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Abstract. A probabilistic tissue classification algorithm is described
for robust MR brain image segmentation in the presence of partial vol-
ume averaging. Our algorithm estimates the fractions of all tissue classes
present in every voxel of an image. In this work, we discretize the frac-
tional content of tissues in partial volume voxels, to obtain a finite number
of mixtures. Every mixture has a label assigned to it, and the algorithm
searches for the labeling that maximizes the posterior probability of the
labeled image. A prior is defined to favor spatially continuous regions
while taking into an account different tissue mixtures. We show that
this extension of an existing partial volume clustering algorithm, [8], im-
proves the quality of segmentation, without increasing the complexity
of the procedure. The final result is the estimated fractional amount of
each tissue type present within a voxel in addition to the label assigned
to the voxel.

1 Introduction

In this work, we consider the problem of segmenting magnetic resonance (MR)
images, which is made difficult by the existence of partial volume (PV) averaging
and intensity shading artifacts due to limited spatial resolution of the scanner
and RF field inhomogeneity, respectively. To improve the quantitative precision
of segmentation, we develop a method for determining the fractional content of
each tissue class for so-called partial volume voxels of mixed tissue type, taking
into account shading artifacts. Of specific interest in the current work are the
primary tissue constituents of the brain: gray (GM) and white matter (WM) as
well as cerebrospinal fluid (CSF).

Two general approaches have been applied to address the problem of partial
volume (PV) segmentation. In [2,7], a mixel model, assumes that every voxel in
an image is a PV voxel, consisting of a mixture of pure tissue classes. Because
of the number of parameters that must be estimated, either multi-channel data
and/or additional constraints are required to obtain the segmentation solution.
A second approach, [8,5,9] to dealing with PV voxels is to marginalize over
the variables describing the fractional portions of each pure tissue class. This
produces an additional, new set of partial volume classes, with which each image
voxel may be associated. However, an additional estimation step is necessary to
obtain the fractional amount of different tissues in each voxel.
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In the current work we develop a method that shares aspects of both ap-
proaches. In the mixel-model approach, noise in the image limits the precision
with which the fractional tissue content in PV voxels can be estimated from the
image. This in turn results in either a noisy or over smoothed final segmenta-
tion. The marginalization approach identifies PV voxels, but does not provide
an estimate of the tissue fractions for these voxels. Moreover, both approaches
are computationally expensive. The mixel model entails a large number on un-
knowns, whereas the marginalization requires numeric integration to obtain a
distribution function of PV classes.

We propose to use only a finite number of mixtures for a given pair of tissue
classes to model the PV averaging effect. In this way, marginalization is not
required and the fractional tissue content of PV voxels is directly provided by the
mixture label. The precision of the fractional tissue estimates can be controlled
through the appropriate discretization of the continuous mixture.

While this approach can and should also be used within the implementation
of the clustering procedure for the estimation of class probability parameters,
we choose to treat it separately to be able to obtain unbiased evaluation of its
functionality.

2 Image Model

Let yi = (yi,1, yi,2, . . . yi,M )T be the M -channel observation at the i-th voxel
of an input image. At each voxel we assume there exists a mixture of several
different tissue types. The contribution of a specific tissue type to the voxel
measurement is weighted by its fractional ammount in the voxel. Tissues are
modeled by voxel classes that are assumed to have Gaussian probability distri-
bution of the intensity. This type of image model was also used by several other
authors [2,7] and in part also by [5,9]. Measurement at each voxel is modeled as
a linear combination of Gaussian random variables:

yi =
∑
k∈K

ti,kN(µk(i),Σk) ,
∑
k∈K

ti,k = 1 , 0 ≤ ti,k ≤ 1 , (1)

where N(µk,Σk) represents a multivariate Gaussian random variable with µk =
(µk,1, . . . , µk,M )T the vector of mean intensity values (M channels), and Σk

is the associated M -by-M covariance matrix for the M -channel observation.
Each tissue class k can have different mean and variance, where K is the set of
permissible tissue types. Note that mean vector µk(i) is also a function of voxel
location i, which allows us to take into account intensity inhomogeneities that
may be present in the data.

ti,k represents the fraction of pure tissue class k that is present at the i-th
voxel. The goal of the partial volume segmentation is to estimate ti,k , ∀k ∈ K for
each voxel i in the image. In order to do that, we can solve (1) for each i. Since we
have in general more than one unknown variable per equation and there is also
noise present in an image, the problem is severely under constrained. Additional
constraints must therefore be introduced on the image model.
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In [6] the PV effect is assumed to be caused by downsampling a high resolu-
tion image. We use this idea and constrain the image model in (1) in two ways.
First, we assume the number of different tissue types in a voxel is limited to
two, which in practice introduces negligible error in the image model. Second,
we discretize the continuous mixture variable and consider only a finite number
of mixture possibilities:

ti,k ∈ T ,
T = {τ1, τ2, . . . , τT } , τi �= τj .

(2)

The motivation for the latter constraint is that the presence of image noise
may limit the precission with which the fractional tissue content can be esti-
mated. This constraint, on the other hand, makes the problem of estimating
fractions of pure tissue classes much easier.

In practical applications the number of specific mixtures T is chosen to obtain
a compromise between the amount of partial volume voxels in the image, required
precision of segmentation and the computational time. We then consider these
mixtures as additional voxel classes in our image—mixture classes. Since the
measurement of each mixture class is defined by a linear combination of two
Gaussian random variables, the distribution of mixtures is again a Gaussian
distribution, with the following mean and variance:

µt,k1,k2
= µk1

+ (1 − t)µk2

Σt,k1,k2 = t2Σk1 + (1 − t)2Σk2 ,
(3)

where t ∈ T is the specific mixture ratio between tissue classes k1 and k2. When
segmenting MR images of the brain, we define two sets of mixtures: one modeling
PV voxels containing CSF and GM, and the other modeling the voxels containing
GM and WM. A different label λ is assigned to every mixture class—one for each
(t, k1, k2) triplet.

2.1 Bayesian Formulation of Segmentation Problem

The posterior probability of the classification Λ given the data Y is defined as:

P (Λ|Y) =
P (Y|Λ)P (Λ)

P (Y)
, (4)

where P (Y|Λ) is our observation/image model and P (Λ) is a prior on the label
field. As in [9], we use a Potts model for the prior to penalize the granualities in
the labeling,

P (Λ) =
1
Z

exp


−β

∑
i

∑
j∈Ni

δ (λi, λj)


 , (5)

where β is a constant that controls the strength of a prior, Ni is the set of voxels
in some neighborhood of voxel i and Z is a scaling constant. δ (λi, λi) defines the
“similarity” between mixture classes λi and λj . Specifically δ (λi, λj) = o

d(i,j) ,
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Table 1. Tissue overlap between different mixture classes. First three columns/rows
correspond to pure classes, and the rest are different PV mixtures—here we have 4
different PV mixture ratios. Column labels are identical to rows labels but are partially
omited to save space. By changing the values in this table, different mixture classes
can be favored.

mixture class CSF GM WM . . . . . . . .
CSF 1.0 0.0 0.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0
GM 0.0 1.0 0.0 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2
WM 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8

0.8CSF, 0.2GM 0.8 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.2 0.2 0.2
0.6CSF, 0.4GM 0.6 0.4 0.0 0.8 1.0 0.8 0.6 0.4 0.4 0.4 0.2
0.4CSF, 0.6GM 0.4 0.6 0.0 0.6 0.8 1.0 0.8 0.6 0.6 0.4 0.2
0.2CSF, 0.8GM 0.2 0.8 0.0 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2
0.8GM, 0.2WM 0.0 0.8 0.2 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4
0.6GM, 0.4WM 0.0 0.6 0.4 0.2 0.4 0.6 0.6 0.8 1.0 0.8 0.6
0.4GM, 0.6WM 0.0 0.4 0.6 0.2 0.4 0.4 0.4 0.6 0.8 1.0 0.8
0.2GM, 0.8WM 0.0 0.2 0.8 0.2 0.2 0.2 0.2 0.4 0.6 0.8 1.0

where 0 ≤ o ≤ 1 is the amount of “tissue overlap” between the two mixture
classes λi and λj and d(i, j) is the distance between voxels i and j. Overlap
values are shown in table 1. This definition favors smooth transition of estimated
fractions between regions of pure tissue type.

We find the labeling Λ that maximizes the posterior probability P (Λ|Y):

Λ = arg max
Λ

P (Λ|Y) . (6)

3 Implementation

We use the ICM algorithm [1] to maximize the posterior probability (4):

λn+1
i = arg max

λ


log P (yi|λ) − β

∑
j∈Ni

δ(λ, λn
j )


 , (7)

where P (yi|λ) is the conditional probability density function for observing y at
voxel i given mixture class λ, and λn

i is the mixture label for voxel i computed
at n-th iteration.

In order to evaluate P (yi|λ), its parameters µk and Σk, must be estimated
from the image prior to the classification. We use maximum likelihood mixture
model clustering [8] to estimate these parameters externally without affecting the
classifier. The expectation maximization algorithm is used to iteratively update
the class parameters:

µk =
∑N

i=1 P (k|yi) · yi

hk
; Σk =

∑N
i=1 P (k|yi) · yi · yT

i

hk
− µk · µT

k ; (8)

hk =
∑N

i=1 P (k|yi) , k ∈ K .
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The clustering algorithm also takes into account any PV averaging that may
be present in the image and in addition estimates the intensity nonuniformity
field, thus obtaining the class mean intensity value for each voxel in the image
µk(i). This implies that probability density functions P (yi|k) are also spatially
dependent. The mean values and variances of a specific mixture class can then
be computed for any i using (3).

4 Experiments and Discussion

In order to evaluate the segmentation accuracy of the proposed method we re-
quire a test image for which a ground truth partial volume information is avail-
able. Manual segmentations of real MR data do not provide such information.
We must therefore resort to the use of simulated MR images. Specifically we
used the 1 mm T1, BrainWeb[3,4] phantom images produced by the McConnell
Brain Imaging Centre at the Montreal Neurological Institute. For each simu-
lated image, true fraction of the gray and white matter and cerebrospinal fluid
is known at every voxel in an image. Parameter β was set to 0.4 and 4 ICM
iterations were used.

To estimate the disparity between the segmentation results and ground truth,
we calculated the mean squared difference between the estimated and true frac-
tional values over the entire image for each tissue type. Images with various
amounts of noise were segmented into 3 pure tissue classes (GM, WM, CSF) and
2 PV classes (GM/WM, GM/CSF) with 9 different mixtures each. This gives
a total of 21 different classes into which each image voxel can be segmented.
The mean square differences averaged over all tissue types were 0.0182, 0.0086
and 0.0048 for BrainWeb images containing 9%, 3% and 0% noise respectively.
Results of the evaluation are presented in Fig. 1.

Fig. 1. Segmentation results for BrainWeb phantom. (Left) Mean square error in esti-
mation of tissue fractions. (Right): Example gray matter segmentation.
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We found slight difference between the current results of our BrainWeb seg-
mentation and those obtained using a marginalization approach [8] in favor of
the former. This is in part due to relatively small amount of partial volume
artifact present in the data. Although the spatial prior reduces noise in the seg-
mented image, it also introduces smoothing, which is manifested as errors in
segmentation.

Since the number of partial volume voxels is small in comparison to the
size of the BrainWeb image, changing the number of mixture classes has little
effect on the segmentation results. To further explore the relationship between
the amount of noise in the image, number of mixture classes and the quality of
segmentation, we performed a series of tests on a synthetic images of a square,
exhibiting different amounts of noise and partial volume averaging artifact.

We constructed a square, 300-by-300, image and subdivided the image into 3
regions, each separated by a vertical boundary. The left and right most regions
were considered pure “tissues” and their image values were drawn from normal
distributions with the following mean and variance values, respectively: µ1 = 70,
Σ1 = 100 and µ2 = 150, Σ2 = 400. The middle strip of the image, 100 pixels
wide, contained partial volume pixels, which modeled a smooth linear transition
between the two pure classes. The synthetic image is shown in Fig. 2.

Fig. 2. Synthetic data. (Left) Test image used in evaluation. (Right) Segmentation
result for using 8 PV mixtures, where the intensity reflects the fractional content—
white indicates 100%, black 0%.

In Fig. 3, we show the mean square error in segmentation as a function of
the number of mixtures. We can clearly observe the inverse relationship between
these two parameters. We can see that increasing the number of mixture classes
beyond a certain number only minimally improves the segmentation. This en-
ables considerable savings in computational time compared to the marginaliza-
tion approach for PV segmentation, by avoiding numerical integration required
to obtain PV distribution. This holds for both the clustering step, where class
parameters are estimated, as well as during the voxel classification procedure.
We have also observed that the number of steps required for the ICM algorithm
to converge increases with the number of mixture classes. It however remains
manageble, and we never had to use more than 15 steps to achieve convergence.
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Fig. 3. Relationship between the mean square error in segmentation of the synthetic
image of a square and number of PV mixture classes used in the segmentation. Solid
line shows the error for image as defined above, dashed line represents error for the
image that contained three times the amount of noise and dotted line is for the image
that contained only one third of the partial volume effect.

We observed minimal changes in the above relationship as a result of different
noise levels in the image. The difference in image noise is directly related to the
segmentation error and does not affect the ratio between number of mixtures and
error. The amount of PV voxels in the image, however, clearly affects this ratio
and thereby defines the optimal number of mixtures. This allows us to efficiently
segment images with various amounts of PV averaging, by simply changing the
number of mixture classes accordingly.

Although this is not clearly visible in the graph, we have also observed a
slight increase in error when number of mixture classes was too large. Error
when using 20 mixture classes was for example larger than it was when only 10
mixtures were used. While this error could be contributed to the fact that the
ICM algorithem simply did not finish in the minimum, there nevertheless clearly
exists a number of mixture classes, that provides an optimal balance between
segmentation error and numeric complexity.

5 Summary

We presented a method for partial volume segmentation of MR images. The
method represents an intermediate approach between the estimation of contin-
uous tissue fractions in the image model (1) and the addition of a single class
with which all partial volume voxels of a certain tissue combination are labeled
regardless of the mixture ratio of the combination. The modeling of multiple
mixture ratios in the current work enables a more efficient implementation than
the latter approach in which a marginalization must be numerically evaluated.
Furthermore, our method’s small number of unknown parameters in comparison
to mixel model based-methods results in a more stable algorithms. At the same
time, in preliminary evaluations, we found little degradation in partial volume
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segmentation accuracy as a consequence of using only a discrete range of mixture
ratios. This remains to be validated on a more comprehensive data set, which is
planned for the future.
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