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Abstract. Automatic detection of abnormalities or lesions that are at-
tached to other anatomies in medical image analysis is always a very
challenge problem, especially when the lesions are small. In this paper
a novel method for the automatic detection of lung cancers or nodules
attached to vessels in high-resolution multi-slice CT images is presented.
We propose to use volume projection analysis to mimic physicians’ prac-
tices in making diagnosis. The volume projection analysis is performed on
1-dimensional curves obtained from the 3-dimensional volume. A multi-
scale detection framework is proposed to detect nodules of various sizes.
A set of features for characterizing nodules is defined. Results of experi-
mental evaluation of the method are presented.

1 Introduction

The use of low dose CT to detect early stage of lung cancer as a screening method
has shown great promises [2]. The early detection and treatment of lung cancer is
vitally important in improving the cure rate. However, the number of CT slices
per patient produced by multi-detector CT systems is usually in the range of
300 to 600 or even more, and the number of screenings made yearly is increasing
dramatically [3]. This high volume of patient data virtually makes the softcopy
reading slice-by-slice very difficult or impossible in clinical practice. To mitigate
the problem, a computer system, which can automatically detect nodules and
provide assistance to physicians in the process of diagnostic decision making, is
highly desirable.

Early work on computer aided nodule detection relied on 2D features in
multiple slices to distinguish nodules from vessels. Giger et al. [8] used multi-
level thresholding to binarize individual slices to extract features, such as com-
pactness, circularity, and perimeters. A tree structure relating segmentations in
neighboring slices is formed to analyze the 3D shape of the suspected region. Re-
cent work on nodule detection has focused on the use of 3D features directly to
perform the detection. Armato et al applied both intensity and 3D morphologi-
cal features to classify nodules and non-nodules [4,5]. Kawata et al [6] employed
3D curvature, texture and moment features to characterize begin and malignant
nodules. A major problem with existing nodule detection methods lies in the
high false positive rate. With a sensitivity of around 80%, typical false positive

T. Dohi and R. Kikinis (Eds.): MICCAI 2002, LNCS 2488, pp. 746–752, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Automatic Detection of Nodules Attached to Vessels in Lung CT 747

(FP) rate is in the range 1 to 3 per slice [5,1]. This amounts to a few hundred FPs
per case for a 200-slice volume, which is too high to be acceptable in a clinical
practice. Better results were achieved recently by using patient-specific models
in follow-up, with a specificity of 11 FPs per case [9]. Although it is difficult to
make a consistent comparison of the different methods because of the different
data set used, the above numbers do reflect the current state of the art in CT
lung nodule detection.

One of the reasons why current algorithms generate too many false positives
is because of the similarities of the extracted features between nodules that are
attached to vessels and vessels. For example, nodules attached to vessels have
many common characteristics with vessel bifurcations to a computer. Nodules
attached to vessels or with vessel-feeding patterns, however, are more likely to be
lung cancers and have higher clinical significance. The detection of such nodules
is thus very important. The usual way of handling nodules attached to vessels is
to use morphological operations, such as opening, to detach nodules from vessels
[3,4]. Vessel bifurcations, however, when repeatedly opened, may exhibit similar
shapes as nodules, and thus cause false detection. Methods that do not try to
detach nodules from vessels, but use some statistical measurement of the volume
of interest [5,6] suffer from another problem: contributions from the vessel part
cannot be separated well from those from the nodule. One has to lower the
acceptance threshold in order to increase sensitivity, admitting also, at the same
time, more non-nodule anatomies.

In this paper, we propose a novel approach to the detection of nodules at-
tached to vessels. The method mimics physicians’ practices in detection of nod-
ules from CT studies in soft-copy reading process. When physicians are exam-
ining the CT slices, they often view the axial slices in alternating forward and
backward directions along the body-long-axis, and use size change information
and patterns of the object of interest to make judgment. We propose to use
volume projection analysis to extract the same information the physicians are
relying on. The volume projection analysis is based on the analysis of several
1-dimensional curves that are obtained as the projection of the volume from
preferred directions. The preferred directions are automatically computed by
eigen-value analysis of the volume of interest. To do quantitative shape analysis
of the projection curves, Gaussian curve fitting is first conducted on the pro-
jection data. Then classification is made in the parameter space of the fitted
curves.

2 Volume Projection Analysis (VPA) Method

2.1 Nodule Model

Most previous methods either implicitly or explicitly use a sphere as the nodule
model. For example, the widely accepted spheracity measurement is based on
the assumption of a spherical nodule shape, whereas other methods explicitly
search for nodules by spherical templates [1]. In this paper an ellipsoidal model is
proposed. The reason why ellipsoidal model was not adopted before is probably
because of the complexity of the model in comparison with a spherical one.
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Six parameters are involved in an ellipsoidal model instead of one for a spherical
model. They are the lengths along the three major axes and the three orientation
parameters of the ellipsoid. Without loss of generality, we express the ellipsoid
in its own coordinate system (the nodule coordinate system) by

x2

a2 +
y2

b2 +
z2

c2 = 1 (1)

with the x,y,z axes coincident with the major axes, and a, b, c are the lengths of
the major axes. The orientation of the nodule coordinate system with respect to
the original volume coordinate system defines the orientation of the ellipsoid.

It is observed that solitary nodules tend to follow a Gaussian intensity dis-
tribution. The intensity has the highest value at the center of the nodule and
drops off exponentially in the radial directions. For the ellipsoidal nodule model,
the intensity profile can be approximated as
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where the Gaussian sizes σa, σb, σc are linearly proportional to the lengths of the
major axes of the ellipsoid.

2.2 Multiscale Smoothing
Due to image noises, it is necessary to smooth the volume. Furthermore, malig-
nant nodules are often more irregular in shape than benign ones; star-like shapes
are often to be seen for such nodules. Smoothing will help to reduce such shape
irregularity. We use Gaussians of multiple scales for the smoothing

Gσ(x, y, z) = e− x2+y2+z2

σ2 (3)

The smoothed volume is represented by

Iσ(x, y, z) = I(x, y, z) ∗ Gσ(x, y, z) (4)

where * represents convolution. It can be shown that the smoothed intensity
distribution of a Gaussian model is still a Gaussian, with the new Gaussian sizes
being

σx =
√

σ2 + σ2
a, σy =

√
σ2 + σ2

b , σz =
√

σ2 + σ2
c (5)

2.3 Volume Projection
Volume projection is an operation that reduces the 3-dimensional (3D) data of
the volume to a 1D curve. Given a projection direction vector v, the projection
axis ζ is defined in the same direction as v, with the origin the same as the
original volume of interest. Denote the coordinate on the projection axis by ζ,
then the projection of volume Iσ(x, y, z) on ζ can be expressed as

pv(ζ) =
∑

(x,y,z)∈x|x•v=ζ

Iσ(x, y, z) (6)

where x = (x, y, z). The meaning of (6) is to compute the total voxel intensity
on the plane orthogonal to v and at a distance ζ from the origin. The projection
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operation possesses several nice features. The following two are essential in our
nodule detection algorithm.

Property 1 (Invariance): The projection of a Gaussian-distributed volume Iσ

(x, y, z) along any projection direction v is still a Gaussian.

Property 2 (Boundness): The size of the projected Gaussian is bounded by

min(σx, σy, σz) < σζ < max(σx, σy, σz) (7)

The first property means that the Guassian shape is invariant under projec-
tion operation. This allows us to use lower dimensional data to identify the shape
of a higher dimensional volume. Property two, when combined with equation (5),
states that the measured shape in the lower dimensional space is quantitatively
related to that in the higher dimensional space. Therefore it is feasible to use the
projection data to infer the shape of the original volume. Note that by applying
the volume projection, we have avoided doing the actual fitting in the original
3D space, which would be otherwise needed to extract the nodule shape and size
information. When the projection axes are chosen as the three major axes of the
ellipsoid, it is even possible to approximately reconstruct the 3D structure from
the 1D measurements.

2.4 Computing the Projection Axes
The projection axes should be selected to best distinguish nodules from non-
nodule structures. For nodules, the invariance and boundness properties should
result in consistent measurements in any projection axes, whereas for non-nodule
anatomies, such as vessels, measurements in the projection data will give incon-
sistent predictions about the 3D shape a nodule structure would exhibit. For
example, when one projection axis is chosen as being along the vessel axis, and
the other being orthogonal to the vessel axis, the two projection curves will not
match any projection curves generated by a nodule. We compute the projection
axes based on the eigenvector analysis of the volume of interest. The projection
axes are selected corresponding to the dominant structures in the volume of
interest.

2.5 Classification
To make quantitative analysis of the projected data, Gaussian fitting is con-
ducted for each of the projected curves. Since the data is 1D, the fitting is much
simplified in comparison with that in 3D. A Gaussian curve will take the follow-
ing form

G(ζ) = ρζ e
− (ζ−ζ0)2

σ2
ζ (8)

where ρζ , ζ0 and σ2
ζ are the Gaussian parameters. A five dimensional feature

vector is extracted from all the fittings. It consists of the maximum size, mini-
mum size, maximum size ratio, maximum center offset, and maximum error of
the fitting. A simple linear classifier is then used to make distinction between
nodules and non-nodule structures.
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After a nodule is detected, the center of the nodule in 3D can be estimated
from the Gaussians’ centers in 1D by the least squares method. Although the
exact size of the nodule is difficult to estimate, we can compute a mean radius of
the nodule by averaging the size estimates from the 1D projections. Alternatively,
we can use ellipsoidal surface fitting to get more accurate shape information.
Note that this is different from a fitting intended for nodule detection, since the
volume of interest has already been identified as containing a nodule.

3 Experiments
3.1 Materials

We applied the proposed method to 10 CT screening studies of smokers. The data
sets are all low dose multi-slice, high resolution CT images, with dosages from
20 to 40 mAs, in-plane resolutions from 0.57 to 0.67mm/pixel, slice thickness
of 1.25mm with 0.25mm overlap. The image sizes are all 512*512 within cross
section, with 280 to 300 slices in Z direction.

3.2 Preprocessing

First, the lung volume is pre-processed to remove the chest wall so that only
the lung area remains as the volume of interest. This is performed by intensity
thresholding and morphological operations.

3.3 Seed Points Generation

This step generates points of interest in the volume to examine. These points
could be specified by scanning through the whole CT volume. To do this, only
points whose intensities are greater than a certain threshold need to be con-
sidered. However, this is a rather time-consuming approach since the number
of candidate points thus generated is huge. We use an intelligent seed point
generation method [10] to speed up the detection.

If the nodule detection method is intended to work in an interactive way, the
user can pick up seed points manually, e.g., by using a computer mouse to move
to the suspicious point and to detect nodules on-line.

3.4 Ground Truth

Three chest radiologists first evaluated the patient studies on 7mm hard copies
separately. Meanwhile, the proposed automatic detection is applied to thin slice
multi-slice HR CT data. Finally, two experienced chest radiologists examined all
the marks detected by both radiologists and computer, and determined ground
truth by consensus.

3.5 Results
Preliminary results show that radiologists plus the automatic detection algo-
rithm detected 34 nodules in total, two of which are ground glass nodules (GGNs)
detected by radiologists. The radiologists combined together detected 25 nod-
ules. Individual detection ranges from 14 to 21, with the sensitivities ranging
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Table 1. Experimental results of the proposed lung nodule detection method.
All nodules confirmed: 34

Nodules Sensitivity % Sensitivity Overlap Overlap rate %
detected with VPA * % with computer

Radiologist 1 21 61.8 97.1 11 52.4
Radiologist 2 17 50.0 85.3 11 64.7
Radiologist 3 14 41.2 88.2 7 50.0
Automatic detection 23 67.6 - FPs/study: 6.2

All nodules confirmed: 32
Nodules Sensitivity % Sensitivity Overlap Overlap rate %
detected with VPA * % with computer

Radiologist 1 19 59.4 96.9 11 57.9
Radiologist 2 16 50.0 87.5 11 68.8
Radiologist 3 12 37.5 87.5 7 58.3
Automatic detection 23 71.9 - FPs/study: 6.2

*: Sensitivity with VPA refers to the sensitivities that radiologists can achieve with the help of the

automatic nodule detection algorithm.

��� ��� ��� ���

Fig. 1. Volume projection profiles and curve fitting for a nodule attached to vessel.
(a) one slice of theVOI; (b) a shaded surface views of the VOI; the nodule position is
indicated by the arrows; (c)-(d) the volume projection curves (solid lines) and fitted
curves (dashed lines).

from 41.2% to 61.8%. The proposed automatic detection algorithm detected 23
nodules, achieving a sensitivity of 67.6% with a false positive rate of 6.2 FPs
per case. The overlapping rate between the automatic detection and each indi-
vidual radiologist’s detection ranges from 50.0% to 64.7%. With the assistant of
automatic detection, radiologists can detect an average of 80.7% more nodules
than alone, and reach the sensitivities ranging from 88.2% to 97.1%. If excluding
the GGNs, the radiologists combined together detected 23 nodules. Individual
detection ranges from 12 to 19, with the sensitivities ranging from 37.5% to
59.4%. The proposed automatic detection algorithm detected 23 nodules, with a
sensitivity of 71.9%. The overlapping rate between the automatic detection and
each individual radiologist’s detection ranges from 58.3% to 68.8%. With the as-
sistant of automatic detection, radiologists can detect an average of 90.5% more
nodules than alone, and reach the sensitivities ranging from 87.5% to 96.9%.
The overall experimental results are listed in Table 1.

An example of the detection using volume projection data is shown in Fig.1.
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4 Conclusions
In this paper, we have presented a novel detection method based on volume
projection analysis for solving the problem of automatic detection of lesions that
are attached to other anatomies in medical image analysis, especially when the
lesions are small. The method projects the 3D volume data onto 1D space and
extracts the 3D information from the reduced data space. An ellipsoidal nodule
model is used to represent a nodule. Under the Gaussian intensity model, two
fundamental properties of the projection are established and utilized to design
the nodule detection algorithm. The method is able to detect both isolated
nodules and nodules attached to vessels.

The method has been applied to 10 patient studies. A low false positive
rate of 6.2 FPs per study is achieved, with a comparable sensitivity to existing
methods. Experiments have shown that with the help of the proposed method,
physicians can detect significantly more nodules than working without.
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