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Abstract. Surgical navigation for abdominal organs has difficulties, such as
dynamic deformation, compared with other organs (i.e. brain, bone).  Organ de-
formations prevent surgical navigators from performing accurate navigation
based on preoperative information. We are studying on a method for deforming
preoperative organ models so that the models are matched to intraoperative
shapes.  The method is based on the ICP (iterative closest point) algorithm and
modal representation of shape deformation.  In this paper, we describe prelimi-
nary experiments for rigid parameter estimation in the entire registration proc-
ess, by using range data and surface model reconstructed from X-ray CT of a
liver phantom.

1 Introduction

One of the difficulties in surgical navigation based on preoperative image information
is intraoperative deformation of the organs consisting of soft tissues. In neurosurgery,
for instance, “brain-shift” is recognized as an essential reason of navigation errors. A
simulation of brain deformation was reported by Ferrant [1], based on the finite ele-
ment method (FEM) for reduction of errors in neurosurgical navigation. In hepatic
surgery, however, the shape of liver deforms more dynamically due to patient respi-
rations, posture changes, and surgical operations. Those intraoperative liver deforma-
tion includes so-called large displacement, and therefore it requires much more com-
putation cost for numerical simulation based on non-linear FEM. Cotin [2] and
Picinbono [3] reported development of a surgical simulator based on fast computation
technique of non-linear FEM to show realistic liver deformation of large displace-
ment. For our purpose of surgical navigation, however, relationship between force
and displacement is not important, but deformation of preoperative models for regis-
tration to intraoperative shape is indispensable for surgical guidance. Herline [4]
reported rigid liver surface registration for such purpose. In that literature, many
methods for deformation description can be found, including parametric description
for non-rigid tracking of objects, and for animation [5-8]. In such parametric descrip-
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tions, generally, shape deformation should be represented with fewer parameters for
faster operation. Masutani [9] reported a new method of modal representation of liver
deformation applied for intra-operative non-rigid registration in image-guided liver
surgery. In that literature, several experiments with synthetic range data were per-
formed based on error factor analyses. In this paper, we present detailed a new
method of rigid-body registration using ridgelines extracted from range images.

2 Materials and Methods

2.1 Liver Phantom and Its Reconstructed 3-D Model

We made a full-scale model of a liver with silicone rubber. Fig. 1. shows the liver
phantom model. The size of the phantom is about 210 mm × 180 mm, and the thick-
ness is about 100 mm to 200 mm. We took a series of X-ray CT scan of the phantom
and reconstructed the data. Fig. 2. shows the reconstructed 3-D model of the liver
phantom.

Fig. 1. A silicone rubber phantom model of a liver. The shape
of the liver was segmented from a series of abdominal X-ray
CT images

Fig. 2. 3-D reconstructed model of the liver phantom shown in
Fig. 1. Shape data of the phantom was acquired by X-ray CT
scanning in 0.9 mm thick

2.2 Range Images and Surface Data Acquisition

We use a range sensor based on space encoding method. The sensor has 0.5 mm
accuracy, and its view area is about 200 mm × 200 mm at 300 mm away from the
sensor. We can take a picture and a range image of a view with the same optical axis
in one second. Fig. 3. shows a range image of the liver phantom model, and Fig. 4.
shows its photo image. The resolutions of the sensor are 512 × 240 pixels at view
plane, and 8 bit (256 scale) in depth direction. We also obtain 3-D coordinate values
at each point of a view plane. The origin point of the coordinate system is 300 mm
Away from the sensor in depth direction. Gray values of a range image represent the
depth at each point; the origin plane is black, and the nearer a point, the brighter the
color of the point become.

2.3 Ridgeline Extraction from Range Images

Fig. 5. shows the conceptual diagram of our system . Ridgeline extraction is as fol-
lows.
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Fig. 3. A range image of the phantom obtained with range
sensor from the distance of  220 mm

Fig. 4. A photo image of the phantom taken at the same time
with a range image (Fig. 3)

Fig. 5. Conceptual dia-
gram of the system

Preparation of Range Images
We apply a normal distribution gauss function filter to range images to reduce noises
and smooth the images (1).
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where t represents the radius of the gauss function filter.

Curvature Computation
We compute curvatures of each point using its gray values after gaussian filter. Here
we define Lx as the first differential value of gray value L, and also define Ly, Lxx, Lxy,
and Lyy in the same manner, then we can compute the principal curvatures (2).
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Classification of Shapes
We can classify the shape of each point using the principal curvatures. The classifi-
cation is carried out along the shape index S, which represents the ratio of principal
curvatures and its value is between zero and one (3). Table 1. shows how shapes
change according to the value of S.
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Table 1. The Classification of Shapes with the value of S

S Shape type
0 to 0.125 Pit

0.125 to 0.375 Valley
0.375 to 0.625 Saddle
0.625 to 0.875 Ridge

0.875 to 1 Peak

We also compute the curvedness R, which represents the magnitude of the curva-
ture at each point (4).
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Ridgeline Extraction
We extract ridge area weighting curvedness R with the shape index S (5).
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Fig. 6. shows the area for weighting R.

Fig. 6. Weighting factor for the curvedness R along with the shape index S
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2.4 Registration Method

We use a curve matching method with ICP (Iterative Closest Point) algorithm to
register these extracted ridgelines. Before registering measured surface data with
model data, we compute ridgeline of the model. Fig. 7. shows the ridgelines of 3-D
reconstructed model. After the ridgeline registration, we register measured surface
point data to the surface points of model data with ICP algorithm.

Fig. 7. Ridge areas of 3-D
reconstructed model of the
phantom

3 Results

3.1 Ridgeline Extraction from Range Images

We extract a ridgeline from the range image shown at Fig. 3. The ridgeline locates at
the front side of the liver phantom model. The parameters to extract this are gaussian
filter radius, weighting area limitation. We use 7 as gaussian filter radius for equation
(1), and 0.01 as weighting area limitation number for equation (5). Fig. 8. shows the
result of extracted ridgeline image.

Fig. 8. A ridgeline extracted from the range image of Fig. 3

Fig. 9. Result of ridgeline regis-
tration. (a)Before registration,
(b)After registration

(a)      (b)

3.2 Ridgeline Registration Result

Before the ridgeline registration, RMS error between the measured surface point data
and the surface data of model was 36.83 mm. After the ridgeline registration, RMS
error became 10.24 mm. Fig. 9. shows the locations of measured data and the model
data.
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3.3 Point Based Registration

After the ridgeline registration, we apply measured point data to ICP algorithm to
register these data to the surface of the model. The number of measured points was
1528, and that of the model was 5479. The algorithm converged at 11th iteration, and
the final RMS error was 1.68 mm. Fig. 10. shows the final location of measured sur-
face and the model.

Fig. 10. Registered range data of the phantom with 3-
D reconstructed model of the phantom

4 Discussion

One of the most important properties of our method is that our system is independent
to particular points of organs. To achieve the registration, we prepare ridgeline based
posture estimation. This method is not only for the use of celiotomies, but also endo-
scopic surgery. Our purposes of surgical navigation system development include
guidance of surgical robots. One of the potential advantages of such robotic surgery is
that surgical operations can be carried out with minimal deformation of organs.
Therefore, robotic surgery with navigational information based on our registration
method is expected to realize more precise and minimally invasive surgeries.

5 Summary

For intra-operative rigid registration in image -guided liver surgery, a new method for
surface measurement based registration was proposed. By using a liver phantom
model, the registration error for frontal displacement was aligned. Toward feasibility
study in clinical environment, studies using deformed phantom, and collection of
intraoperative data are currently in progress.
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