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Abstract. In the automatic segmentation of echocardiographic images,
a priori shape knowledge is used to compensate poor features in ultra-
sound images. The shape knowledge is often learned via off-line train-
ing process, which requires tedious human effort and is unavoidably
expertise-dependent. More importantly, a learned shape template can
only be used to segment a specific class of images with similar boundary
shapes.
In this paper, we present a multi-scale level set framework for echo im-
age segmentation. We extract echo image boundaries automatically at a
very coarse scale. These boundaries are then not only used as boundary
initials at finer scales, but also as an external constraint to guide contour
evolutions. This constraint functions similar to a traditional shape prior.
Experimental results validate this combinative framework.

1 Introduction

Echocardiography is a widely used imaging technique in clinical diagnosis of heart
disease. In order to improve the diagnosis performance and to reduce the dependency
of human expertise, it is desired to automatically estimate important indices such as
left ventricle (LV) deformation from echo images directly. This requires a reliable,
automatic segmentation of LV boundary. However, the ultrasound images are always
accompanied with degradations including intensity inhomogeneity [1], distortion, and
speckle noise [2] which cause the failure of simple image feature-based thresholding
methods. Currently, reasonable segmentation results are obtained mainly using tedious,
interactive methodology. Automatic segmentation of echo images still remains a chal-
lenging topic.

Some groups have attacked this topic by modeling the physical principle of ultra-
sound imaging degradations. Different filtering methods and statistic models are pre-
sented to correct the intensity inhomogeneity [1] and reduce speckle noise [3–5]. It has
been shown that the performance of image feature-based thresholding methods will be
improved after the correction and de-noising. But the evaluation of these physical and
statistic models still needs to be addressed.

Some other groups proposed to segment original echo images directly. They used
sophisticated algorithms to combine a priori shape knowledge [6], texture information
[7], spatio-temporal continuity of neighboring images [8, 9], and motion information
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[10]. Among these features, a priori shape knowledge has been proven to be a powerful
constraint in the segmentation of noisy images [11]. Usually, the shape knowledge is
learned via interactive training process. Though training process can take place off-line,
a lot of expertise effort is still needed. More importantly, a learned shape template can
only be used to segment a specific class of images with similar boundary shapes.

The main contributions of this paper are: 1. we demonstrate that a region- and edge-
based level set method can be used to segment echo images at a coarse scale. 2. The
boundary shape is used in a multi-scale analysis framework not only as boundary ini-
tials at finer scales, but also as an additional constraint to guide contour evolutions.
Note that the term boundary shape here does not mean a probabilistic template prior.
Rather, it is the form of a deterministic boundary.

The rest of the paper is organized as follows: Section 2 explains our combinative
multi-scale level set framework in detail. Section 3 presents validation and comparison
experiments. Section 4 concludes the paper.

2 Combinative Multi-scale Level Set Framework

Before we describe our method, it is worth reviewing the state-of-the-practice of echo
imaging technique for a better understanding of our motivation. 3D echo (3DE) imaging
was introduced to provide 3D volume and surface information of the heart with greater
accuracy than 2D echo (2DE) imaging [5]. Though the newest 3DE system uses a linear-
array transducer to get a 3D volume which consists of almost parallel image planes, the
popular imaging system nowadays uses a transducer rotating around a fixed axis to get
a set of 2DE planes at different angles. When we use a rotating transducer, we have to
face the problem of reconstructing 3D volume or surface from a set of 2D image planes.
As simple interpolation methods either introduce artifacts or leave the gap between two
neighboring planes unfilled (specially at some distance from the rotating axis), it would
be logical to segment 2D image planes at first and then construct a 3D boundary surface
or a 3D volume using 2D boundaries [12]. At the same time, it is worth mentioning
that automatic segmentation of 2DE images is still an unsolved problem. Based on this
thought and the available data, we focus on 2DE segmentation in this paper, though it
would be straightforward to extend our method to 3DE segmentation once the linear-
array transducer is available.

In the following, we list our algorithm and then explain each step in detail.

1. For each 2DE image, construct a Gaussian pyramid.
2. Initialize the level set inside the LV chamber at the coarsest scale level of the Gaus-

sian pyramid.
3. Apply region homogeneity and edge-based level set method to find out the LV

chamber boundary.
4. Interpolate the boundary to a finer scale level. Use edge-based level set constrained

by boundary similarity to refine the contour.
5. If the finest scale level has been reached, stop.

Otherwise, go to step 4.
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2.1 Intensity Distribution in Gaussian Pyramid

The intensity distribution of echo images is not clear yet, but it is definitely not Gaus-
sian. This explains why additive Gaussian noise model performs poorly in the segmen-
tation of echo images. This situation changes, however, at higher levels of Gaussian
pyramid (the reader is referred to [13] for details about Gaussian pyramid). The high-
frequency noise is smoothed out with the increase of pyramid level. Besides, the neigh-
boring pixels at higher levels are more likely to be independent as subsampling reduces
their correlation. According to Central Limit Theorem, the gray values of these pixels
after Gaussian smoothing may be approximated as a Gaussian distribution. Therefore,
we may use the additive Gaussian noise model at the highest pyramid level to extract
boundaries. At lower pyramid levels, though the additive Gaussian noise model is not
valid, the boundary shapes remain similar, as shown in figure 1. In the next subsection,
we will use this shape similarity as an additional constraint in the level set methods.
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Fig. 1. Top: The principle of Gaussian pyramid algorithm (left). The original image (middle) is
denoted as level L0. A � � � 2D Gaussian kernel is used for smoothing before subsampling the
image. The expanded image L2 (right) is smoother than the original image, while the boundary
shapes are similar at both L0 and L2. Bottom: The derivative amplitudes of L0 (left), of L1 (mid-
dle), and of L2 (right). The disturbance of speckle noise decreases with the increase of pyramid
level. At the same time, the boundary of the LV chamber is blurred as well.

2.2 Level Set Methods at Different Scale Levels

In this subsection, we explain the reason of using different level set methods at step 3
and step 4 in our algorithm. We also give the details of the level set implementation.

Finding a contour can be described as an energy minimization problem. For exam-
ple, finding a 2D contour � in an image ���� �� using edge information is equivalent to
minimizing the following energy function

�� �

�
�

�

�������������������� (1)
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here ���� � �
������� is a monotonously decreasing function of image gradients and

��������� denotes the unit length of the contour (see [14] for details).
For echo images at different pyramid levels, solely edge-based detection techniques

may not work due to weak edges (cf northeast direction of L2 in figure 1). Thus,
we need additional constraints to guide the segmentation. The Active Contour with-
out Edge method [15] shows promising results in segmenting images with weak edges.
This method is based on the Gaussian noise assumption and is therefore an appropriate
constraint for echo images at very coarse scales, as we mentioned in section 2.1.

In an image ���� �� satisfying the Gaussian noise model, assume that we have a
foreground object and a background with intensity mean values � � and ��, respectively.
According to [15], the object contour � can be found by minimizing

	� �
�

�
��

��
���������

����� ��� ���
� ���� �

�

�
��

��
��	�������

����� �� � ���
� ����� (2)

Here 
� and 
� denote the standard deviations of gray values inside and outside the
contour, respectively. It is worth mentioning that � � and 
� �� � �� �� are normally
independent, while in echo images we have an extra relation: � �
� � ��
� [16]. This
relation actually simplifies the evaluation of 	�, since we can replace 
� with 
�����.

Recently, Paragios and Deriche [17] further unified boundary and region-based in-
formation for tracking purpose. This combination increases the robustness of the level
set method. Here we adopt their method for echo image segmentation, yielding the
following minimization framework

��	
�
�	� � ��	��� (3)

Here �� is a weighting coefficient to adjust the relative importance of region information
with respect to edge information.

After extracting boundaries at the coarsest scale level, we gradually interpolate them
to finer levels as initial contours and refine them using local image features. In the
refining process, the active contour without edge method (cf equation (2)) can no longer
be used because the gray value distribution at lower levels of the pyramid cannot be
approximated as a Gaussian. If we use simple edge-based level set methods without
further constraint, the active contours may easily collapse due to noisier image features,
even when the contour initials are very close to the real boundaries.

When we check the traditional multi-scale framework closely, we will find that
the boundary shape at the highest pyramid level is used only as a initial contour at a
lower pyramid level, while the shape similarity of boundaries at different scale levels
is not used. Thus, we propose to add the boundary shape similarity as an additional
constraint to guide the contour evolution at lower pyramid levels. Correspondingly, the
minimization framework is modified as

��	
�
�	� � ��	�� (4)

with the boundary similarity function 	� defined as

	� �

� �

�

�
������� ������������ ��� (5)
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In equation (5), � is a scaling factor which interpolates � � to the next finer scale level,
and � is the distance of the corresponding points between contours �� � and �. The
parameter �� � � in equation (4) is used to adjust the relative importance of boundary
similarity function.

The above energy minimization problems can be viewed in a more general Geomet-
ric Variational Framework and can be solved using level set methods. The basic idea
of 2D level set methods is to embed a 2D curve � as the zeroth level set of a hyper-
planar function ���� �� and convert the propagation of � into the temporal evolution of
���� ��. Concretely, we use a Heaviside function

	�
� �

�
� 
 � �
� 
 � �

(6)

and a 1D Dirac function Æ�
� � �
��
	�
� to reformulate equations (1), (2), and (5) in

the Euclidean space as:
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By replacing ��, ��, and �� with��,��, and�� in equations (3) and (4) and then solv-
ing their Euler-Lagrange equations with respect to �, we obtain two level set evolution
equations of equations (3) and (4), respectively:
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Here the variables of the function � are represented as ���

�
� ����� ������ � �� and

�� � ���� ���� � ��. For a point � on contour ���

�
, a point � on �� is defined as its

corresponding point if the vector�� is normal to contour �� �

�
.

3 Experiment

The experimental images are obtained using HP Sonos 5500 imaging system with 3D
omniprobe transducer. Each 3D+T data set has �
 to �� frames between end-diastole
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(full expansion) and end-systole (full contraction). The rotation interval of the trans-
ducer is 5 degrees per slice. In the experiments, only 2DE images with closed LV
boundaries are chosen to simplify the implementation of level set methods. Image in-
tensities, gradients, and boundary similarity measures are equally normalized to the in-
terval [0,1] in order to simplify the setting of weighting parameters. We set � ����

�

�
� �

and �� � ��� for all experiments.
For validation, we use �� 2DE images with closed boundary contours from five dif-

ferent sequences in four different 3D+T datasets. They cover different slice angles and
different frames between end-diastole and end-systole. As no gold standard is avail-
able, three experienced observers are asked to manually segment the LV boundary in
each 2DE image. These results are used as reference to judge if the performance of our
automatic segmentation algorithm is within the variation range of manual segmentation
results. Here we use the mean absolute distance (MAD) (cf [18] for details) to compare
the shape difference between two contours. For each 2DE image, the MADs of every
two manual contours and the MADs between the automatic contour and each manual
contour are estimated. Thus, we have three manual MADs and three automatic-manual
MADs for each 2DE image. Then, we choose five 2DE images from one sequence with
the best quality (sequence 1 in table 1) and six 2DE images from one other sequence
with the worst quality (sequence 2 in table 1) as two testing groups. The mean values
and the standard deviations of manual MADs and of automatic-manual MADs are sep-
arately calculated in each group, as shown in the first two rows in table 1. The same
process takes place for all �� 2DE images. Table 1 shows that the standard deviation
of MADs using automatic segmentation is in the same range of that using manual seg-
mentation. One exception is the MAD comparison of the good sequence (row 1), where
the standard deviation of MADs using automatic segmentation is larger than that using
manual segmentation. This indicates that the importance of shape constraint is reduced
when the image quality is adequately good. But in general, the results in table 1 validate
that the performance of our framework is comparable to that of manual segmentation.

Table 1. The performance comparison between manual segmentation results and the results us-
ing combinative multi-scale level set framework. Manual MADs describes the shape distance of
different manual contours, while Automatic-Manual MADs denotes the difference between our
automatic segmentation results and manual ones.

Manual MADs Automatic-Manual MADs
sequence 1 (mean/deviation [pixel]) ����� � ����� ����� � �����

sequence 2 (mean/deviation [pixel]) ����� � ����� ����	 � ��
	�

all sequences (mean/deviation [pixel]) ��	�� � ��
�� ��
�� � �����

In images at the coarsest scale, the combinative level set method using both region
and edge information is superior to the edge-based level set (figure 2). The edge-based
active contour model cannot stop at the blurred boundary, while the combinative frame-
work can.

In figure 3, we pass the boundary shapes from level 1 back to original images as
contour initials. Traditional multi-scale analysis frameworks (such as solely edge-based
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level set method) do not use the boundary shape constraint and they do not get rea-
sonable results, even when the initial contours are very close to the true ones. The
performance of the level set method is improved after using boundary shape constraint,
which restricts the evolution region of the active contour and therefore guarantees the
correct convergence of the level set method.

L2 Initial L2 without Region L2 with Region
Fig. 2. Performance of the
level set method at pyra-
mid level 2. The active con-
tours are marked in black.
Left: The initial level set.
Middle: Solely edge-based
level set cannot provide ac-
curate boundaries. Right:
Segmentation results us-
ing edge and region-based
combinative level set.

L0 Initial L0 without Shape L0 with Shape
Fig. 3. Left: Interpolated
boundary initials at level
0. They are very close
to the actual boundaries.
Middle: Solely edge-based
level set cannot provide ac-
curate boundaries. Right:
Segmentation results using
edge level set method con-
strained by boundary simi-
larity.

4 Conclusion and Future Work4 Conclusion and Future Work

In shape-based approaches, the shape information has been learned via off-line training.
In our approach, the boundary information is extracted automatically at the highest scale
level of the pyramid. No interactive effort is needed, except the initialization step of the
level set algorithm. In our algorithm, we use the boundary shape not only as initial
contours at finer scales, but also as additional constraint to guide contour evolutions.

One limitation of the level set method is that it assumes a boundary is a closed
curve or surface, while some long-axis echo images may not have a closed contour. The
relaxation of this assumption needs to be studied in the future work. We also plan to
extend our algorithm to 3D surface segmentation for real 3D echo volume data.
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