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Abstract. We propose to match a labeled mesh onto the patient brain
surface in a multiresolution way for labeling the patient brain. Labeling
the patient brain surface provides a map of the brain folds where the
neuroradiologist and the neurosurgeon can easily track the features of
interest. Due to the complexity of the cortical surface, this task usually
depends on the intervention of an expert, and is time-consuming. Our
multiresolution representation for the brain surface allows the automated
classification of the folds based on their size. The atlas mesh is deformed
from coarse to fine to robustly capture the patient brain folds from the
largest to the smallest. Once the atlas mesh matches the patient mesh,
the atlas labels are transferred to the patient mesh, and color coded for
visualization.
Keywords: cortex labeling, cortical surface, sulci and gyri, brain seg-
mentation, brain atlas, multiresolution mesh, progressive mesh.

1 Introduction

To diagnose a neural disorder or to preserve the main functions of the patient
during a brain operation, the neuroradiologist and the neurosurgeon need to
locate regions of interest relative to the folds (sulci and gyri) on the patient brain.
Some software have been developed to ease the labeling of sulci in the patient
brain scan. Since the brain geometry exhibits a high complexity and a high
inter-patient variability, the labeling software usually requires the input from
an expert. Unfortunately the required manual intervention makes the labeling
both time-consuming and operator-dependent. Automated labeling of the sulci
and gyri of the brain would be a significant aid in studying brain structure and
function, with clinical applications ranging from surgical planning to the study
of structural changes associated with brain disorders.

First we review some methods for automating the labeling of the cortex. At
the end of this section, we briefly present our contribution and the outline of the
paper.
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1.1 Related Work

Sandor et al. [1] elastically deform a reference labeled brain volume (brain at-
las) to fit the patient brain scan. Mathematical morphology and edge detection
operations convert the patient scan to a smooth representation the deformable
surface can easily match. The brain atlas is parameterized with B-spline surfaces
and is deformed under an energy minimization scheme. The energy attracts the
atlas fold points to fold points on the patient image, and the remaining points
to the patient brain surface. Finally atlas labels are transfered to the patient
brain surface. However, due to the low resolution in regions of the brain scan
(partial volume effect), the morphological processing can accidentally disconnect
or erase brain folds on the patient image. Consequently the deformable surface
might be unable to capture the disconnected brain folds.

Lancaster et al. [2] use axis aligned coordinates to retrieve brain labels from
the Tailarach atlas. They hierarchically subdivide the large atlas structures into
substructures. For instance, the cerebrum is subdivided into lobes and sublobar
structures, which are then subdivided into smaller structures. The Tailarach
coordinates are addressed in a volumetric image synthesized from the Tailarach
atlas. Some rules guide the segmentation and labeling of 160 contiguous regions.
They compare their automated labeling with manual labeling [3] and show 70%
or greater label match on 250 functional MRI scans.

Le Goualher et al. [4] extract surface ribbons that represent the median axis
of the sulci for interactive sulci labeling. They build a graph where the nodes
define the sulci with some geometric and anatomical attributes, and the arcs
define the connections between the sulci. For every node, the expected spatial
distribution of the sulci is computed and the most likely labels are returned to
the operator. Then the operator needs to pick the correct label and associate it
to the node. This scheme eases the task of the expert, but still requires some
intervention from the user.

Lohmann et al. [5] segments the patient brain scan with a region growing
method. The segmented regions, called sulcal basins, represent substructures of
the brain folds. A point distribution model is used to match an atlas model onto
the patient brain, and to label the sulcal basins. Since the geometric difference
between the atlas and the patient brain can be high, the point distribution
model can accidentally match an atlas sulcus to the wrong sulcus on the patient
anatomy.

Hellier et al. [6] extract the sulci with an active ribbon method. Using a non-
rigid registration, brain images from different subjects are matched to minimize
the sum of the distances between corresponding sulci. The authors demonstrate
that their scheme accurately matches six brain labels. However, it was not shown
that small sulci can robustly be segmented and labeled with their non-rigid
registration method.

Rivière et al. [7] use a graph representation of the brain folds similar to Le
Gouahler and match a graph with labels to the graph of the patient brain. For
every brain fold, i.e. a node in the graph, the likelihood of assigning a particular
label is computed from geometric measures and the connectivity to neighboring
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Fig. 1. We build a multiresolution mesh from a labeled brain scan (brain atlas) (left).
We build a similar structure for the patient mesh and detect the folds at 4 resolutions
for both meshes. Then we deform the labeled mesh onto the patient mesh to match
folds of similar sizes. Finally we transfer the labels to the patient mesh. (right)

folds. Then a matching method based on neural networks minimizes a combina-
tion of the likelihoods.

Cachier et al. [8] show that combining the previous method with feature point
matching improves the registration of brain scans. They register differently the
bottom line of the sulci from the upper line of the gyri, since the localization of
the latter exhibits higher inter-subject variability.

1.2 Our Contribution

We propose to progressively match an atlas labeled mesh to the patient brain
mesh from the largest folds to the smallest folds. Then we transfer the labels
from the matched mesh to label the patient mesh without manual intervention.

2 Algorithm

First we build a multiresolution mesh of the brain surface from a reference labeled
brain scan (atlas). Every mesh vertex is assigned the closest label in the atlas.
Then we apply some geometric operations to the multiresolution mesh to extract
and classify the brain folds according to their size. Finally we match the labeled
mesh onto the patient mesh and transfer the labels to the patient anatomy. To
extract a surface mesh from the patient brain scan, brain tissues and non-brain
tissues must be classified before the application of our algorithm. Fig 1 illustrates
the steps to build a multiresolution mesh from a segmented brain scan on the
left diagram. The right diagram shows the automated labeling of a patient brain
mesh.
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2.1 Building the Multiresolution Mesh

We create a mesh of the brain surface from a labeled atlas volume [9]. To extract
a surface from the volume, we set all brain labels to white and the remaining
to black. However 366 tiny holes and handles in the binary volume prevents
to extract a brain surface with a spherical topology. These topological errors
are artifacts of the magnetic resonance image (MRI) (partial volume effect) or
local voxel misclassifications. We thus apply the automated method of Wood
et al. [10] to remove the holes and handles with minimal modification to the
binary volume. Then we generate a triangle mesh of the brain surface with the
Marching Cubes [11]. Finally we associate to every mesh vertex the label of the
closest structure in the atlas. The brain mesh with 35 labels is shown in Fig 2
(left).

Now we build a multiresolution representation of the brain mesh to enable
geometric manipulations. We use the Progressive Mesh structure that Hoppe [12]
introduced as a sequence of vertices that progressively refines a coarse mesh. Fig
2 shows a coarse brain mesh and a refined mesh in the center left and center
right images respectively. Combining the mesh hierarchy of Guskov et al. [13]
and the local operator of Desbrun et al. [14], we encode for every vertex in the
sequence the difference its insertion makes to the local mesh geometry. We can
perform various geometric operations on the brain surface, such as smoothing
and matching.

The first three images in Fig 2 shows that the multiresolution labeled mesh
can be represented at various resolutions. The fine geometric information is
encoded based on larger structures. This hierarchical representation will help
to match the labeled mesh onto a patient brain mesh, such as the mesh shown
in the fourth image.

2.2 Extracting the Sulci

We smooth the brain surface at four resolutions. The regions where the geom-
etry significantly changes from the previous resolution define brain folds with
similar sizes. We thus classify the brain folds into four size categories. Fig 3
show the brain folds classification for the reference mesh in the first row, and
for a patient brain mesh in the second row. The largest folds (light blue) appear
at the smoothest resolution, and progressively smaller folds (green, yellow ang
red respectively), appear on the successive representations. The regions without
significant geometric difference between two representations the remaining brain
surface (dark blue).

2.3 Matching the Labeled Mesh onto the Patient Mesh

We take advantage of the multiresolution mesh representation and the classifi-
cation of the brain folds to constrain the matching from the atlas mesh to the
target mesh. A coarse to fine matching first allows large surface deformations
and then more subtle deformations. We also use our fold classification as a con-
straint: large folds on the atlas must match large folds on the patient brain, and
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similarly for the small folds. We repeatedly move every vertex of the deformable
mesh along its local normal to the closest intersection with the surface of the
patient mesh. The last row of Fig 3 illustrates the multiresolution matching of
the labeled mesh (first row) onto the patient mesh (second row). From left to
right, the matching evolves from a smooth representation to the original repre-
sentation. First the smoothest representations are registered to match the center
fold (light blue). As smaller brain folds are introduced on the successive repre-
sentations, they are matched onto the patient surface (green, yellow, and red).
The final match captures the brain folds on the original patient mesh.

3 Results and Discussion

We matched the labeled mesh for nine cases with a brain tumor. The tumor
deforms the patient brain anatomy. The pathological deformation adds to the
inter-subject variability and makes the matching of the atlas mesh to the patient
mesh even more difficult. After atlas matching, we transfer and color code the
atlas labels onto the patient mesh. Fig 4 shows the nine patient meshes after
labeling. Visualization of the labels indicates that the multiresolution matching
accurately captures the patient brain folds despite the high difference from the
atlas geometry. It took less than 8 minutes on a Pentium 4 2GHz to automatically
label a new patient scan. This makes the software suitable as a clinical aid.
Future validations will compare our automated labeling with manually labeled
data, quantify the accuracy of our method.

4 Conclusion

We match the labeled surface of a brain atlas to the patient anatomy from
the largest folds to the smallest folds. A multiresolution mesh built for every
brain scan allows the classification of the folds based on their size. To robustly
match the atlas mesh, we first match the largest folds, and progressively match
the smaller folds. Once the atlas mesh fits the smallest patient folds, the atlas
labels are transfered to the patient mesh. The multiresolution matching provides
the neurologist with a map of the patient brain in a short time and with no
intervention. We ran our method to automatically label nine brain scans with a
significant pathological deformation. Visualization of the labeled patient meshes
indicates that the labels closely match the folds on the patient anatomy.
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Fig. 2. We label a surface mesh from a labeled brain scan (left) and represent it in
multiresolution (center left and center right). The multiresolution representation allows
the matching of the labeled mesh onto a patient brain mesh (right).

Fig. 3. The multiresolution representation of the cortex allows to distinguish the large
sulci from the the small sulci. The first structure to appear is the fold between the
hemispheres (light blue). The remaining brain surface is colored in dark blue. Then
the sulci appear from the largest to the smallest (respectively green, yellow, and red).
In the second row, we perform the sulci classification on a mesh of the patient brain.
In the third row, the multiresolution mesh is progressively deformed to match the
corresponding folds on the patient mesh.
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Fig. 4. We transfer the 35 atlas labels to the patient mesh after matching the atlas
mesh onto nine cases. The nine cases were thus labeled without manual intervention.
The visualization of the labels with color coding indicates that the labels accurately
match the patient brain geometry.
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