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Abstract. We present a completely automatic method to identify abnormal ana-
tomical configurations of the brain resulting from various pathologies. The sta-
tistical framework developed here is applied to identify regions that significant
differ from normal anatomy in two groups of patients, namely subjects who sub-
sequently converted to Alzheimer’s Disease (AD) and subjects with mild AD. The
regions identified are consistent with post-mortem pathological findings in AD.

1 Introduction

An important tool used to diagnose abnormal anatomical variations are medical at-
lases [1]. Traditional ones, such as by Talairach & Tournoux [2] or Schaltenbrand &
Wahren [3], are presented in textbooks, but computerized atlases comprising informa-
tion in a more practical and quantitative manner are becoming available [4–16]. They
usually include information obtained from a set of subjects, as opposed to a single in-
dividual in most paper atlases, making them more representative of a population. For
example, the Montreal Neurological Institute used 305 normal subjects to build an atlas
comprising intensity variations after affine registration in the stereotaxic space defined
by Talairach & Tournoux [8]. These methods also enable the calculation of normal
shape variations [17–19].

Still, most of the clinical work regarding the identification of abnormal brain ana-
tomy due to particular diseases involves manual intervention by skilled anatomists [20,
19]. The following work aims at developing a fully automated method that identifies re-
gions in which the anatomy is significantly different between two given populations. We
describe a statistical framework to perform such an analysis based on statistics obtained
from displacement fields resulting from deformable registration. In the following sec-
tion we describe the method developed to identify such regions. The groups of subjects
used to test our procedure are then detailed, followed by results and a brief discussion.

2 Methodology

Affine registration based on the correlation ratio [21, 22] is performed between the im-
ages from the groups under study and a reference image. Deformable registration based
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on the demons’ algorithm [23, 24], an intensity based registration method, is then per-
formed to assess non-linear anatomical variations present between the reference im-
age and each image of the two groups. The displacement fields resulting from the de-
formable registration are then used to assess significant anatomical differences between
the groups of subjects. The statistical analysis performed to identify these differences
follows.

Let ui j�x� be the three-dimensional displacement found by deformable registration
at an anatomical location x in the reference scan to the corresponding anatomical lo-
cation in image j of group i. Two important statistics that can be computed from these
displacements are the groups’ sample mean vector ui�x� and covariance matrix Si�x�,

ui�x� �
1
Ni

Ni

∑
j�1

ui j�x�� (1)

Si�x� �
1

Ni�1
Ai� (2)

where Ni is the number of subjects in group i, and Ai is the matrix of sums of squares
and cross products of deviations about the mean for group i,

Ai �
Ni

∑
j�1

�ui j�x��ui�x�� �ui j�x��ui�x��
�
� (3)

The following aims at identifying significant anatomical differences due to shape
variations of the various structures composing the human brain. This will be done by as-
sessing significant differences between the average displacements ui�x� found for each
group. Assuming that the displacements found for group i

�
ui1�x�� � � � �uiNi�x�

�
are sam-

ples from a normal distribution N�µi�Σi�, two common tests based on the T 2 statistic
to assess whether the mean of one population a is equal to the mean of another popu-
lation b are available. The use of one test or the other depends on the equality of the
covariance matrices of each population.

In the case that both populations have the same covariance (Σa � Σb), it can be
shown [25] that

NaNb�Na �Nb�4�
3�Na �Nb��Na �Nb�2�

�ua�x��ub�x��
� S�1 �ua�x��ub�x�� � (4)

where

S �
1

Na �Nb�2
A� (5)

A � Aa �Ab� (6)

follows an F distribution with 3 and Na �Nb�4 degrees of freedom.
If both populations have different covariances (Σa �� Σb), another test is used [25].

In this case, assuming without loss of generality that Na � Nb,

Na�Na�3�
3�Na�1�

�ua�x��ub�x��
� S�1 �ua�x��ub�x�� (7)
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where

S �
1

Na�1

Na

∑
j�1

�y j�x�� y�x�� �y j�x�� y�x��� � (8)

y j�x� � ua j�x��
�

Na�Nbub j�x�� j � 1� � � � �Na� (9)

y�x� �
Na

∑
j�1

y j�x�� (10)

follows an F distribution with 3 and Na �3 degrees of freedom.
When comparing displacement fields from populations that are afflicted by different

diseases, assuming the equality of covariance matrices might not be the proper choice.
To answer this question, we use another criterion designed to test the equality of differ-
ent covariance matrices. By defining

λ �

��
1
ka

�ka
�

1
kb

�kb
� 3

2 n
�Aa�

1
2 na �Ab�

1
2 nb

�A�
1
2 n

� (11)

where na � Na � 1, nb � Nb � 1, n � na � nb, ka � na�n, and kb � nb�n, it can be
shown [25] that the asymptotic expansion of the distribution of �2ρ logλ is

Pr��2ρ logλ � z�� Pr�χ2
6 � z��ω

�
Pr�χ2

10 � z��Pr�χ2
6 � z�

�
�O

�
n�3	 � (12)

where

ρ � 1�
13
12

�
1
na

�
1
nb

�
1
n

�
� (13)

ω �

5

�
1
n2

a
� 1

n2
b
� 1

n2

�
�3�1�ρ�2

2ρ2 � (14)

Note that for a large n or for large values in A, the power calculations for the deter-
minants of Eq. 11 will create overflows on most computers. To solve this problem, we
identify the whitening transformation [26] for A and apply it to A, Aa, and Ab prior to
calculating Eq. 11. Although this transformation changes the matrices, since the same
linear transformation is applied to all of them, there is no effect on the result of the
criterion of Eq. 11.

The whitening transformation for A is ΦΛ�1�2, where Φ is the matrix of eigen-
vectors of matrix A and Λ is the diagonal matrix consisting of its eigenvalues. This
transformation makes A the identity matrix and the power calculations for the deter-
minants of Aa and Ab fall within range on our computers4. Using this method, Eq. 11
becomes:

λ �

��
1
ka

�ka
�

1
kb

�kb
� 3

2 n

�Ãa�
1
2 na �Ãb�

1
2 nb � (15)

4 Although this strategy was sufficient for our purposes, for very large n (n� 200) the same
problem will occur and other strategies will have to be explored.
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where

Ãa � �ΦΛ�1�2��Aa�ΦΛ�1�2�� (16)

Ãb � �ΦΛ�1�2��Ab�ΦΛ�1�2�� (17)

Using Eq. 15, we can calculate p-value maps (or p-maps) that correspond to the
probability that the covariance of the displacements from any two groups a and b are
equal at a given anatomical position x in the reference scan. By setting the significance
level at 0.95, and thus rejecting the null hypothesis that the covariances are equal for
p-values smaller than 0.05, we can assess whether there is sufficient evidence from
the displacements found at x for groups a and b to assume that the covariance of the
displacements for both groups are different at that point.

If we accept the null hypothesis (the covariances from both groups are equal), Eq. 4
is used to test whether the mean displacement from both groups are equal. If the null
hypothesis is rejected, Eq. 7 is used to perform the same test. In either case, we set
the significance level at 0.95. This process is performed for each voxel x of the refer-
ence scan to identify anatomical position where there is significant evidence showing
different average displacement between the two groups. In practical terms, this means
that brain anatomy at position x for the two groups differs. If one of the groups is the
normal group, these results show strong evidence that the identified regions correspond
to pathological variations due to the disease affecting the other group.

3 Data

Detailed information regarding the subjects and data used in this study can be found
in [20]. Briefly, the subjects in this study consisted of elderly individuals. All subjects
were 65 or older, free of significant underlying medical, neurological, or psychiatric
illness, and meet the Clinical Dementia Rating (CDR) [27] criteria described below.
The CDR scale was designed to stage individuals according to their functional ability,
from 0 representing normal function, to 5 representing the terminal phase of dementia.

A total of 74 subjects were used in this study. At the time of the MR acquisition,
37 of them were identified as normals (CDR=0), 20 as “questionable AD” (CDR=0.5)
who converted to AD according to clinical research criteria for probable AD [28] after
a 3 year follow-up, and 16 as “mild AD” according to the same criteria (CDR=1.0).
These 3 groups will be referred to as normals, converters, and mild AD respectively in
the following. Another elderly subject identified as normal (CDR=0) was also used and
served as a reference image for the following work.

The MRI data used in this study consisted of three-dimensional T1-weighted gradi-
ent echo scans of the brain (TR � 35ms, TE � 5ms, FOV � 240cm2, flip angle � 45Æ,
slice thickness � 1�5mm, matrix size � 256�256). 124 coronal slices covering the en-
tire brain were acquired for each subject. The resulting data volumes were composed of
256�256�124 voxels, each of size 0�9375�0�9375�1�5mm3.
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4 Results and Discussion

p-maps were generated as described in the previous section to identify anatomical lo-
cations where brain anatomy between two groups of subjects differed. In Fig. 1-a, we
present regions identified as significantly different (p=0.05) between the normal and
converter groups. Fig. 1-b, presents the result of the same test using the normal and
mild AD groups. Of particular interest are the larger regions which lie in the inferior
parietal lobule region (arrow in Fig. 1-a) and close to the hippocampal area (arrow in
Fig. 1-b). These regions of the association and heteromodal cortex are known to be
strongly affected by the characteristic plaques and tangles in AD [29]. Fig. 1-c shows
a 3D rendering of pathological regions as identified by our method for the converter
group. Note that most small regions lie inside the grey matter, in the posterior half of
the brain, where grey matter atrophy has been reported for AD patients [29].

b)

c)a)

Fig. 1. Pathological regions as identified by our method between a) normal controls and patients
who converted to AD 3 years after the MRI was performed, and b) normal controls and patients
with mild AD. Also shown in c) is a 3D rendering of pathological regions (in red) as identified
by comparing the normal and converter groups.

Although the statistical methods presented here to analyze displacements are inde-
pendent of the registration method used, the confidence we have in the regions identified
as pathological is based on the assumption that registration provided appropriate corre-
spondence fields between the anatomical locations of the reference image and subjects
under study. As mentioned previously, our deformable registration method is intensity-
based, and as for most registration methods, one underlying assumption is the equiva-
lence of brain topology between the images registered. As displayed in Fig. 2, this is not
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strictly the case when registering our reference image with AD patients. In this figure,
we show corresponding coronal slices from the T1-weighted images of the reference
subject (Fig. 2-a) and an AD patient (Fig. 2-b). These images have been processed to
emphasize the contrast inside the white matter. As can be seen, the white matter of the
reference subject is noisy, but represents a relatively uniform intensity region. In con-
trast, the white matter of the AD patient is much less uniform, with white matter signal
abnormalities present at many locations (See arrows in Fig. 2-b). These abnormalities
will tend to shrink to small regions during registration and the resulting displacement
field will reflect this phenomenon. Hence, the statistics obtained from the displacement
are encoding information regarding displacements that are due to brain shape differ-
ences, as well as white matter anomalies. Whether this is desired or not when building
statistical brain models is probably disease and application dependant, and is currently
under investigation in our group. A solution to solve a similar problem for multiple
sclerosis patients is presented in [30].

a) b)

Fig. 2. T1-weighted MR images where contrast has been emphasized in the white matter: a) an
elderly normal subject (the reference subject) and b) a patient with mild AD. Note the white
matter signal abnormalities present in the patient (See arrows) but not in the reference subject.

Another aspect we are currently investigating is the incorporation of spatial informa-
tion to compute the statistical maps produced with our method. The analysis presented
here works on a voxel per voxel basis and does not take into account any information
from neighboring voxels, but it is likely that information concerning abnormalities of
neighboring voxels should be taken into account to calculate the p-value for a given
anatomical position. To this end, we are currently investigating the incorporation of
Markov Random Fields into our model in a way similar to that described in [31].
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5 Conclusion

We have presented a statistical framework to analyze displacement fields obtained from
deformable registration and identify anatomical regions that are significantly different
between different populations. This technique was applied to identify such regions be-
tween normals controls and two groups of patients with memory impairments, namely
subjects who subsequently converted to Alzheimer’s Disease and subjects with a mild
form of Alzheimer’s Disease. Our method clearly identified brain regions known to be
affected by this disease. It also singled-out small cortical regions mostly in the posterior
part of the brain. Further analysis need to be performed to relate these last findings to
clinical data.

Aside from validating and applying this technology to other diseases such as schizo-
phrenia and multiple sclerosis, future work will focus on registration aspects to deal
with white matter signal abnormalities present in MR scans obtained from diseased
patients, and on the incorporation of spatial information into our statistical model.
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Nice Sophia-Antipolis (2001)

22. Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity
measure for multimodal image registration. In Wells, W.M., Colchester, A., Delp, S., eds.:
Proceedings of MICCAI. (1998) 1115–1124

23. Guimond, A., Roche, A., Ayache, N., Meunier, J.: Three-dimensional multimodal brain
warping using the demons algorithm and adaptive intensity corrections. IEEE Transactions
in Medical Imaging 20 (2001) 58–69

24. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons.
Medical Image Analysis 2 (1998) 243–260

25. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Second edn. Probabil-
ity and Mathematical Statistics. John Wiley & Sons (1984)

26. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Second edn. Computer science
and scientific computing. Academic Press (1990)

27. Hughes, C.P., Berg, L., Danziger, W.L., Coben, L., Martin, R.: A new clinical scale for the
staging of dementia. British Journal of Psychiatry 140 (1982) 566–572

28. McKhann, G., Drachman, D., Folstein, M., Kaltzman, R., Price, D., Stadlan, E.: Clinical
diagnosis of alzheimer’s disease: Report of the nincds-adrda work group under the auspices
of department of health and human services task force on alzheimer’s disease. Neurology 39
(1984) 939–944

29. Kemper, T.L.: Neuroanatomical and Neuropathological Changes in Normal Aging and in
Dementia. In: Clinical Neurology of Aging. Oxford University Press, New-York (1984)
9–52

30. Guimond, A., Wei, X., Guttmann, C.R.G.: Building a probabilistic anatomical brain atlas for
multiple sclerosis. In: Proceedings of ISMRM. (2002) In Print.

31. Kapur, T.: Model based three dimensional Medical Imaging Segmentation. PhD thesis,
Massachusetts Institute of Technology (1999)


	1 Introduction
	2 Methodology
	3 Data
	4 Results and Discussion
	5 Conclusion
	References

