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Abstract. In this paper we present an approach to the problem of mod-
elling long, flexible instruments, such as endoscopes or catheters. The
idea is to recursively enumerate all possible shapes and subsequently
filter them according to given mechanical and physical constraints. Al-
though this brute-force approach has an exponential worst-case complex-
ity, we show with a typical example that in case of tubular structures
the empirical complexity is polynomial. We present two approximation
methods that reduce this bound to a linear complexity. We have per-
formed accuracy, runtime and robustness tests in preparation for first
clinical studies.

1 Introduction

Flexible instruments, like endoscopes or catheters, play a central role in the field
of minimally invasive surgery. They provide access to even remote operating sites
within the human body through natural body openings or small incisions. How-
ever, performing endoscopic procedures or catheterizations presents a challenge
to the physician. Though an endoscope has a CCD camera inside its tip that
can be actively moved around by the physician, it is still difficult to derive the
3D position of the tip from a 2D video image.

In recent years numerous attempts have been made to guide endoscopic
procedure by determining the position and orientation of the instrument’s tip.
Solomon et al. (see [1]) uses position sensors attached to the tip, Bricault et al.
[2] introduced the idea of analyzing only the video images and Mori et al. [3] sig-
nificantly improved this approach by achieving continuous tracking independent
of the presence of strong features in the image. The authors report a processing
time of 6 second per frame. Our group has recently presented a new approach to
the problem [1]. We have suggested the use of a flexible endoscope model to guide
a “blind” biopsy (TBNA). The model has been used in a pre-operative planning
phase to derive a set of parameters that describe how to handle the endoscope in
order to manoeuvre the biopsy needle inside the target. This approach requires
no computer in the operating room and is inherently real-time.

A dynamic endoscope model based on multibody mechanics has been pub-
lished by Ikuta [4] as part of a virtual endoscopy simulator with force sensation.
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Models for catheters have been published by vanWalsum et al. [5] who uses a
snake-like approach and Anderson et al. [6] who uses FEM analysis.

In this paper we present a new deformable model for flexible instruments
that is accurate, fast and robust. For a given insertion depth and target site,
the model calculates the shape of the instrument by considering its mechanical
constraints and physical environment.

2 Model Description

The model described in this paper consists of the following three components:

1. Discrete representation of the instrument.
2. Generator that enumerates, based on (1), all possible shapes considering

given internal mechanical constraints.
3. Filter that selects from (2) only those shapes that comply with the instru-

ment’s physical constraints.

Note, that depending on the filter selectivity, more than one solution may be
found. A natural way to represent a flexible tube like structure is as a chain
of rigid links, interconnected by discrete ball and socket joints. A link is rep-
resented by a cylinder of certain length and diameter. A joint connects two
adjacent links. If a joint restricts a link to a finite number of positions (joint
positions) with respect to its predecessor, we call it a discrete joint. Link length
and joint range determine the maximum flexibility of the endoscope. The me-
chanical constraints like varying diameter, rigid sleeves and maximum flexibility
are modeled by determining for each link of the chain a suitable link diameter,
length and maximum joint range.

Let L be the set of all links and L = P(L) the power set of L. This system
can formally be described as the concatenation of two functions:

I = ffilter ◦ fgen(L) (1)

with fgen : L → L the generator, ffilter : L → L the filter and I ⊂ L the resulting
instruments. Algebraically, the generator can be described as the concatenation
of two filter functions operating on L:

fgen(L) = fu,v,θ
joint ◦ fs,N

link (L) (2)

with u the number of rotation axis and v the number of discrete rotation steps
of angle θ for each axis. The number of possible positions between two adjacent
links is uv and the joint range is vθ. The parameter s ∈ L denotes the start link
and N the number of links (desired instrument length). Filter flink controls the
length and size constraints and fjoint controls the flexibility.
Function ffilter is given as a concatenation of a geometry, tube and energy filter:

ffilter = fα,β,p
energy ◦ ftube ◦ fgeom (3)
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with α, β two material constants for bending and torsion and p the filter selec-
tivity. Filter fgeom filters those links that collide with the organ wall and ftube

represents a simple bounding tube filter, which based on an insertion protocol
defines a ROI in case of the existence of bifurcations. Finally, filter fenergy finds
the global minima (for p = 1) regarding the instrument’s deformation energy:

fenergy = {A ∈ L | (Eκ(A) + Eτ (A)) = min
p

} (4)

with min
p

reading “among the p smallest values”, Eκ the internal bending energy

and Eτ the internal torsion energy of an instrument. The two discrete energy
terms are given by:

Eκ(A) =
N−1∑
i=1

α κ(A, i)2 and Eτ (A) =
N−1∑
i=1

β τ(A, i)2 (5)

with α the amount of resistance to bending, κ(A, i) the angle between link i and
i + 1 of an instrument A, β the amount of resistance to twisting and τ(A, i) the
torsion between link i and i + 1 of an instrument A.

The physical basis for this model is that we regard an endoscope as an elastic
structure, which obeys Hooke’s law. Although our model reflects quite well the
instrument’s mechanical structure, it disregards external factors like organ de-
formation, friction etc. Instead, we accept some degree of fuzziness regarding the
exact tip location and try to cover this fuzziness by computing a set of possible
tip shapes. A natural way to expand the solution set of our model, is to relax
the selectivity of filter fenergy in the sense that it determines the shapes of the
p > 1 smallest energies, rather than just one shape of minimum energy.

2.1 Implementation

We introduced the concept of modelling a flexible instrument by enumerating all
possible shapes and filtering the result according to given constraints. A natural
way to implement this concept is to recursively create a spatial tree (depth-
first search backtracking), whose growth is constraint according to a set of filter
functions. A spatial tree is an ordinary tree data structure, where each node
represents a joint in 3D space. Each edge that connects a node with its child
represents a link in 3D space. Each path from the root to a leaf represents a
chain of links and therewith a flexible instrument. The entire spatial tree, so all
path from the root to the leafs represent the instrument’s full workspace under
the given constraints.

A link is represented by a coordinate system attached to a cylinder with
length c and diameter d. The coordinate system is attached to the cylinder, in a
way that it’s z-axis is the centerline of the cylinder. The cylinder’s bottom and
top bases lie in the z = 0 and z = c plane.

An algorithm fgen that creates such a spatial tree, takes a link l ∈ L as input,
attaches uv links to l and recursively calls fgen for each attached link:

fgen(l) = fgen(Ri,j lT(c)) for i = 1, . . . , u , j = 1, . . . , v (6)
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Fig. 1. Measured complexity of a catheter inserted into a brain artery. Left: Naive
method. Right: Same data set using (n, k)- and (u, v)- approximation. Center: Fourth-
order polynomial model for the naive method. Linear model for the approximation.

with T(c) a translation matrix that moves l a distance of c mm along its main
axis towards the link end and Ri,j a rotation matrix that rotates l into the new
position. The rotation matrix is given as an entry in a pre-computed look-up
table of u columns and v rows:

Ri,j = R(ri, j θ) for i = 1, . . . , u , j = 1, . . . , v (7)

with jθ the rotation angle and ri the i-th rotation axis. For example for u = 9:

ri ∈
{

(x y 0)T | x, y ∈ {−1, 0, 1}
}

(8)

2.2 Complexity

We propose to create a spatial tree to enumerate all shapes an endoscope can
take, given a start link and a maximum number of N links. The time and space
complexity for this naive approach is O((u v)N ).

However, depending on how much the growth of the spatial tree is constraint
by the filter functions, the practical complexity, given a real anatomy, is more
feasible. Especially tubular structures such as the tracheobronchial tree and the
vasculature greatly limit the growth of the tree. The following experiment con-
firms this hypothesis: For a fix start position, we use our flexible instrument
model (u = 9, v = 1) to calculate a catheter of length N, inserted into a brain
artery. We do this 31 times, for N = 1, . . . , 31. For each calculation we count the
number of recursive calls needed to enumerate all possibilities, given the geom-
etry and energy filter. As shown in Fig. 1 a fourth-order polynomial can be fit
(least squares) to the resulting curve, indicating that the real complexity for this
anatomy is O(N4). For this naive method, 17 links could be computed in less
than one second on a Pentium 4, 1.3 GHz processor. The second pair of curves
shows the complexity after activation of two approximation methods described
in the following two sections.
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2.3 (n, k)-Approximation

We have shown with a typical example that the actual complexity appears to
be polynomial (O(N4)) for tubular structures, instead of exponential. We have
also shown that for a considerable number of links n << N computation can
be done in real-time, given off-the-shelf PC hardware. A straight forward idea
for accelerating the computation, is to compose an instrument of length N from
several instrument segments of length n.

The idea is, to calculate an instrument of length N , by connecting together
�N

k � segments of length k. Each segment of length k is obtained by simply
taking the first k links of an “sub-instrument” of length n. The start link of
each sub-instrument is given by the k-th link of the previous sub-instrument.
All root-to-leaf paths of a sub-instrument’s spatial tree can be regarded as a set
of “tentacles”, that reach out to explore the environment ahead. Formally:

I(s, N) =
� N

k �⋃
i=1

Ii(si, n)[0, . . . , k − 1] with s0 = s, si = Ii−1(si−1, n)[k] (9)

I(s, N) is the resulting instrument with start link s and length N and Ii() the
i-th “sub-instrument”. The notation I()[i], resp. I()[i, . . . , j] denotes the i-th,
resp. i-th to j-th link (head to tip) of instrument I. The new complexity is:

O

(⌈
N

k

⌉
(u v)n

)
≤ O

(
(u v)N

)
(10)

Fig. 2 top right shows an example with n = 16 and k = 2. It shows as an
intermediate result the first 13 segments, which means that 26 links out of N =
44 have been computed. For the bottom figure n = 20 and k = 4. To take
account of the frictional forces acting on the endoscope’s tip, we set p = 7 (eqn.
4) for the last segment and p = 1 for all others.

2.4 (u, v)-Approximation

We now describe a technique to further speed up the computation. It is based
on the observation that the energy filter favors configurations with many small
joint angles instead of a few big angles. In other words it tends to distribute
bending on many joints, using a small angle for each joint. As a consequence
the dispersion of all angles tends to be small. This is particularly true for short
tentacles of length n << N used in the (n, k)-approximation scheme. The idea
now is, to constrain for each execution of the model the maneuverability of each
joint to only one possible angle and to stepwise increase this angle between
subsequent executions:

Ih(s, n, j) for j = 1, . . . , v with fgen(l, j) = fgen(Ri,j lT(c)) for i = 1, . . . , u (11)

with Ih() the “sub-instrument” of equation 9 extended by a parameter j. Note,
that a 0◦ angle is included in the u principal directions. The resulting configura-
tion is the one with minimum energy among the v executions of Ih(). The new
complexity is given by:
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O

(⌈
N

k

⌉
un v

)
≤ O

(⌈
N

k

⌉
(u v)n

)
(12)

Fig. 1 shows a linear complexity for N = 32, n = 10, k = 5, u = 9, v = 20, θ = 2◦.

3 Experiments

3.1 Model Calibration and Validation

Objective: We describe an experiment to determine the intrinsic model param-
eters. The idea is, to measure the center line of a real endoscope inserted into
a calibration phantom and to generate a matching virtual endoscope by finding
suitable values for the model parameters.

Material: Hardware, see Fig. 2, left: Optical tracking system ARTtrack 1
(A.R.T. GmbH, www.ar-tracking.de), comprising two IR cameras and a set of
passive, retro-reflective markers. Video endoscope OLYMPUS GIF-100 (9.5 mm
diameter) with 30 stripe markers (10 mm width) wrapped around it’s shaft like
a ring in a distance of ca. 25 mm. Board with a “M”-shaped calibration path,
1050 mm long, 50 mm wide. We have attached three disk markers to the board.
Pointing device with a calibrated tip.

Design and Methods: (1) Since the tracking system is designed to determine
the center of either ball or disk markers, we have to verify it’s accuracy in mea-
suring the center of our ring markers. The idea is to verify whether the center
line of the endoscope (given by the center of each ring marker) is in a distance
to the board according to the radius of the endoscope. The board surface plane
is determined using the three disk markers.

(2) We insert the endoscope a distance of 900 mm into the “M” path. After
the insertion, we record a reading of all endoscope markers. To draw the mea-
sured markers and the digital model of the “M” in one common reference frame,
we need to find a rigid body transformation that maps one frame into the other.
To find the transform, we calculate the best fit in the least-squares sense be-
tween a set of reference points obtained with the pointer and the corresponding
virtual points. To solve the resulting non-linear minimization problem, we use
the “Levenberg-Marquardt” method.

Results: (1) We are able to accurately determine the center line of a real endo-
scope using ring markers. The tracking system could determine the position of
26 out of 30 markers. The average distance between the markers and the board
is 5.17 mm (SD: 0.8 mm), given a 4.75 mm shaft radius and a 0.5 mm marker
thickness. (2) Fig. 2, bottom right shows the best match between the markers
(black balls) and the model. The model consists of 9 segments (color coded), the
first 8 consist of 4, the last consists of 12 links. Each link is 20.45 mm long. By
calculating the 7 smallest energies for the last segment, we obtained one segment
that matched the last 6 markers by a Hausdorff distance of 0.8 mm.
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Fig. 2. Left: Experimental setup (photo, flash). Right: Screen shots. Top: Resulting
tentacles (p = 1) of the first 13 segments. Bottom: Real endoscope (black balls) and
final result showing the 7 smallest energies for the last segment.

3.2 Accuracy, Run-time and Robustness Tests

Material: In addition to the hardware from the previous experiment: Phantom
of the tracheobronchial tree made of transparent plastic tubes. We placed 37
sticks as reference points for the rigid body transformation in the model.
Software: The phantom was scanned (CT, 512x512x382, 1 mm slice distance,
1.2 mm thickness), the reference points were manually identified and a lung phan-
tom model was reconstructed (ca. 13000 triangles).

Design and Methods: (1) To asses the influence of refraction caused by the
plastic tubes on the measures, we have inserted a calibration wand with markers
of known distance into the phantom. (2) We insert the endoscope into differ-
ent branches of the phantom (see Fig. 3 (a)) and record the position of the
markers for different insertion depths. The position and orientation of the real
endoscope’s tip is given by it’s first rigid sleeve (d), to which we have attached
two markers. To asses the accuracy of our model, we compare these two mark-
ers to the position and orientation of the corresponding virtual sleeve. We have
performed 5 tests and for each we have calculated the best result regarding a
match between 10 virtual sleeves (p = 10) and the real sleeve.

Results: (1) The influence of refraction is within the accuracy of the tracking
system (0.1 mm). (2) The worst result out of the 5 best results is 2.5 mm (posi-
tion) and 7◦ (orientation). The best result is 0.7 mm and 4◦. The time needed to
calculate and display the model shown in Fig. 3 (b) with a maximum insertion
depth of 355 mm is 0.6 seconds on a Pentium 4, 1.3GHz. We were able to generate
a continuous animation of a 240 mm long insertion, by increasing the insertion
depth by 1 mm, which demonstrates the algorithm’s robustness. Computation
and display time for the animation (240 frames) is 27 seconds.
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Fig. 3. (a) OLYMPUS GIF-100 endoscope with reflective markers inserted into a lung
phantom. (b) Model of the GIF-100 inside the same branch as in (a). (c) Tentacles
shown for each segment. (d) The two rigid sleeves (35 and 25 mm long) of the GIF-100
digital model. The model’s tip was bent by 90◦ to reach into the smaller branch.

4 Conclusion

We have presented a deformable model for flexible instruments. The model re-
flects special mechanical constraints often found with flexible instruments, like
a tip that can be bent to a much higher degree than the shaft (Fig. 3 (d)),
rigid sleeves within flexible sections and a non-negligible shaft diameter. We
demonstrated its use as a catheter inserted into vasculature and as an endo-
scope inserted into the tracheobronchial tree. An interesting property of our
model is the option to generate several possible shapes for the instrument’s tip.
Furthermore, it requires no initialization in form of an initial “good guess” (like
snake approach) for the final shape and no preprocessing (like FEM approach).
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