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Abstract. Accurate detection of prostate boundaries is required in many 
diagnostic and treatment procedures for prostate diseases. In this paper, a new 
approach based on level set method to perform 3D prostate surface detection 
from transrectal ultrasound (TRUS) images is presented. Contrary to many 
other deformable models, level set method offers several advantages such as 
minimal need for user input, flexible topology, and straightforward extension to 
3D. However, it is subject to “boundary leaking” problem for ultrasound image 
segmentation due to the poor image quality. In this work, we first develop a fast 
discrimination method to extract the prostate region, then this region 
information, instead of the spatial image gradient, is incorporated into the level 
set method to remedy the “boundary leaking” problem. Various experimental 
results show the effectiveness of the proposed method. 

1   Introduction 

Prostate diseases are common in adult and elderly men. Typical symptoms are benign 
prostatic hyperplasia (BPH) and prostate cancer. With the number of men seeking 
medical care for prostate disease rising steadily, the need of a fast and accurate 
prostate boundary detection and volume estimation tool increases correspondingly. 
Currently, boundary detection and volume measurement are made manually, which is 
arduous and user dependent. A possible solution is to improve the efficiency by 
automating the boundary detection and volume estimation process with minimal 
manual involvement. This paper presents a new approach based on level set method 
[1] to semi-automatically detect the prostate surface from 3D transrectal ultrasound 
(TRUS) images. 

There have been a number of works so far on automatic segmentation of prostate 
from ultrasound images. A straightforward strategy is using edge detectors, such as 
Minimum/Maximum filter [2], derivative edge detectors [3, 4], sticks and weak 
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membrane fitting [5], to identify all the edges in the image then followed by edge 
selection and linking to outline the prostate boundary. However, due to the poor 
quality of ultrasound images, such kind of methods usually leads both to spurious 
boundaries in highly textured areas and to missed boundaries where prostate boundary 
is not well-delineated.  

Richard et al. [6] used texture features to segment 2D images of the prostate gland 
into prostate and non-prostate regions for forming a 3D image of the prostate from a 
set of parallel 2D images. Although some progress has been made, they acknow-
ledged that the effect of using texture information is marginal.  

More efficient way is using deformable models, such as discrete dynamic contour 
(DDC) [7] and 3D deformable surface [8]. However, the success of their approaches 
is dependent on the careful initialization of the contour or surface, which requires the 
user to select points on the prostate boundary. In [9], wavelet-based techniques have 
been used to attempt to address this problem. 

Some researchers employed neural networks [10] and feature modeling [11] to 
segment the prostate from TRUS images. As reported in their work, these methods 
have good accuracy and robustness. However, neural networks requires extensive 
teaching sets so that the speed is very slow and feature modeling is only suitable for 
some particular shape-based prostate images.  

In this work, we develop a new approach based on level set method to auto-
matically detect the prostate surface from 3D TRUS images. We first develop a fast 
discrimination method to extract the prostate region. Then this region information is 
incorporated into the level-set method instead of the spatial image gradient. In the 
following, we first give a brief description of our method and then we discuss the 
results.  

2   Methods 

While deformable models, such as Snakes [12], Fourier Surface [13] and Free-Form 
Deformation (FFD) [14] have been widely used in medical imaging applications, they 
have severe limitations: they are unable to handle complex geometry and changing 
topology without additional machinery, and complex implementation in 3D. To 
overcome these difficulties, the level set method has been proposed [1]. In this 
approach, a 2D curve C is represented by a 3D function ψ. The value of the 3D 
function at point p is defined as a distance d from p to C according to equation (1):  

dtp ±== )0,(ψ , (1) 

where p∈ℜ2 are points in the image space, and the plus (minus) sign is chosen if the 
point p is outside (inside) the 2D curve C(t = 0). In this manner, the 2D curve is 
represented by the zero level set C(t)={ p | ψ (p, t) = 0} of the level set function ψ. 
The level set method then evolves the 3D function ψ (p, t) that contains the embedded 
motion of C(t) instead of the original 2D curve. The evolution of the 3D function ψ 
can be expressed by means of a partial differential equation (PDE) as  
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with a given initial condition ψ (p, t = 0), where ∇ψ denotes the gradient of ψ with 
respect to the spatial coordinates and F is the evolving speed.  

For numerical solution of equation (2), it is necessary to perform discretization in 
both space and time. For this purpose we can discretize space coordinates using a 
uniform mesh of spacing h, with grid nodes denoted by indices ij. Let  be the 

approximation to the solution 
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expression for  can be derived using the forward definite difference method:  
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Let K be the mean curvature of the evolving front, then K can be easily obtained 
from the divergence of the gradient of the unit vector to front, i.e.,  
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As reported in [1], the speed term F depends on the curvature K and is separated 
into a constant term F0 and the remainder F1(K), that is  

)()( 10 KFFKF += . (5) 

The constant term F0 causes the model to seek object boundaries and the curvature 
component F1 controls the regularity of the deforming shape. In practice, speed 

KKF ε−= 1)(  (6) 

is commonly used, where ε is the entropy condition which regulates the smoothness 
of the curve and ε must be greater than zero [1]. 

To ensure the propagating curve front will stop in the vicinity of desired object 
boundary, F is proposed to be pre-multiplied with an image dependent quantity kI [1],  
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where Gσ*I denotes image convolved with the Gaussian smoothing filter whose 
characteristic width is σ. kI has values close to zero in regions of high image gradient 
(for example, possible edges) and close to unity in regions with relatively constant 
intensity. Clearly, the key task of this level set method is to design an appropriate 
speed function F which can drive the evolving front to the desired boundary.  

Unlike other deformable models, extending the level set method to 3D is straight-
forward [1]. In that case, ψ is a 4D scalar function, ψ : ℜ3×ℜ+→ℜ, which evolves 
over time and its mean curvature can be expressed as:  
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   Due to the intrinsic features of ultrasound images, such as noises, speckles, 
shadowing and low contrast, the boundary feature of the object is usually not salient 
enough and the image gradient information is weak. These cause the “boundary 
leaking” problem when we apply the level set method to detect the 3D prostate 
surface as shown in Fig. 1. In this test, F=1-0.375K, the Gaussian smoothing filter 
characteristic width σ is set to 0.75 and a Gaussian kernel width 5 has been used.  
 

 

 

Fig. 1. An example of “boundary leaking” problem of level set method. White curve: the 
detected boundary of the level set method; Green curve: the manually outlined boundary. 
Yellow arrow: the boundary leaking caused by shadowing; Red arrow: the boundary leaking 
caused by low contrast. 

 
   Motivated by the region-based strategy for active contour models as reported in 
[15, 16], we integrated the region information instead of the image gradient into the 
level set method to improve the model performance. First we develop a fast 
discrimination method to extract the prostate region according to the intensity 
likelihood as:  
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where max(In) and min(In) stand for maximal intensity and minimal intensity 
respectively in a n3 slide window. We take the lower bound as 2 to exclude the black 
background in the images. In our algorithms, we take n as 5 empirically and the 
givenThreshold, set by the user, could be of different values for different images, we 
denote it RT for simplicity in the following sections.  

392 S. Fan, L.K. Voon, and N.W. Sing



This function is then incorporated into the level set method and forms a new speed 
function as:  

KRFFnew ε−−⋅= )1(0 . (10) 

Now Fnew is not related to image gradient any more, it only depends on the prostate 
region and evolving front curvature. Consequently, Fnew has the following properties:  

 1. , then  0=R

KFFnew ε−= 0 . (11) 

This means inside the prostate region, the evolving front will deform 
according to the speed as expressed in equation (6), no image constraints are 
included.  

 2. 1=R , then  

KFnew ε−= . (12) 

This means outside the prostate region, the evolving front will shrink.  
Therefore, the interaction of these two properties makes the evolving front eventually 
attracted to the desired boundary. In our algorithm, F0 = ε = 2 is selected empirically 
and the Gaussian filter is replaced by the median filter for the latter’s good features of 
removing speckle noise efficiently and at the same time preserving boundary 
information.  

In this work, all the input images to our algorithm are collected from Singapore 
Gleneagles Hospital by using Voluson 530D.  

3   Experimental Results  

We applied the proposed method to 8 3D TRUS images to detect the prostate surface. 
Figure 2 shows one of the results detected by our new approach. The 3D image size is 
256×256×256. The initial and final 3D shapes are shown in the right and the slices 
shown as transverse view, sagittal view and coronal view respectively are selected by 
the cutting plane as shown in (f). For this 3D image, we set RT to 48.  

To validate the effectiveness of our new approach, we first compare the above 
result with the manually outlined contours (drawn by an expert from Singapore 
General Hospital) in cross-sectional images in figure 3. It can be seen there is good 
agreement between the detected contours and the manual contours except some 
divergence in the right sides of sagittal view and coronal view.1 The new method is 
then applied to other patients’ images. One of the tests is shown in figure 4, where the 
image size is 250×174×236 and the RT is set to 32. Although the image quality is 
quite poor, our new approach successfully detected most of the desired boundaries.  
                                                           
1 The validation presented in this paper is purely subjective. Quantitative assessment method is 

still under development as addressed in section 4. 
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Fig. 2. 3D prostate surface and its cross-sectional contours detected by our new approach. (a) 
Transverse view, (b) Sagittal view, (c) Coronal view [(1) A slice of the original image, (2) Slice 
with the initial contour overlaid, (3) Slice with the final contour overlaid.], (d) Initial surface, 
(e) Final surface, (f) Final surface with cutting planes. 

 
 

    

    

    
(a) (b) (c) (d) 

Fig. 3. The comparison between detected contours and manual contours in 2D images. (a) 
Cross-sectional slices, (b) Detected contours, (c) Manual contours, (d) contour comparison. 
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Fig. 4. An example of algorithm tests on different patients’ images. (a) Transverse view, (b) 
Sagittal view, (c) Coronal view [(1) A slice of the original image, (2) Final detected contour, 
(3) Final detected contour with manual contour overlaid.], (d) Initial surface, (e) Final surface, 
(f) Final surface with cutting planes. 

4   Discussion  

In our algorithm, parameters such as F0, ε and slide window size n for region discri-
mination are pre-determined experimentally and keep unchanged in various imple-
mentations over different images. In these implementations, we take a small sphere as 
the initial surface put at the image center to start the detection procedure, thus only 
one parameter RT should be set by users and consequently the human involvement is 
minimized. However, because the prostate region discrimination in our algorithm is 
still simple and coarse, the final detected results are sensitive to the choice of RT. This 
problem might be solved by including the statistical information of the image inten-
sity distribution. Therefore, an important future work on this research is to investigate 
the image intensity distributions. Besides, we also plan to introduce some a priori 
knowledge of the prostate shape to constrain the surface deformation to improve the 
algorithm accuracy [17]. Assessment method should be included too to evaluate the 
experimental results quantitatively.  
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