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Abstract. This paper presents a method to demarcate the extent of
an intracranial aneurysm given a 3-D model of the vasculature. Local
shape descriptors are grouped using a novel region-splitting algorithm.
The method is used to automatically estimate aneurysm volume. Results
are presented for four clinical data sets.

1 Introduction

An intracranial aneurysm is a localised persistent dilation of the wall of a blood
vessel in the brain. There are several possible treatments, including coiling and
clipping. The treatment appropriate depends upon factors such as aneurysm
volume and neck size. It is common to image the aneurysm using a 3-D modality
such as 3-D X-ray angiography or magnetic resonance angiography (MRA). Such
scans can be segmented to derive a 3-D model of the vasculature [1] [2]. Given
such a 3-D model, it would be useful to automatically demarcate the aneurysm,
identifying where it connects to the vessel. This could allow automatic estimation
of volume and neck size, aiding the clinician to choose the appropriate treatment.

Several researchers have suggested methods to demarcate aneurysms by lo-
cating the aneurysm neck. Van Der Weide et al. [3] computed distances to the
surface of the vasculature from a point selected inside the aneurysm, detect-
ing the neck as a discontinuity in these distances. Wilson et al. [4] developed a
variant of this idea, using a series of such distance functions from points along
a user-defined spline. As noted in [4], such methods experience difficulties in
aneurysms with wide necks. We propose a different approach, defining shape de-
scriptors over a surface mesh and using region-splitting to identify the section of
the mesh covering the aneurysm. The region-splitting algorithm has been termed
the Seed and Cull algorithm. The method is applied to four clinical data sets.

2 Method

2.1 Local Shape Descriptors

The method begins with a surface mesh defined over a 3-D model of the vascula-
ture. At each vertex in the mesh, a local description of vessel shape is computed,
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illustrated in figure 1. Taking the unit surface normal ni to the mesh at a partic-
ular vertex di, a ray is extended from di into the vessel, measuring the distance to
the opposite side of the vessel. Halving this value gives an estimate of vessel ra-
dius ri at di. Next, the algorithm estimates the vessel centre pi as pi = di +ri.ni,
and the direction of maximum absolute curvature cmax

i . A vector is extended
from pi in the directions cmax

i and −cmax
i , and the distance to the vessel surface

is measured in each direction. Adding these two distances together gives an es-
timate of the vessel width wi in a direction perpendicular to ni. The two values
(ri, wi) characterise the data point di, and are computed for every vertex in the
mesh. The task is now to group points that lie on the aneurysm, and distinguish
these from points on adjoining vessels.

p
i

cmax
i ni

ir

wi

di

Fig. 1. Local shape descriptors: vessel radius ri and the perpendicular width wi.

2.2 Seed and Cull Algorithm

Region-growing [5] and region-splitting [6] algorithms typically require the num-
ber of regions to be known a priori. Such methods are insufficient for aneurysm
demarcation. When considering the entire vasculature, variation in size and
shape between different sections of blood vessel tend to be greater than the
variation between vessel and aneurysm, in all but the extreme cases of giant
aneurysms. Hence it is unrealistic to group all vessel points into a single region.
Thus we require an algorithm to segment points on the surface mesh into an
unknown number of regions, where each region will correspond to a section of
vessel or an aneurysm. One solution is to use an augmented Markov Random
Field, where an extra region label is defined for new regions, and a parameter
is pre-set to define the probability assigned to this extra state. Such a method
was proposed in [7] for texture segmentation. We have adopted an alternative
approach which adaptively uses Parzen windows [8] to estimate region statistics.

The Seed and Cull algorithm begins by assigning all points to a single region.
A point is then selected somewhere on the mesh and a new region seeded, growing
it as described in the next section. If the region does not grow, then it is culled
and a different seed is chosen. The novelty of this algorithm lies in the mechanism
by which regions are grown when appropriate, while being retarded when they
will not improve the segmentation.
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2.3 Growing Regions

Consider classifying the point d0 shown in figure 2. We add the restriction that
it must be of the same class as one of the other five data points that lie within
the neighbourhood of radius rclassify. Each point di has a vector vi = (ri, wi)
associated with it, where (ri, wi) are the local shape descriptors described in
Section 2.1. For each class Ci, we can compute a probability distribution over
these numeric values P (v0|d0 ∈ Ci). Using this, we classify the point d0 using a
Bayesian framework by computing the maximum a posteriori estimate for Ci.

P (d0 ∈ Ci|v0, D, C) ∝ P (v0|d0 ∈ Ci, D, C).P (d0 ∈ Ci|D, C) (1)

where D = {d1, d2, d3, d4, d5} denotes the set of nearby data points and C =
{d1, d2 ∈ C1; d3, d4 ∈ C2; d5 ∈ C3} denotes which class each point is currently
assigned to. By assuming that the probability assigned to the numeric value is
statistically independent of data points in a particular neighbourhood (the D
and C terms), we can replace P (v0|d0 ∈ Ci, D, C) with P (v0|d0 ∈ Ci). The term
P (d0 ∈ Ci|D, C) is a prior probability that d0 belongs to class Ci. We have
chosen a prior directly proportional to the number of data points of each class
within the neighbourhood, although others are possible.
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Fig. 2. Point and neighbourhood for classification.

2.4 Seeding New Regions

We will illustrate the seeding of new classes with the synthetic example shown
in figure 3a, where each point di in the data set has an intensity value vi. The
method described here is directly applicable to the case of aneurysms and blood
vessels, where we are segmenting points on a surface mesh, and where each point
has a 2-D numeric value (ri, wi). However, it is conceptually easier to understand
the algorithm using the synthetic example shown in figure 3a.

The method begins by assigning all pixels to a single class C0 and evaluates
the probability distribution over the intensity values P (vj |dj ∈ C0), as shown
in figure 3b. Note that there is a peak in the distribution corresponding to
each class. To generate this probability distribution, a histogram of the numeric
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a. b.

Fig. 3. a.) Three groups synthetic data. b.) Initial probability P (vj |dj ∈ C0).

values is computed and then smoothed using Parzen windows [8]. This involves
smoothing the histogram by convolving the values with a kernel function. A
common choice of kernel function is the Gaussian, although others are possible.

An important issue arises in the selection of variance for the Gaussian kernel
function. This will greatly affect the probability distribution produced. When
the histogram comprises few values, it is appropriate to use a large variance,
resulting in heavy smoothing. If the histogram consists of a large number of
values, then less smoothing is desirable and a small variance is appropriate.

In the Seed and Cull algorithm, the variance is a function of the number of
values in the histogram, which equals the size of the class. A large variance is
used for small classes, and a small variance for large classes. We have chosen the
variance to equal the inverse square of an affine function of class size, although
other functions are possible. As a new class Ci grows in size, progressively smaller
variances are used in evaluating the probability P (vj |dj ∈ Ci). It is this change
in variance that will allow us to promote the growth of a class under certain
conditions, and retard the growth of unnecessary regions.

Returning to the data shown in figure 3a, a new class is seeded by choosing
a point, defining a neighbourhood of radius rseed around it and assigning all
points within the neighbourhood to the new class C1, as shown in figure 4a. In
figure 4b, we show P (vj |dj ∈ C1), the distribution over intensity values for this
new class. Note that the probability distribution is much smoother than that
shown in figure 3b, as a much large variance was used for this new, small class.

a. b.

Fig. 4. a.) Seed for class C1. b.) Initial probability P (vj |dj ∈ C1).

As the new class only contains points from one distribution, the probabili-
ties assigned to this distribution are larger than those in C0, which divides its
probabilities between three distributions. Note that the maximum in figure 4b

C  seed1
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for P (dj ∈ C1|vj , D, C) is 0.040, while the corresponding value at vj = 0 for
P (dj ∈ C0|vj , D, C) is only 0.024, as shown in figure 3b. Choosing a data point
dj ∈ C0 that comes from this distribution and re-evaluating its classification will
re-assign it to C1, provided the prior probabilities are approximately equal.

The algorithm now proceeds to ‘grow’ this distribution. Recall from Sec-
tion 2.3, the assumption that the class of a data point was only directly affected
by points within a neighbourhood of radius rclassify. Thus all points {dj} within
a radius rclassify of the new class C1 are tested to decide whether they should
be re-classified. This is recursively repeated for each point dj that is re-classified
to class C1. Note that only points currently assigned to class C0 will be tested.
Once a point is re-classified as belonging to C1, it will not be changed. This
process is continued until no more points are added to class C1, and no more
remain that need to be tested. The result at convergence is shown in figure 5a.

C1

C2

C1

C2

C1 C0

a. b. c.

Fig. 5. a.) Classification after C1 converges. b.) Classification after C2 converges. c.) Fi-
nal classification.

As each point is removed from C0 and added to C1, the probability dis-
tributions are re-evaluated. The variance used when computing P (vj |dj ∈ C0)
increases as the class shrinks, and decreases for P (vj |dj ∈ C1) as the class grows.
Thus C1 will improve its model of the distribution of numeric values vj , and this
distribution will be removed from the three distributions shown in figure 3b for
class C0. This process is then repeated, seeding a new class C2. Once C2 has
converged, the data will be classified into classes C0, C1 and C2 as shown in
figure 5b. It is important that the segmentation algorithm recognise that no
further classes should be introduced. The algorithm achieves this because of its
adaptive choice of variance as a function of class size.

The algorithm will seed a new class C3 as shown in figure 6a, and the initial
points in the neighbourhood will give a distribution for P (vj |dj ∈ C3) as shown
in figure 6b. However, this class will fail to grow in the way that C1 and C2
did. First note that because C3 contains less points than C0, the probability
distribution was generated by convolving with a Gaussian with a larger vari-
ance than was used for C0. Hence P (vj |dj ∈ C3) is more smoothed, resulting in
lower probabilities for values from the distribution. Note that the maximum for
P (vj |dj ∈ C3) shown in figure 6b is 0.045, while the maximum for class C0 is
greater than 0.06, as shown in figure 6c. This in turn reduces the probabilities
P (dj ∈ C3|vj , D, C). As the algorithm attempts to grow C3, most data points
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a. b. c.

Fig. 6. a.) Seed for class C3. b.) Initial probability P (vj |dj ∈ C3). c.) Probability
P (vj |dj ∈ C0) when C3 is seeded.

will not be re-classified from C0 to C3, instead remaining in C0. In this imple-
mentation, we set a threshold that requires a class to grow to at least three
times its original seed size. Classes that fail to meet this criterion are ‘culled’
and discarded. In this way, we avoid introducing excess classes. The algorithm
will continue attempting to seed new classes on each point left in C0, but each
new class will be culled. The final segmentation is left as shown in Fig 5c.

The above algorithm extends, without conceptual change, to the case of
segmentation using local shape descriptors (ri, wi) instead of intensities, and
where the points are defined on a surface mesh instead of as pixels in an image. At
completion, the mesh will be separated into regions, with the aneurysm separated
from its adjoining vessels.

3 Experiment

We applied the method to four clinical examples shown in figure 7. The data
sets for Patients 1 and 2 were segmented from phase contrast MRA data with
voxel size 0.78 x 0.78 x 1.5mm. They were segmented using both flow speed and
direction information, as detailed in [1], The data sets for Patients 3 and 4 were
generated from 3-D X-ray angiographic data with voxel resolution 0.25 x 0.25 x
0.25mm, and segmented using thresholding. For each data set, a surface mesh was
generated and segmented by applying the Seed and Cull algorithm to local shape
descriptors. Each voxel within the vasculature was then assigned to the same
group as the closest mesh point. The group covering the aneurysm was identified
by a user and the volume of that group computed. These results were compared
against aneurysm volumes obtained from a manual segmentation, where each
slice was segmented by hand.

4 Results

Results of the aneurysm demarcation algorithm are shown in figure 7, where the
voxels forming each aneurysm have been highlighted. Two different views are
given of each example. Table 1 compares the automatic volume estimates with
those from manual segmentation. In each of the four data sets, the aneurysm

Seed for C3
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was identified as a single region. Note that with Patient 4, the edge of the giant
aneurysm was identified as approximately halfway through the intersection of
the five adjoining vessels. The poorly defined neck of this aneurysm made this ex-
ample particularly difficult. Wilson et al. [4] noted that neck-based demarcation
methods will exhibit similar problems with such examples.

The parameter rclassify was chosen empirically, with one value being set
for the MRA data sets, and a second value appropriate for the two 3-D X-ray
angiographic data sets. The value was found to depend upon both the resolution
of the data, and the scale of the features being demarcated. Results were found
to be robust under minor perturbations of the value of rclassify.

Patient 1 a. b. c. d.

Patient 2 a. b. c. d.

Patient 3 a. b. c. d.

Patient 4 a. b. c. d.

Fig. 7. Aneurysm demarcation for four patients. a, c.) 3-D visualisation of vasculature.
b, d.) Aneurysm highlighted in white.
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Table 1. Results of volume estimation, with error as a percentage of the manual volume
estimate.

Patient # Automatic volume (mm3) Manual volume (mm3) % error
1 2120 2180 2.8
2 915 991 7.7
3 13.7 14.5 5.5
4 305 270 13.0

5 Conclusion

We have outlined a method to demarcate intracranial aneurysms. Using a surface
mesh defined over a 3-D segmentation of the vasculature, local shape descriptors
were computed and grouped using a novel region-splitting method referred to
as the Seed and Cull algorithm. Results for four clinical data sets have been
presented, generated from both 3-D X-ray angiographic data and phase-contrast
MRA data. The results have demonstrated the applicability of this method to
aneurysms of different sizes and shapes. Volume estimates from this method were
compared against those obtained manually, with an average error of 7.2%.
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