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Abstract. A method to extract and track the position of a guide wire
during endovascular interventions under X-ray fluoroscopy is presented
and evaluated. The method can be used to improve guide wire visualiza-
tion in the low quality fluoroscopic images and to estimate the position
of the guide wire in world coordinates. A two-step procedure is utilized
to track the guide wire in subsequent frames. First a rough estimate
of the displacement is obtained using a template matching procedure.
Subsequently, the position of the guide wire is determined by fitting a
spline to a feature image in which line-like structures are enhanced. In
the optimization step, the influence of the scale at which the feature is
calculated is investigated. Also, the feature image is calculated both on
the original image and on a preprocessed image in which coherent struc-
tures are enhanced. Finally, the influence of explicit endpoint detection
is studied. The method is evaluated on 267 frames from 10 sequences.
Using the automatic method, the guide wire could be tracked in 96%
of the frames, with a greater accuracy than three observers. Endpoint
detection improved the accuracy of the tip assessment, which was better
than 1.3 mm.

1 Introduction

Endovascular interventions are rapidly advancing as an alternative for invasive
classical vascular surgery. During these interventions a guide wire is inserted into
the groin and is advanced under fluoroscopic guidance. Accurate positioning of
the guide wire with respect to the vasculature is a prerequisite for a success-
ful procedure. Especially during neuro-interventions positioning the guide wire
correctly is difficult because of the complexity of the vasculature and narrow-
ness of the blood vessels, causing an increase of intervention time and radiation
exposure.

In this paper an automated method for guide wire tracking during endovascu-
lar interventions is considered. The method can be used to improve visualization
of the guide wire, potentially enabling a reduction in radiation exposure. It can
also be used to detect the position of the guide wire in world coordinates which
enables registration with preoperatively acquired images, so as to provide a nav-
igation tool for radiologists.
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There is relatively little literature on tracking guide wires from 2D fluoroscopy
images. The possibility to use guide wire tracking to extract information regard-
ing myocardial function is evaluated in [6]. However, tracking was only performed
in a single frame and not in time. Other research has been directed towards ac-
tive tracking of guide wires and catheters to control their position inside the
human body using external devices [9,11], or to reconstruct 3D catheter paths
[2]. There has been a considerable amount of work on the enhancement and
extraction of curved line structures. In medical imaging, it is used to extract
anatomical features such as (centerlines of) blood vessels, e.g. [4,5,7,10].

In this paper, a multiscale method to extract and track guide wires using a
spline minimization approach in a feature image is presented. The influence of the
scale at which the feature is determined, the use of coherence enhancing diffusion
as preprocessing step and specific endpoint detection are studied. The proposed
method has been validated by comparing the results to tracings obtained by
three observers.

2 Methods

In order to represent the guide wire, a spline parameterization is used. For all
experiments in this paper, we used a third order B-spline curve.

To determine the position of the spline in frame n + 1 if the position in
frame n is known, a two-step procedure is introduced. First, a rigid translation
is determined to capture the rough displacement of the spline. Next, a spline
optimization procedure is performed in which the spline is allowed to deform
for accurate localization of the guide wire. These steps can be understood as a
coarse-to-fine strategy, where the first step ensures a sufficiently good initializa-
tion for the spline optimization.

2.1 Rigid Transformation

In order to obtain a first rough estimate of the displacement, a binary template
is constructed based on the position in the present frame. The best location
of this template in the new frame is obtained by determining the highest cross
correlation of the frame with a certain search region in this image (or features
derived from it (section 2.3)). Only rigid translations are considered in this step.

2.2 Spline Optimization

After performing the rigid translation, the spline is optimized under internal
and external forces. The internal constraints are related to the geometry of the
curve and influence the length (first derivative of the B-spline) and the bend-
edness (second derivative of the spline). The parameters for the curvature are
set sufficiently large to avoid strange shapes of the spline and sufficiently small
to ensure that the internal forces only have a small influence on the total spline
energy. For the external forces, the image intensity or a feature image derived
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from it (see section 2.3) is used. The spline contains four or five control points
and one hundred sample points. The spline is optimized using Powell’s direction
set method [8]. In order to have a minimum length of the spline, the energy E is
defined cumulatively for lengths smaller than L, and relatively for larger lengths:

E =
∫ l

0

E(s)
max(l, L)

ds (1)

Here l is the length of the spline. In all experiments in this paper a minimum
length of L = 60 pixels is used.

2.3 External Image Force

Using original images for the matching and optimization steps, the guide wire
can not effectively be tracked due to presence of other objects in the image
and/or due to the low signal-to-noise ratio of the images. Therefore a filter which
enhances line-like structures of the correct orientation is considered. Also, the
use of coherence enhancing diffusion, as a preprocessing step in order to reduce
noise while maintaining line-like structures, is evaluated.

Coherence-Enhancing Diffusion. To reduce the noise in the fluoroscopic im-
ages a nonlinear diffusion technique is used, in which coherent flow-like textures
are enhanced. The diffusion equation is given by

∂tI(x; t) = ∇ · (D∇I(x; t)) (2)

where D denotes a diffusion tensor that can be chosen such that coherent struc-
tures are enhanced [12].
This diffusion tensor depends on the structure tensor M, given by

M = ∇I(x; τ)∇I(x; τ)T , (3)

with eigenvalues µ1 and µ2 (µ1 ≥ µ2) and the corresponding orthonormal eigen-
vectors v1 and v2. The gradient is computed at scale σn =

√
2τ , τ > 0. Using

diffusion based on the structure tensor not only the amount but also the direc-
tion of diffusion can be regulated. Smoothing along the coherence direction v2

with a diffusity λ2 which increases with respect to the coherence (µ1 − µ2)2,
gives an enhancement of the coherent structures in an image. This is achieved
by constructing D from the following system of orthonormal eigenvectors

v1 ‖∇I(x; τ), (4)
v2 ⊥∇I(x; τ), (5)

and eigenvalues

λ1 = α, (6)

λ2 =




α ifµ1 = µ2,

α + (1 − α)exp

(
−C

(µ1−µ2)2

)
else

(7)
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with C ≥ 0 and α ∈ (0, 1) which keeps D uniformly positive definite. Figure 1
shows an example of a frame preprocessed using coherence enhancing diffusion.

Fig. 1. From left to right: The original image and image preprocessed using coherence
enhancing diffusion with t = 5, t = 20 and t = 100.

Feature Image. To determine the optimal spline position, a feature image is de-
rived in which line-like structures are enhanced. The feature image is determined
on the original image and the image preprocessed with coherence enhancing dif-
fusion. Hereto, the eigenvalues λ1, λ2 of the Hessian matrix calculated at scale
σ are considered:

λ1,2(x, σ) =
1
2

(
Ixx + Iyy ±

√
(Ixx − Iyy)2 + 4I2

xy

)
(8)

where Ixy represents the convolution with the scaled Gaussian derivative. On
line-like structures the largest absolute eigenvalue λ1 has a large output. Since
we are interested in dark elongated structures on a brighter background, only
positive values of λ1 are considered; pixels with negative values of λ1 are set
to zero. The feature image is subsequently constructed by inverting this image
since the optimization is based on a minimum cost approach.

To effectively attract the guide wire only to line structures with similar ori-
entation, we also use directional information in the optimization scheme. Hereto,
the inner product between the spline and the orientation of the feature is used
given by

O(x̂i) = λ1(ê2 · x̂i) (9)

where ê2 is the normalized eigenvector corresponding to λ2 and x̂i is the nor-
malized first derivative of the spline in sample point i.

To be sensitive to guide wires of different width, and to reduce sensitivity to
noise, the feature image can be calculated at multiple scales (σ). This can also
be used to enable a coarse-to-fine optimization strategy.

2.4 Explicit Endpoint Detection

After the fitting procedure, the endpoint of the spline is not necessarily posi-
tioned on the endpoint of the guide wire. In order to determine the endpoint,
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the length of the guide wire is increased at the tip by setting L equal to l + ∆L,
see Equation 1, while fixing the tail position. This procedure is carried out iter-
atively such that the endpoint of the spline is advanced beyond the endpoint of
the guide wire. From the final spline position, a graph is constructed presenting
the likeliness P (i) of each sample point i on the spline to represent the guide wire
endpoint. Two criteria are used to determine this likeliness, viz. the proximity
to the previous endpoint position, and the derivative of the feature image in i
along the spline:

P (i) = exp

(
−||∆xn(i),n−1|| − ||∆xn−1,n−2||

σprox
2

)
· ∇F (i)(σgrad) (10)

where the first term compares the displacement ∆xn(i),n−1 of a candidate end-
point i in the current frame with the displacement ∆xn−2,n−1 in the previous
frame, favoring similar displacements using a Gaussian weigthing function with
standard deviation σprox. The value of σprox has been obtained from analysis
of the changes in displacements that were observed in a large number of im-
age sequences. ∇F represents the gradient of the feature image. In order to be
robust to noise, a coarse-to-fine approach is used. First at a large scale σgrad

the gradient maximum is determined whereas precise localization is achieved at
smaller scales.

3 Evaluation

The method was applied on ten image sequences, with a sequence length between
14 and 50 frames, with a total of 267 frames. The image series were acquired
on a H5000, H3000 and a BV5000 X-ray fluoroscopy system (Philips Medical
Systems, Best, the Netherlands). Only J-tipped guide wires were used during
the interventions.

To evaluate the automatic method, a golden standard is constructed for every
dataset. Therefore, three observers have manually outlined the guide wire in
every image. This process was repeated after two weeks to limit the dependence
between tracings. These six manually obtained paths are averaged to determine
the average observer path C (“golden standard”), to which all individual paths
are compared. Intra-observer variability can then be measured and inter-observer
variability is defined as the distance betweeen individual tracings of observers
and the golden standard. Likewise, to determine the accuracy of the automated
method the distance between the determined spline and the golden standard is
measured. A method to construct the average path C and a definition of the
distance between two paths is required, for which more details can be found
in [1].

4 Results

The performance of the method is evaluated on feature images calculated on both
the original images and images preprocessed with coherence enhancing diffusion.
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Also the influence of explicit endpoint detection is investigated. An example of
the tracking results is shown in Figure 2. All parameters in the experiments were
kept fixed for all image sequences. Coherence enhancing diffusion was applied
with C = 1, α = 0.001, and the evolution was stopped at t = 20. The feature

Fig. 2. An image sequence of the thorax with in white the parametrized spline rep-
resenting the guide wire. The method was applied on the feature image in which the
eigenvalues of the Hessian matrix were calculated with σ = 1.5.

enhancement step is carried out on three different scales (σ = 1, 1.5 and 3 pixel
units) which implies that a total of twelve possibilities are investigated. For the
endpoint detection two scales are used (σgrad = 3 and 1.5 pixels) and σprox is set
to 7 pixels. Table 1 shows the intra and inter-observer variability and the results
of the method without coherence enhancing diffusion as preprocessing step.

The mean distance is the average distance between the corresponding parts of
the splines as described in the previous section. The tip distance is the distance
between the endpoint of the golden standard and the endpoint of the automatic
determined spline. Between the brackets, the maximum distance is represented.
It can be observed from Table 1 that best results are obtained at a scale σ = 1.5
pixel units. With these settings, the mean error of the automatic method (0.92
pixels) is smaller than the inter-observer variability (1.04 pixels). Moreover, the
method only requires initialization in one frame, and reproducibility was better
than intra-observer variability.

Owing to motion blur, the guide wire can sometimes become invisible in a
number of sequences, which causes the spline to be incorrectly placed. At a scale
σ = 1.5 pixel units the number of outliers in our evaluation was ten frames
(out of 267 frames) occurring in four sequences (out of ten sequences). These
failures appeared mostly in a single frame. Without manual intervention, the
guide wire was tracked correctly in the subsequent frames. For the tip distance
we can observe that the intra- and inter-observer variability (1.09 and 1.46 pixels,
respectively) is smaller than the error by the automatic tracking method (4.38
pixels) for σ = 1.5. This error improved to 3.07 pixels by applying explicit
endpoint detection, however the mean distance increased slightly in this case.
Since the pixelsize is approximately 0.4 mm, the tip error is smaller than 1.3
millimeters.
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Table 1. The mean intra- and inter-observer variability and the mean result of the
automatic method using the Hessian feature filter with and without specific endpoint
detection.

Mean distance Tip distance Mean distance Tip distance

[pixels] [pixels] with Endpoint with Endpoint

Intra observer 0.66 [1.46] 1.09 [1.77]

Inter observer 1.04 [2.19] 1.46 [2.44]

σ = 1.0 1.26 [3.10] 5.81 [9.35] 1.22 [2.15] 4.20 [8.56]

σ = 1.5 0.92 [1.49] 4.38 [8.20] 1.13 [2.02] 3.07 [4.20]

σ = 3.0 1.05 [1.47] 5.70 [10.92] 1.29 [2.15] 3.80 [5.77]

Table 2 shows the results obtained using the feature image calculated with the
coherence enhancing diffusion method as a preprocessing step prior to enhance-
ing line-like structures. We can observe that the distance between the automatic
determined spline and the golden standard is smaller than the inter-observer
variability for all three different scales. The number of total outliers for this
method was 10 frames out of 267 frames for σ = 1.5. The failures appeared
mostly in a single frame, for example due to motion blur in the image sequence.
Results did not degrade significantly when altering the scale in the step of en-
hancing the guide wire. Specific endpoint detection improved the error for the
tip distance, but it slightly increased the mean distance.

Table 2. The mean result of the automatic method using the coherence enhancing
diffusion filter with and without specific endpoint detection.

Mean distance Tip distance Mean distance Tip distance

[pixels] [pixels] with Endpoint with Endpoint

σ = 1.0 1.04 [1.74] 4.95 [12.50] 1.31 [2.32] 3.60 [5.88]

σ = 1.5 0.96 [1.67] 4.33 [6.18] 1.13 [2.16] 3.26 [5.26]

σ = 3.0 0.92 [1.50] 5.33 [11.89] 1.13 [2.15] 4.01 [7.48]

5 Discussion

A method has been developed to track the guide wire automatically in fluoro-
scopic guided interventions. During these interventions, 12.5 frames per second
are acquired, so manual outlining is not an option. The method is based on a
spline optimization in an image where line-like structures with correct orientation
are enhanced, with or without coherence enhancing diffusion as a preprocessing
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step and with or without explicit endpoint detection. In order to assess whether
the proposed method is sufficiently accurate, tracings of observers were acquired
in 267 frames. Both with and without preprocessing, the accuracy of spline lo-
calization was better than inter-observer variability and the method detected
the guide wire correctly in 96% of the frames. Outliers occurred mainly in one
single frame owing to motion blur. Given the high temporal resolution (12.5
frames/second) missing one frame does not hamper the interventional radiolo-
gist. In fact, in most of these frames the guide wire is not visible to the radiologist
either. The tip of the guide wire could be localized within an accuracy of ap-
proximately 1.3 mm, using explicit endpoint localization. Whereas the use of
coherence enhancing diffusion did not significantly improve the accuracy if the
proper scale was used for enhancing line-like structures, the results were more
robust with respect to changing the scale parameter. This indicates that the use
of coherence enhancing diffusion is useful for robustness in clinical practice.
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