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Abstract. Modern multislice X-ray CT scanners provide high-resolution
volumetric image data containing a wealth of structural and functional
information. The size of the volumes makes it more and more difficult
for human observers to visually evaluate their contents. Similar to other
areas of medical image analysis, highly automated extraction and quan-
titative assessment of volumetric data is increasingly important in pul-
monary physiology, diagnosis, and treatment. We present a method for
a fully automated segmentation of a human airway tree, its skeletoniza-
tion, identification of airway branches and branchpoints, as well as a
method for matching the airway trees, branches, and branchpoints for
the same subject over time and across subjects. The validation of our
method shows a high correlation between the automatically obtained
results and reference data provided by human observers.

1 Introduction

Quantitative assessment of intrathoracic airway trees is critically important for
objective evaluation of bronchial tree structure and function. Several approaches
to three-dimensional reconstruction of the airway tree have been developed in
the past. None of them, however, allows direct comparison of airway trees across
and within subjects. Functional understanding of pulmonary anatomy as well as
the natural course of respiratory diseases like asthma, emphysema, cystic fibro-
sis, and many others is limited by our inability to repeatedly evaluate the same
region of the lungs time after time and perform accurate and reliable position-
ally corresponding measurements. Consequently, quantitative analysis of disease
status and its progression and regression, as well as longitudinal physiologic
and functional analyses are impossible. In this paper, we describe an integrated
approach to quantitative analysis of intrathoracic airway trees and inter-tree
matching using high-resolution volumetric computed tomography (CT) images.
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2 Methods

The reported system consists of three main blocks: airway tree segmentation,
skeletonization and branchpoint localization, and branchpoint matching. Each of
these blocks is described separately in the following subsections.

2.1 Airway tree segmentation

The airway segmentation takes advantage of the relatively high contrast in CT
images between the center of an airway and the airway wall. A seeded region
growing is employed starting with an automatically identified seedpoint within
the trachea. New voxels are added to the region if they have a similar X-ray
density as a neighbor voxel that already belongs to the region. The similarity
measure is designed so that the region growing can overcome subtle gray level
changes (like for example caused by beam-hardening). On the other hand a
“leaking” into the surrounding lung tissue has to be avoided. This is realized
by setting an upper limit of allowed difference in gray value for two neighboring
voxels. Our region growing algorithm utilizes a breadth-first search [1], which
allows a fast and memory-friendly implementation. After airway segmentation,
a binary subvolume is formed that represents the extracted airway tree.

2.2 Skeletonization

The binary airway tree formed in the previous step is skeletonized to identify
the three-dimensional centerlines of individual branches and to determine the
branchpoint locations. A sequential 3D thinning algorithm reported by Palágyi
et al. [2] was customized for our application. To obtain the skeleton, a thinning
function deletes border voxels that can be removed without changing the topol-
ogy of the tree. This thinning step is applied repeatedly until no more points can
be deleted. The thinning is performed symmetrically and the resulting skeleton
is guaranteed to lie in the middle of the cylindrically shaped airway segments.

After completion of the thinning step, the skeleton is smoothed, false branches
pruned, the location of the branchpoints identified, and the complete tree con-
verted into a graph structure using an adjacency list representation. Fig. 1 shows
a close-up view of a skeleton produced by the algorithm. Skeleton branchpoints
are identified as skeleton points with more than two neighboring skeleton points.

2.3 Branchpoint matching

The goal of branchpoint matching is to find anatomically corresponding branch-
points in two different airway trees. Two types of matching are of utmost interest:
intra-subject and inter-subject matching. In the first case, trees coming from dif-
ferent scans of the same subject are matched. In the second case, two or more
trees are matched originating from different subjects. The latter case only allows
matching of the primary branchpoints (the first three or four generations). These
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Fig. 1. Example of segmentation and skeletonization applied on an airway tree phan-
tom.

primary branchpoints are frequently (although not universally) identical among
humans. The branching pattern of higher airway generations varies from subject
to subject, much like fingerprints do.

In the mathematical sense, an airway tree is a graph (rooted tree). The
branchpoints correspond to vertices and the airway segments correspond to
graph edges. There are many graph-theoretic approaches to graph matching.
A widely used method for matching hierarchical relational structures is to map
them onto an association graph and then find its maximum clique [3], with many
variations existing [4, 5]. To the best of our knowledge, only one application of
the method was employed for matching airway trees [6].

A disadvantage of finding the maximum clique is its NP-completeness [7].
This means that for all but small graphs, an exhaustive search is not feasible.
There are two basic ways of decreasing the computational complexity: mini-
mizing the overall problem size or splitting the problem into several smaller
subproblems. Our method uses both of these strategies.

Terminal branches that are shorter than a predefined length are mostly spu-
rious (caused by inaccuracies in the segmentation and skeletonization processes)
and are pruned out of the tree in the late stages of the skeletonization process.
Additionally, the major vertices (branchpoints) are identified. A vertex is con-
sidered to be major if it has at least N vertices hierarchically underneath it, and
if these vertices have a spatial extent that exceeds a predefined threshold. The
spatial extent is defined as the maximum of the three differences xmax − xmin,
ymax − ymin, and zmax − zmin. Next, the two trees undergo a rigid registration,
using the major branchpoints as landmark points. The major branchpoints are
matched using an association graph. After that, a separate association graph
is created for every subtree starting from a set of matched major branchpoints.
When creating the association graphs for the sub-trees, only vertex-pairs that lie
relatively close to each other are considered. This reduces the size of the associ-
ation graph. Edges are added to the association graph based on the topological
and geometrical distances, inheritance relationships, and geometrical length and
directions. For all of these measures tolerances are allowed. For the topological
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distance, a tolerance of ±2 segments is allowed. A parent–child and a child-
parent relationship are regarded equivalent if the geometrical distance between
the two branchpoints does not exceed 2 mm in both trees. This introduces tol-
erance for cases where two branches are very close to each other, and — due to
tolerances in segmentation and skeletonization — the order of two branchpoints
is swapped for the two trees. For the length and angles of segments, tolerances of
±20% and ±0.2 radians are allowed, respectively. Allowing for these tolerances
introduces robustness against false branches and missing branches. In a final
step, the maximum clique is found for every association graph.

Fig. 2. Result of branchpoint matching for in vivo scan (TLC and FRC), total view
and detail view of same matching. The two trees are shown in bold black and bold
gray, the matchings are represented by fine black lines.

3 Experimental Methods

To test the method, CT scans of two different physical phantoms and in vivo
scans of the human airway trees were used.

3.1 Data

Two different phantoms were available. The first phantom is a hollow rigid plastic
phantom (Fig. 3 a), made by a rapid prototyping machine. The phantoms geom-
etry is based on real human data. Consequently, a human-like airway tree with
parameters known to a high degree of accuracy is available. This phantom con-
sists of about 100 airway tree branches with about 50 branchpoints (not counting
the terminal points of airway segments). The second phantom is a hollow rubber
phantom (Fig. 3b) made from a human airway tree cast. This second phantom
is more complex, consisting of about 400 branches and 200 branchpoints. The
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rubber phantom was scanned in a Perspex container filled with potato flakes
to resemble texture of surrounding pulmonary parenchyma. Since this rubber
phantom was not built using a numerical rapid prototyping approach and it is
not rigid, exact branchpoint locations were not known.

The rigid phantom was CT-scanned at three different angles (0◦, 10◦, and
25◦) by rotating it on the scanner table (rotation around one axis). The rubber
phantom was scanned twice. It was rotated in a similar way as the rigid phantom.
The rotation angle was 8◦ in this case. The pixel size was 0.49×0.49×0.60 mm3

for the rigid phantom and 0.68× 0.68× 0.60 mm3 for the rubber phantom. The
volume sizes were 512×512×500–600 voxels.

(a) (b)

Fig. 3. Phantoms. a) Rigid phantom, b) Rubber phantom. In both phantoms, all the
airway segments are hollow.

Two scans were available for each of 18 in vivo subjects for a total of 36
volumetric high resolution in vivo CT scans. For each subject, a scan close to
total lung capacity (TLC) was acquired (at 85% lung volume), and a scan close
to functional residual capacity (FRC) was acquired (at 55% lung volume). All in
vivo scans have a nearly isotropic resolution of 0.7×0.7×0.6 mm3 and consist of
500–600 image slices, 512×512 pixels each. In two of these 18 CT data pairs (in
4 volumes, two from a diseased and two from a normal subject), branchpoints
were manually identified by human observers and were used for quantitative
validation.

3.2 Validation indices

The validation was done in two parts. First, the reproducibility of the segmen-
tation and skeletonization was tested. Next, the accuracy of the branchpoint
matching was examined.

The reproducibility of the segmentation and skeletonization was measured by
comparing the lengths of corresponding airway segments between the different
scans of the two phantoms.
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The accuracy of the branchpoint matching was measured by comparing the
results obtained using the automated method with the results of manual match-
ing. The manual matching was done separately and independently by six different
observers. A matched pair of branchpoints was only included in the independent
standard if it was matched by a majority of human observers involved.

4 Results

Our method above was successfully applied to all 5 phantom and 36 human
datasets. In all cases, the method generated reliable trees, well-positioned skele-
tons and branchpoints, and provided consistent intra-subject matches. Quanti-
tative validation results are reported below. Fig. 4 gives comparison of airway
segment lengths. The p-values are calculated by analysis of variance (ANOVA),
using an F-statistic, with the null hypothesis that the mean values are equal.
The means and standard deviations for the segment length differences were:

Rigid phantom, 0◦ versus 10◦: µ1 = 0.03 mm σ1 = 0.86 mm
Rigid phantom, 10◦ versus 25◦: µ1 = −0.07 mm σ1 = 2.45 mm
Rigid phantom, 0◦ versus 25◦: µ2 = −0.31 mm σ2 = 1.96 mm
Rubber phantom, 0◦ versus 8◦: µ1 = 0.24 mm σ1 = 1.04 mm

Table 1. Results for accuracy assessment of branchpoint matching.

rigid phantom
0◦ vs. 10◦

in vivo
normal

in vivo
diseased

Correct matches: computer-
determined vs. independent
standard

38/39 (97%) 11/13 (85%) 17/19 (89%)

Wrong matches 0 1 0
Missing matches 1 1 2
Total computer matches 47 46 31

Table 1 lists the results for the branchpoint matching. The segmentation,
skeletonization, and matching processes execute very fast on a 1.2 GHz AMD
Athlon based Linux system. For an image volume containing 512 × 512 × 524
voxels, the segmentation step finishes in less than one second, the complete skele-
tonization, smoothing, and graph-generation process executes in about 48 sec-
onds, and matching of two trees containing 150–200 branchpoints each requires
one to two seconds. Consequently, a pair of trees can be analyzed and matched
in about 100 seconds using our moderate-speed hardware.
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Fig. 4. Segment length comparison for rigid phantom and rubber phantom.

5 Discussion

The comparison of segment lengths as determined in phantoms showed high cor-
relation between the reference data and the computer-determined data (Fig. 4).
Agreement between segment lengths identified in the 0◦ and 10◦ rotated phan-
toms and for the 10◦ and 25◦ rotated phantoms was very good. For 0◦ and 25◦,
somewhat larger differences between the lengths were observed. This is mainly
caused by a few outliers likely to be associated with the relatively large change
of the CT scanning conditions and is not practically important as 25◦ differences
between long-axis orientations of human subjects in a CT scanner is unlikely.

The comparison of computer-matched branchpoints and hand-matched branch-
points shows a high matching rate in the phantom cases (97%), as well as in
the human data (85–89%). Notice that the human data contained a relatively
high number of non-matching branches in the pairs of matched TLC and FRC
datasets. Indeed, there is a considerable difference in the number of branches
and in the identifiable parts of the tree-structures between FRC and TLC scans
due to changes of lung volume and consequently lung geometry.

When comparing the matches identified manually and automatically, it is
important to distinguish between missing and extra matches. Comparing be-
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tween these two classes only, a missing match is preferred over an extra match
since no incorrect information is introduced. As can be seen in Table 1, only a
single incorrect extra match was observed in the tested in vivo datasets. At the
same time, a total of only four missing matches occurred - an encouraging sign
considering that 77 correct matches were identified overall in the in vivo datasets
and additional correct matches were found using the computer approach that
were not identified manually.

The current implementation is not free of several shortcomings. The seg-
mentation step is currently limited to the first 6 to 8 generations of airway
tree segments. While substantially better than any of our previously reported
approaches, additional improvements are under development. The branchpoint
matching process is under review with a goal to avoid the small number of mis-
matches present in the current study. Needless to say, additional datasets are
manually analyzed by human observers to form a larger and more representative
set of independent standard data for future validation studies.

6 Conclusion

We presented an approach that allows reliable segmentation, skeletonization,
and branchpoint matching in human airway trees. When tested in two kinds
of physical phantoms derived from casts of human airway trees and in 36 in-
vivo acquired airway trees of normal subjects as well as in those suffering from
various pulmonary diseases, the method’s performance was incomparably faster
than manual analysis and yielded close-to-identical results.
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