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Abstract. A stochastic finite element method (SFEM) based frame-
work is proposed for the simultaneous estimation of cardiac kinematics
functions and material model parameters. While existing biomechanics
studies of myocardial material constitutive laws have assumed known
kinematics, and image analyses of cardiac kinematics have relied on cho-
sen constraining models (mathematical or mechanical), we believe that a
probabilistic strategy is needed to achieve robust and optimal estimates
of kinematics functions and material parameters at the same time. For a
particular a priori patient-dependent constraining material model with
uncertain parameters and a posteriori noisy observations, stochastic dif-
ferential equations are combined with the finite element method. The
material parameters and the imaging/image-derived data are treated
as random variables with known prior statistics in the dynamic system
equations of the heart. In our current implementation, extended Kalman
filter (EKF) procedures are adopted to linearize the equations and to
provide the joint estimates. Because of the periodic nature of the cardiac
dynamics, we conclude experimentally that it is possible to adopt this
physical-model based optimal estimation approach to achieve converged
estimates. Results from canine MR phase contrast images with linear
elastic model are presented.

1 Introduction

Myocardial dynamics can be stated by the following material parameter depen-
dent differential equation:

Φ(q, u(q)) = Π(u(q)) (1)

with constraining mechanical model parameters q, kinematics states u(q), system
differential operators Φ, and loads Π. With this dynamic system, finite element
method (FEM) has been used as a natural framework for the biomechanics stud-
ies of myocardium material constitutive laws with observations/measurements
on the kinematics states [4,6], and physically motivated image analyses of cardiac
kinematics properties with assumed mechanical models [2,9].
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In biomechanics studies, the kinematics of the heart tissues is assumed known
from implanted markers or imaging means. The issue is then to use these kine-
matics observations to estimate material parameters of the constitutive laws.
While most works deal with regional finite deformations measured at isolated
locations [4], MR tagging has been used more recently for the in vivo study of the
mechanics of the entire heart. In [6], unknown material parameters were deter-
mined for an exponential strain energy function that maximized the agreement
between observed (from MR tagging) and predicted (from FEM modeling) re-
gional wall strains. However, it is well recognized that the recovery of kinematics
from MR tagging or other imaging techniques is not a solved problem yet, and
constraining models of mechanical nature may be needed to for the kinematics
recovery in the first place [2].

In image-based analyses of cardiac kinematics functions, assumptions must
be made about the myocardial behavior in order to constrain the ill-posed prob-
lem for a unique solution [2]. These constraining models could be either mathe-
matically motivated regularization such as in [7], or continuum mechanics based
energy minimization such as in [9]. Conjugate to biomechanics efforts, image
analysis works are based on the premise that material or other model proper-
ties are known as prior information, and the issue is to use these models to
estimate kinematics parameters in some optimal sense. The selection of an ap-
propriate model with proper parameters largely determines the quality of the
analysis results. Yet, for any given data, the precise or even reasonable ma-
terial/mathematical models and parameters are usually not readily known a
priori.

In this paper, we present a stochastic finite element framework for the simul-
taneous estimation of the cardiac kinematics functions and the material consti-
tutive parameters from image sequence. Given the uncertainty of the material
properties for a particular patient and the noisy nature of the imaging data, we
believe that a probabilistic strategy is needed to achieve robust and optimal esti-
mates for a particular a priori constraining model with uncertain parameters and
a posteriori noisy observations. Coupling stochastic modeling of the myocardium
with finite element method, we can now deal with noisy imaging/imaging-derived
data and uncertain constraining material parameters in a coordinated effort. Be-
cause of the periodic nature of the cardiac behavior, we will show experimentally
that it is possible to adopt this physical model based statistical estimation ap-
proach to achieve converged estimates.

2 Methodology

2.1 Stochastic Finite Element Method

Stochastic finite element method (SFEM) has been used for structural dynamics
analyses in probabilistic frameworks [1]. In SFEM, structural material properties
are described by random fields, possibly with known prior statistics, and the
observations and loads are corrupted by noises. Hence, stochastic differential
dynamics equations are combined with the finite element method to study the
dynamic structures with uncertainty in their parameters and measurements.
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2.2 Stochastic Dynamic Equation

For computational feasibility, our current implementation assumes temporally
constant linear elasticity of the myocardium with varying spatial distributions of
the Young’s modulus and the Poisson’s ratio. We derive the myocardial dynamics
equation within a finite element framework to be:

MÜ + CU̇ + KU = R (2)

with M , C and K the mass, damping and stiffness matrices, R the load vector,
and U the displacement vector. M is a known function of material density and
is temporally and spatially constant. K is a function of the material constitutive
law (the strain-stress relationship), and is related to the material-specific Young’s
modulus E and Poisson’s ratio ν, which can vary temporally and spatially. In
our framework, these two local parameters are treated as random variables with
known a priori statistics for any given data, and are needed to be estimated
along with the kinematics functions (in this paper, we do not consider the tem-
poral dependency of the material parameters). C is frequency dependent, and
we assume Rayleigh damping with C = αM + βK. Equation (2) is a stochastic
differential equation in nature per Ito’s calculus.

2.3 State Space Model

The above dynamics equation can be transformed into a state-space representa-
tion of a continuous-time linear stochastic system:

ẋ(t) = Ac(θ)x(t) + Bcw(t) (3)

where the material parameter vector θ, the state vector x, the system matrices
Ac and Bc, and the control (input) term w are:

θ =
[

E
ν

]
, x(t) =

[
U(t)
U̇(t)

]
, w(t) =

[
0
R

]
,

Ac =
[

0 I
−M−1K −M−1C

]
, Bc =

[
0 0
0 M−1

]

Meanwhile, the observed imaging/imaging-derived data y(t) can be expressed in
the measurement equation:

y(t) = Dx(t) + e(t) (4)

where D is a known measurement matrix, and e(t) is the measurement noise
which is additive, zero mean, and white (E[e(t)] = 0, E[e(t)e(s)′] = Re(t)δts).

In our case, Equations (3) and (4) describe a continuous-time system with
discrete-time measurements (the imaging/imaging-derived data), or a so-called
sampled data system. The input is computed from the system equation, and is
piecewise constant over the sampling interval T . Thus, we arrive at the system
equations [3]:

x((k + 1)T ) = Ax(kT ) + Bw(kT ) (5)
A = eAcT , B = A−1

c (eAcT − I)Bc (6)
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Fig. 1. Canine MR phase contrast images: magnitude (left), x-velocity (middle), and
y-velocity (right).

For general continuous-time system with discrete-time measurements, includ-
ing the additive, zero-mean, white process noise v (E[v(t)] = 0, E[v(t)v(s)′] =
Qv(t)δts, independent of e(t)), we have the following state equation:

x(t + 1) = A(θ)x(t) + B(θ)w(t) + v(t) (7)

2.4 Extended Kalman Filter for Joint State
and Parameter Identification

We can then augment the state vector x by the material parameter vector θ to
form the new state vector z = [x θ]T , and from Equations (4) and (7) we have
the following pair of augmented state/measurement equations:

z(t + 1) =
[

A(θ)x(t) + B(θ)w(t)
θ

]
+

[
v(t)
0

]
= f(z(t), w(t)) +

[
v(t)
0

]
(8)

y(t) =
[
D 0

] [
x(t)
θ(t)

]
+

[
e(t)
0

]
= h(z(t)) +

[
e(t)
0

]
(9)

The joint state and parameter estimation problem can be understood as a
state estimation problem for a nonlinear system, and this form of formulation
leads to a solution of the filtering problem based on continuous-system-discrete-
measurement extended Kalman filter (EKF) framework, which is based on lin-
earization of the augmented state equations at each time step. A recursive proce-
dure with natural block structure is used to perform the joint state (kinematics)
and parameter (material) estimation, and a general analysis of the convergence
of the algorithm can be found in [5]:

x̂(t + 1) = A(θ̂(t))x̂(t) + B(θ̂(t))w(t) + L(t) [y(t) − Dx̂(t)] (10)

θ̂(t + 1) = θ̂(t) + G(t) [y(t) − Dx̂(t)] (11)

x̂(0) = x̂0, θ̂(0) = θ̂0 (12)

where

L(t) =
[
A(θ̂(t))P1(t)DT + MtP

T
2 (t)DT

]
S−1(t)
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Fig. 2. Finite element meshes of the left ventricle: original (left, end-diastole), deformed
(middle, end-systole), and ED to ES displacement map (right).

G(t) = PT
2 (t)DT S−1(t)

P1(t + 1) = A(θ̂(t))
[
P1(t)AT (θ̂(t)) + P2(t)MT

t

]

+Mt

[
PT

2 (t)AT (θ(t)) + P3(t)MT
t

]
+ Qv − L(t)S(t)LT (t)

P2(t + 1) = A(θ̂(t))P2(t) + MtP3(t) − L(t)S(t)GT (t)
P3(t + 1) = P3(t) − G(t)S(t)GT (t)

S(t) = DP1(t)DT + Re

Mt =
∂

∂θ
(A(θ)x̂ + Bw(t))

∣∣∣
θ=θ̂

P (0) =
[

P1(0) P2(0)
PT

2 (0) P3(0)

]

2.5 Computational Considerations

In our current 2D implementation, the left ventricle is Delaunay triangulated
from the sampled end-diastolic myocardial points. Using the linear elastic model
with uncertain parameters, the stiffness, mass, damping, and load matrices for
each element and the entire ventricle are constructed and the SFEM framework
is formed. Imaging and imaging-derived data are incorporated as the initial and
boundary conditions, and are used in the optimization process.
Initial conditions: the use of the EKF algorithm for joint state and parameter
estimation requires initial values for both the augmented state vector and the
augmented state error covariance matrix P (0), whose values are proportional to
the expected errors in the corresponding parameters to ensure smooth conver-
gence. As pointed in [8], if the covariance matrix expresses the errors in 1σ (stand
deviation) format, then the actual errors of the estimates will be within ±3σ.
For accuracy and computation considerations, we set the initial values of the
covariance matrix for the displacements as 0.1, for the Poisson ratio as 0.001,
and for the Young’s modulus as 2000 in our current experiment. In addition,
we model the process noise Qv and measurement noise Re as diagonal matrix,
and for this paper we use fixed values for both. Specifically, let i be the frame
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Fig. 3. Estimated x-strain (left), y-strain (middle), and shear strain (right) maps be-
tween ED and ES.

number, and j be the loop number (because the periodic nature of the cardiac
dynamics, we can loop through the image sequence until convergence):

– If j = 1 and i = 1, the initial displacements are zero. Otherwise, the initial
displacements are the estimates from previous frames/loops up to jth loop,
(i − 1)th frame.

– MR phase contrast velocity images at ith frame, if available, provide the x-
and y- components of the instantaneous velocities for the mid-wall points.
For all other points, we use the estimated velocity from the previous frames
up to jth loop, (i − 1)th frame.

– The initial accelerations of all points are estimates from the previous frames
up to jth loop, (i − 1)th frame.

– If j = 1 and i = 1, the initial Young’s modulus and Poisson’s ratio are set
to 75000 Pascal and 0.47 respectively [12]. Otherwise, we use the estimates
from the previous frames up to jth loop, (i − 1)th frame.

– The initial equivalent total loads are computed from the governing equations
using the other initial condition.

Boundary conditions: the system equations are modified to account for the
boundary conditions of the dynamic system. If the displacement of an arbitrary
nodal point is known to be Ub = b, say from MR tagging images or shape-based
boundary tracking [10], the constraint kUb = kb is added to the system governing
equation, where k is related to the confidence on the displacement.
Error measures of the estimation process: the filtering process is optimized by
minimizing a set of error residuals, based on the differences between experimen-
tally measured imaging and image-derived data, i.e. mid-wall MR phase contrast
velocity and MR tagging/shape-tracked displacement, and those estimated by
EKF framework. With our definition of state vector and incomplete image data,
the matrix D of Equation (4) should be properly chosen for all image frames, i.e.
identity matrix where measurements are available and zero matrix for others.

After setting up all the initial and boundary conditions, the kinematics and
material parameters can be estimated using the EKF strategy described earlier.
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Fig. 4. Estimated maximum principle strain magnitude and direction maps (left) and
minimum principle strain magnitude and direction maps (right) between ED and ES.

The estimation results at time t will be used as input for time t+1. The estima-
tion process needs to loop through all image frames in the cardiac cycle several
times until convergence.

3 Experiment

Imaging/imaging-derived data: sixteen canine MR phase contrast velocity and
magnitude images are acquired over the heart cycle, with imaging parameters
flip angle = 30o, TE = 34msec, TR = 34msec, FOV = 28cm, 5mm skip 0, ma-
trix 256x128, 4 nex, venc = 15cm/sec. The image resolution is 1.09mm/pixel,
and the velocity intensity ranges from −150mm/sec to 150mm/sec, with the
signs indicating the directions. Fig.1 shows the images at end-diastole. Endo-
cardial and epicardial boundaries are extracted using velocity field constrained
levelset strategy [11], and boundary displacements between consecutive frames
are detected based on locating and matching geometric landmarks and a local
coherent smoothness model [10].
Experimental results: the framework is implemented in Matlab, and all presented
results are acquired after running through the image sequence six times, which
takes about 40 minute on a Pentium 4 1.8GHZ computer. Fig. 2 shows the left
ventricular meshes at end-diastole (ED) and end-systole (ES), as well as the
displacement map between these two frames. Fig. 3 shows the x-, y- direction
normal strain and shear strain distributions and mapping scale between ED
and ES. The principle strains and their directions are shown in Fig.4. The final
converged estimates of the Young’s modulus and Poisson’s ratio distributions
and mapping scales are in Fig.5. Spatially, the Young’s modulus varies from
72000 to 81000Pascal, and the Poisson ratio varies from 0.40 to 0.50. Analysis
and interpretation of the results, as well as additional experiments, are underway.

4 Conclusions

We have developed a SFEM framework that can estimate left ventricular kine-
matics and material parameters simultaneously. We believe that this is the first
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Fig. 5. Estimated Young’s modulus (left) and Poisson’s ratio (right) maps.

attempt in image analysis that incorporates uncertain constraining models in the
ill-posed recovery problems, and the initial results are promising. We are working
on issues related to robust estimation, numerical stability, realistic mechanical
models, experiment validation, and extension to 3D.

This work is supported in part by the Hong Kong CERG HKUST6057/00E,
and by a HKUST Postdoctoral Fellowship Matching Fund.

References

1. Contreras, H.: The stochastic finite element method. Computer and Structure 12
(1980) 341–348

2. Frangi, A.J., Niessen, W.J., Viergever, M.A.: Three-dimensional modeling for func-
tional analysis of cardiac images. IEEE Trans. Med. Imag. 20(1) (2001) 2–25

3. Glad T, T., Ljung, L.: Control Theory. Taylor & Francis (2000) London
4. Hunter, P.J., Smaill, B.H.: The analysis of cardiac function: a continuum approach.

Progress in Biophysics and Molecular Biology 52 (1989) 101–164
5. Ljung, L.: Asymptotic behavior of the extended Kalman filter as a parameter

estimator for linear system. IEEE Trans. on Auto. Control AC24(1) (1979) 36–50
6. Moulton, M.J., Creswell, L.L., Actis, R.L., Myers, K.W., Vannier, M.W., Szabo,

B.A., Pasque, M.K.: An inverse approach to determining myocardial material prop-
erties. Journal of Biomechanics 28(8) (1995) 935-948

7. Park, J., Metaxas, D.N., Axel, L.: Analysis of left ventricular wall motion based
on volumetric deformable models and MRI-SPAMM. Medical Image Analysis 1(1)
(1996) 53–71

8. Rao, S.K.: Comments on “Optimal guidance of proportional navigation”. IEEE
Transactions on Aerospace and Electronic systems 34(3) (1998) 981–982

9. Shi, P., Sinusas, A.J., Constable, R.T., Duncan, J.S.: Volumetric deformation anal-
ysis using mechanics-based data fusion: application in cardiac motion recovery.
International Journal of Computer Vision 35(1) (1999) 87–107

10. Shi, P., Sinusas, A.J., Constable, R.T., Duncan, J.S.: Point–tracked quantitative
analysis of left ventricular motion from 3D image sequences. IEEE Transactions
on Medical Imaging 19(1) (2000) 36–50

11. Wong, L.N., Shi, P.: Velocity field constrained front propagation for segmenta-
tion of cardiac images. submitted to IEEE Workshop on Application of Computer
Vision

12. Yamada, H.: Strength of Biological Material. Williams and Wilkins (1970)


	1 Introduction
	2 Methodology
	2.1 Stochastic Finite Element Method
	2.2 Stochastic Dynamic Equation
	2.3 State Space Model
	2.4 Extended Kalman Filter for Joint State and Parameter Identification
	2.5 Computational Considerations

	3 Experiment
	4 Conclusions
	References

