ment; A is a set of actions or operations. The formal representation of an ECA rule is
as follows:

Rule (rule_name)
 ON Event (Event_name)
 WITH (condition_exepression)
 DO (ActionSet)
For instance, the pre-trigger for tasks in Fig.1 is shown in Table 1. In the table,

only task �Getting Medicine� has set up a trigger to pre-dispatch itself. We assume
that event End(T) imply that the information generated by T has been released.

To support task pre-dispatching, a new state, Pre-dispatched, is added to the state
set of a task instance defined by WfMC[2]. They are as follows:
! Waiting - the task within the process instance has been created but has not yet

been activated (because task entry conditions have not been met) and has no
workitem for processing;

! Pre-dispatched - A workitem has been allocated. The workers can get informa-
tion about the task and prepare for it. However, the task entrance condition is not
satisfied and the task cannot be finished at all unless it turns into Ready state.
For example, in the clinic management process, a patient can�t take his medicine
if he has not paid money, though these medicines have been collected together
from cabinets by warehouseman.

! Ready - the task entrance condition is satisfied, and a workitem is allocated.
! Running - a workitem has been created and the task instance is just for process-

ing.
! Completed - execution of the task instance has completed (and the entrance con-

dition of its successors will be evaluated)
The transition of the states is described in Fig.3. When a task is instantiated, it

goes to Waiting state (no workitem allocated). At this time, if the task is pre-
dispatched, its state would be changed into the Pre-dispatched state (workitem has
been allocated, and some steps can be processed). When all the pre-conditions of the
task are satisfied, the state is changed from Pre-dispatched or Waiting state to Ready
state and the task instance will wait for actor to do it. As long as the actor begins to do
that job, it goes to Running state. After the completion of the task, it goes to Com-
pleted state. Each time a state changes, an event related to this change will occur.

86 Jianxun Liu et al.

Start

Pre-
dispatched

Running CompletedWaiting Ready

Fig. 3. State transitions for task instances with pre-dispatching

Definition 7. The state set of a task, S={�Waiting�, �Ready�, �Pre_dispatched�,
�Running�, �Completed�}.

T10

T2

T4

T6

T5

T3

T8

T7

T9

OR-Split OR-JoinAND-JoinAND-Split

ality

Iteration

Caus

T11 T1

Fig. 4. An example workflow process

Definition 8. The dependency constraint, D, among tasks is a bi-relation on TS,
. TSTSD ×:

ijjiij dDTTd ,),:(∈><∀

 321 TTT

 is the probability of task Tj being the immediate
successor of task Ti. dij=1 represents that Tj is the immediate successor of Ti, i.e., after
the completion of Ti , Tj will be executed; dij =0 represents that Tj is not the immediate

=

1
5.05.0

1
1

1
5.05.0

1
1

11
1

1110987654

11

10

9

8

7

6

5

4

3

2

1

TTTTTTTT

T
T
T
T
T
T
T
T
T
T
T

D

Fig. 5. Dependency constraint matrix

 An Agent Enhanced Framework to Support Pre-dispatching of Tasks 87

/
B

d
E
F
/
/
B

E

 Fig

suc
exe
ter
env
com
of
stra
and
imm
lon

3.2

In t
disp
ger

/ Scheduling algorithm for task pre-dispatching
egin
STS = GetDownstreamTaskSet(T , T .Layer); cur cur

//To obtain downstream task set of Tcur
for each task T∈ STS
if Tcur.Layer – T.Layer <= T.Stride then
Check(T); // function Check() will determine
 //if the pre-conditions for pre-dispatching
 //in T.Pre-trigger are satisfied,

//if it’s satisfied, T will be pre-
ispatched.
nd.
unction GetDownstreamTaskSet(x, l)
/ x denotes task number,
/ l denotes the layer number of task x
egin
set dss to empty;
//dss denotes the set of direct successor tasks of x
// In the following, d[x,j]∈ D,
//D denotes the matrix of dependent relation
// between tasks, n denotes the number
//of tasks in a workflow process.
if l>0 then
Begin
for j= 1 to n
if d[x,j]=1 then // d[x,j] denotes dxj
dss = dss GetDownstreamTaskSet (j,l-1); ∪

∪
 End
else
dss=dss x //add task x to the task set

Return dss;
nd;
. 6. Scheduling algorithm for task pre-dispatching

cessor of Ti ; d denotes that after the completion of Ti , the possibility of
cuting Tj is p. Under this situation, there exist many possible choices(branches) af-
Ti . And as process continues, dij will be changed according to the conditions and
ironments. When dij becomes 1 finally, it is sure that Tj will be executed after the
pletion of Ti. Following this method, it�s very convenient to predict the direction

branches in a process. For the workflow process in Fig.4, the dependency con-
int D is presented as a matrix shown in Fig. 5 (in this matrix, blank means zero,
 the possibility, p, in each OR-branches assumes to be 0.5). It�s easy to obtain the
ediate successors of Ti by examining all the elements in the row to which Ti be-

gs in the Matrix.

pij =

 Implementation Considerations

he workflow engine, we can use the scheduling algorithm shown in Fig.6 to pre-
atch tasks according to the proposed model. This scheduling algorithm is trig-

ed whenever a task is started. The algorithm first obtains the downstream

88 Jianxun Liu et al.

task(successors) set of the current task Tcur. Then for each task, T, in its downstream
task set, it first determines if the distance, Tcur.Layer-T.Layer, between Tcur and T is
within T.Stride. When it is true, it then determines if the pre-dispatching conditions in
T.Pre-trigger is satisfied. If it�s satisfied, T will be pre-dispatched and the estimated
time point, T.tec, is set up. Please refer to [13] for how to estimate the time point.
GetDownstreamTaskSet(x), where parameter x represents task number, is a recursive
function to search the successors of a task according to dependency matrix D. Only
when dij =1 (denotes Tj is sure to be executed immediately after Ti), can Tj be added to
the task set.

The action, PreD (T), will update states as follows: if T is in Waiting state, then just
set its state to Pre-dispatched state. If T is not instantiated, it should be instantiated at
first, turned into Waiting state, and then set to Pre-dispatching state.

4 Conclusion and Further Study

So far workflow has become a leading tool in modeling enterprise business rules by
taking advantage of continuous advancement of information technology[8]. Workflow
also has a strong temporal aspect. Recently some researchers have paid attention to it,
such as reducing the workflow instance duration, improving the efficiency of WfMS
and time constraints. This paper introduces the concept of task pre-dispatching into
WfMS in order to improve the efficiency of WfMS. The idea proposed here is based
on the fact: it is possible to start a task even when partial pre-conditions of it are satis-
fied. Thus, some overlapping execution of tasks in a workflow process instance can
be achieved. The whole lifecycle of the process can be shortened and the efficiency
will be improved, too. A formalized workflow model which supports the idea is pre-
sented. With a multi-agent enhanced WfMS architecture, it is possible to make the
pre-dispatching mechanism run smoothly without leading to errors, because the SA
keeps the knowledge what can do and what can�t do when a task is pre-dispatched.
Some extra benefits can be achieved through this agent enhanced architecture, such as
cooperation between actors. With the pre-dispatching mechanism, even in the worst
case, i.e., the overlapping of execution cannot be achieved, it can still act as a mes-
senger to inform the actor when a task will arrive.

However, there are still many research questions remaining ahead, such as optimi-
zation and exception handling. For example, as in Fig.1, when the medicine ware-
house man has collected the medicine but the patient changes his/her idea and goes
off the hospital without �Cashier�, an exception is occurred, which may result in some
losses and the rollback of task is needed. These questions should be further studied.

Acknowledgements

This work was supported by China National Science Foundation under grant No:
60073035, 69974031, and by the China Super Science and Technology Plan
863/CIMS under the grant No: 2001AA415310, 2001AA412010.

 An Agent Enhanced Framework to Support Pre-dispatching of Tasks 89

References

1. Lee, M.K., Han, D.S. and Shim, J.Y. Set-based access conflict analysis of concurrent
workflow definition. Information Processing Letters. 80(2001):189-194

2. WfMC. Workflow Reference Model. http://www.wfmc.org/standards/docs. Jan 1995.
3. Son, J.H. and Kim, M.H. Improving the Performance of Time-Constrained Workflow

Processing. The Journal of Systems and Software. 58(2001):211-219
4. Chinn, S.J. and Madey, G.R. Temporal Representation and Reasoning for Workflow in

Engineering Design Change Review. IEEE Transactions on Engineering Management.
Vol.47(4). 2000. pp:485-492

5. Pozewaunig, H., Eder, J. and Liebhart, W.. ePERT: extending PERT for workflow man-
agement systems. In: The 1st European Symposium in ADBIS. vol.1,1997:217-224

6. Panagos, E. and Rabinovich, M. Reducing escalation-related costs in WFMs. In: NATO
Advanced Study Institute on Workflow Management Systems and Interoperability.
1997:106-128

7. Hai, Z.G., Cheung, T.Y., and Pung H.K. A timed workflow process model. The Journal
of Systems and Software. 55(2001):231-243

8. Avigdor, G. And Danilo, M. Inter-Enterprise workflow management systems. 10th Inter-
national Workshop on Database & Expert Systems Applications, Florence, Italy, 1-3 Sep-
tember, 1999 : 623-627

9. Applequist, G., Samikoglu, O., Pekny, J. and G.Reklaitis. Issues in the use, design and
evolution of process scheduling and planning systems. ISA Transactions. Vol.36(2),
1997, pp. 81-121

10. Steven, P. and David, J. Data Prefetch Mechanisms. ACM Computing Surveys. Vol.32,
No.2, June 2000. pp174-199

11. Jiang, Z.M. and Kleinrock, L. An Adaptive Network Prefetch Scheme. IEEE Journal on
Selected Areas in Communications. Vol.16(3), 1998, pp 358-368

12. Yan, J.H and Wu, C. Scheduling Approach for Concurrent Product Development Proc-
esses. Computer in Industry. 46 (2001):139-147

13. Eder, J., Panagos, E., Pezewaunig, H., and etc. Time management in workflow systems.
3d Int. Conf. on Business Infomation Systems, pp. 265-280, Invited paper. April 1999.

	Introduction
	The Concept of Task Pre-dispatching in Workflow
	A Multi-agent Enhanced WfMS Framework
	A Workflow Model Supporting Pre-dispatching of Tasks
	Implementation Considerations

	Conclusion and Further Study
	Acknowledgements
	References

