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Abstract. Automatic detection of structures in medical images is of
great importance for the implementation of tools that can obtain accu-
rate measurements for an eventual diagnosis. In this paper, a new method
for the creation of such tools is presented. We focus on in vivo kidney
ultrasound, a target in which classical methods fail due to the inherent
difficulty of such an imaging modality and organ. The proposed method
operates on every slice by detecting kidney contours under a probabilis-
tic Bayesian framework. We make use of Markov Random Fields ideas
to model the problem and find the solution. A computer easy-to-use
interface to the model is also presented.

1 Introduction

Neonatal hydronefrosis is a disease of great relevance in the fetus and newborn
children. It consists of an enlargement of the renal pelvis and calyces. Its early
diagnosis is a common task thanks to the use of echography, both during the
pregnancy or in the newborn and is becoming the more frequent prenatal urologic
diagnosis.

Echographical analyses permit determining whether this or other urological
diseases are present; the current inspection process is as follows: after scanning an
adequate slice, the specialist manually adjusts —helped with cursors— an ellipse
to the guessed external boundary of the kidney. The system approximates the
kidney volume as the volume of the ellipsoid generated by rotating the sketched
ellipse about its main axis. The pelvis volume is determined similarly. From those
approximations, the specialist reaches a diagnosis using tabulated tendency data.

An automatic or semiautomatic segmentation tool will be, in our opinion,
of valuable importance, not only for the determination of the kidney and pelvis
contours by means of a more accurate method than the one described above,
but also for automatically propagating those contours to the rest of the slices of
the volume scanned. With such an approach, the volume estimates are expected
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to be better in terms of accuracy, and also in relaxing the need of the specialist
to find a slice with sufficient quality.

In this paper, we describe how such a tool can be developed. After reviewing
the literature about this and related topics, we highlight the deficiencies of the
methods previously proposed. This will be done in Sect. 2. In Sect. 3 we describe
our proposal. Sect. 4 is dedicated to show how the computer application is used.
It will be obvious from the description that no technical knowledge is needed to
make use of the application. Finally, Sect. 5 describes some experiments carried
out on real echograchical data to validate the method here proposed.

2 State of the Art

Several approaches are described in the literature to improve measurements of
the volume enclosed within a kidney with respect to that obtained by the ellipse
method. In [15] the authors describe a wholly manual segmentation method. In
that approach, the contours are sketched manually in a slice-by-slice basis on
the ultrasound data acquired from an in vivo kidney. From those contours, the
volume is calculated by means of voxel counting. Such a measurement is proven
to be better that the one obtained with the ellipse method. In [12] the authors
propose an in vitro semiautomatic segmentation method; kidney contours are
fairly obvious due to the organ-liquid interface in which the kidney is submerged.

Classical approaches to image segmentation are only valid under extremely
controlled situations. In most cases, high level techniques which exploit prior
knowledge about the shape of the structures to be segmented out are the only
feasible solution. Active contours (snakes) are one of the most successful ap-
proaches [9]. The solution contour is determined by finding optimal contours
in a neighborhood of the initial guess. The optimality of the solution in a real
setting together with the dependence of the initial guess is matter of discussion.

One alternative to the optimization methods proposed in [9] is to reformulate
the problem in a Bayesian probabilistic framework and make use of Markov
Random Fields (MRFs) [6]. In that framework, prior distributions will model
our knowledge about the contours and data-driven likelihood terms will describe
the image statistics related to the contour in search. The maximum a posteriori
(MAP) estimation under the MRF models give rise to the optimal contour.

Several proposals that make use of this philosophy have already been re-
ported. In [4] an automatic algorithm has been developed for the detection of
the left ventricular (LV) cavity boundaries in sequential 2D echocardiograms.
This work is pioneer in defining a contour model in polar coordinates as shown
in Fig. 1(a). From a given center (Cx, Cy) the plane is discretized in polar coor-
dinates which give rise to J contour points ρj at equispaced angular positions θj

—the radii—. Each contour point ρj can only be one out of K values rk. In the
approach [4] a region of interest is defined beginning with an ellipse adjusted by
using the Hough transform. The field is defined by means of image borders, con-
tour smoothness, maximal volume and temporal continuity. The optimal contour
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(a) (b)

Fig. 1. (a) Classical contour model. (b) Proposed contour deformation.

is found by using the Simulated Annealing (SA) algorithm [6] on the induced
MRF. The parameters are determined experimentally.

The approach [5] is very similar to , but it is developed for infrared images.
The prior model is rather heuristic and the likelihood is based on the image
gradient. The model weights are fixed by means of a proof-and-error method.

A further step is [3], in which the model of [4] is modified for the detection of
the LV boundaries in angiographic images. The prior model is based on contour
smoothness and the likelihood assumes a Gaussian distribution. The approach
is Bayesian, they use the Iterated Conditional Modes (ICM) [1] algorithm for
optimization, and the parameters are estimated from image data.

In [13] the contour model is represented in Cartesian coordinates, where
the number of nodes is random. The optimal contour is given by a Bayesian
estimation assuming a fractal measurement as prior model and likelihood based
on Gaussian distribution and image gradient. The model is not strictly a MRF;
instead, a Markov chain is constructed whose limiting distribution is the MAP
estimation —a modified version of SA algorithm is proposed. Several results
are presented for LV echocardiograms and brain MRI. The time taken by the
algorithm is unacceptable in a clinical setting.

In [2] the authors make use of the results of [3,4] for the detection of the
internal and external boundaries of LV cavity in sequences of echocardiograms.
The probabilistic model captures the heart morphology and the physical im-
age generation mechanisms. They assume Rayleigh distribution for the image
with data-driven parameters. For the MAP estimation they developed a subop-
timal iterative multigrid dynamic programming (IMDP) algorithm. Recently, the
model proposed in [2] has been used for segmenting 3D intravascular ultrasonic
images [7].

Two previous approaches to our model have already been published. In [10]
a sequence of echographies from an in vitro fetus were segmented using active
contours with several new energy terms. The optimization approach was based
on the relaxation labeling method [8] which provides suboptimal solutions. In [11]
the problem of object detection in speckle images was addressed. A regularized
maximum likelihood (ML) method was used to determine the contour of the
object. A Beta distribution was used to model the image intensity distribution.
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That distribution was compared with the others proposed in the literature [14]
and, in addition to its simplicity, results obtained were satisfactory. In both
approaches the contour representation was the one shown in Fig. 1(a).

The segmentation problem for in vivo kidney ultrasound volumes is rather
involved and must take into account several aspects not dealt with in the above
mentioned proposals. The kidney is a soft organ and its form and position may
vary with time. The kidney interior is by no means homogeneous due to several
distinguishable structures. There is not a clear difference between the kidney and
the surrounding tissues. Only some parts of the kidney contour show a significa-
tive image gradient. In some scans, the kidney might be partially occluded. All
these issues highlight the need of a novel method that may solve the problem.

3 The Model

We propose a MRF of deformations with respect to a predefined template of a
kidney contour. Specifically, the template is manually or automatically adjusted
to the image and then it is smoothly deformed following the outstanding bound-
aries in the ultrasound image and guided by an empirical speckle distribution
model as well. The smoothness constraint is imposed by the range of allowable
deformation values and also by the prior distribution, which forces first and
second order derivatives smoothness. The final contour is given as the MAP
estimation.

3.1 The Prior Function
A manually adjusted template (ρ,θ) in polar coordinates is assumed to be avail-
able (see Sect. 4). Assume it consists of J points at fixed angles θj from a given
center. From that template we define a deformation zone as shown in Fig. 1(b).
The deformation vector will be denoted with dρ. This vector is assumed to be
a sample of a prior MRF dω. Each dρj can take on values in the finite set dΛ.
The field of sites will be denoted by S={1, . . . , J} and the configuration space
with dΩ =dΛS; therefore, each configuration dρ belongs to dΩ. The finite set
dΛ has K equispaced points in the interval [−drmax, drmax].

We have defined a homogeneous and periodic prior neighborhood system ∂
which is given by ∂(j)={j − 2, j − 1, j + 1, j + 2}. The prior MRF distribution
Π defined for dω will be induced by a neighborhood potential V with two types
of functions. The first type is Uj(dρ) = ϑ1Ψ(dρj−1 − dρj+1); these functions
make use of two-site cliques and impose first-order-derivative smoothness. The
second type is Vj(dρ) = ϑ2Ψ(dρj−1 − 2dρj + dρj+1). In this case, three-site
cliques are used and these functions impose second-order-derivative smoothness
[9]. The function Ψ(x) must be monotonic for x ≥ 0 and even. Prior local field
characteristics are

Π (dωj =dρj/dω∂(j) =dρ∂(j))

=
1
Zj

exp{−Uj−1(dρ)−Uj+1(dρ)−Vj−1(dρ)−Vj(dρ)−Vj+1(dρ)}, (1)

with Zj a normalizing constant.
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3.2 The Likelihood Function

The ultrasonic image will be denoted by I. From that image we determine a
non-linearly compressed gradient image denoted by B. The probability density
function of the data conditioned to the deformation will be

f(I,B/dω=dρ) ∝
J∏

j=1

f(I(kj , j)/dωj =dkj )f(B(kj , j)/dωj =dkj ), (2)

where the indexes kj are chosen to achieve that {dρ1, . . . , dρJ} = {drk1 , . . . ,
drkJ

}. I(k, j) and B(k, j) are subimages of I and B, respectively, whose set of
pixels β(k, j) are near the contour deformation at angle position j and distance
position k. We define a log-likelihood function as

LB(k, j) = − 1
|β(k, j)|

∑

(m,n)∈β(k,j)

B(m, n) ∝ ln f(B(k, j)/dωj =drk). (3)

Using a Beta distribution [11] with parameters depending on the pixel positions
with respect to the contour deformation we also define the log-likelihood function

LI(k, j) =
∑

(m,n)∈βi(k,j)

(1−αi
1(j)) ln(I(m, n))+(1−αi

2(j)) ln(1−I(m, n))
|βi(k, j)|

+
∑

(m,n)∈βe(k,j)

(1−αe
1(j)) ln(I(n, m))+(1−αe

2(j)) ln(1−I(m, n))
|βe(k, j)|

∝ ln f(I(k, j)/dωj =drk), (4)

where βi(k, j) and βe(k, j) are partition subsets of β(k, j) with the internal and
external set of pixels respect to the contour deformation point j at position k,
respectively. The function LI(k, j) has 4J Beta shape parameters (αi

1(j), α
i
2(j),

αe
1(j), α

e
2(j)) which can be estimated directly from the ultrasound image I [11].

3.3 The Posterior Model

Bayes theorem allows us to write

P(dω=dρ/I,B) ∝ Π (dω=dρ)
J∏

j=1

f(I(kj , j)/dωj =dkj )f(B(kj , j)/dωj =dkj ),

(5)
which is proportional to

Π p(dω=dρ) =
1

Zp
Π (dω=dρ)

J∏

j=1

exp(−ϑ3LI(kj , j)−ϑ4LB(kj , j)), (6)

where Π p is a posterior MRF distribution induced by a posterior neighborhood
potential Vp defined on the same ∂ and Zp is a normalizing constant. Posterior
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potential functions will be of three types: Up
j (dρ) = Uj(dρ), V p

j (dρ) = Vj(dρ),
and W p

j (dρ)=ϑ3LI(kj , j) + ϑ4LB(kj , j), with ϑp =(ϑ1, ϑ2, ϑ3, ϑ4) the vector of
posterior parameters. The potential functions W p

j are for one-site cliques and
impose image restrictions [9]. Posterior local field characteristics are

Π p(dωj =dρj/dω∂(j) =dρ∂(j))

=
1

Zp
j

exp{−Up
j−1(dρ)−Up

j+1(dρ)−V p
j−1(dρ)−V p

j (dρ)−V p
j+1(dρ)−W p

j (dρ)},

(7)

with Zp
j a normalizing constant. The solution contour is the one that maximizes

this posterior, which can be found with the SA algorithm [6].

4 Running the Application

The method proposed can be dealt with by means of an easy-to-use computer
application; this environment allows the end user to interact with the data,
supervise results, manually adjust parameters if desired and so forth.

(a) (b)

(c) (d)

Fig. 2. (a) A canonical template is drawn. (b)-(d) Template adjustment to the slice.

As previously described, the model needs a template from which deformations
start taking place. This model can be created once and stored for future use.
Note that the user does not need to draw a template every time a segmentation
is needed, but just once. This model could even be built-in; however, we have
chosen the former option just to give more flexibility to the end user.

The template definition is very simple: on a chosen slice, the center, together
with several points around the kidney contour, are clicked in with the mouse.
This set of points is interpolated to get a smooth contour. Fig. 2(a) shows the
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progress of this operation. This is the only information needed to create the polar
representation of the template that will be used in the segmentation process.

As far as segmentation is concerned, the procedure is fairly straightforward as
well; the user has to choose a candidate slice from which the segmentation process
is to be triggered. Now, the application superimposes a normalized version of
the stored template (see Fig. 2(b)). Then, the user manually adjusts two hot
points in the template to the actual contour of the kidney (see Figs. 2(c)-(d)).
At this point, the segmentation procedure described in the paper is launched.

To automatically evolve to further slices, the original template is affinely
deformed according to the contour solution of the current slice and superimposed
into the consecutive slice, thus, forcing smoothness along the depth coordinate.

5 Some Experimental Results

Two experiments will illustrate and validate the segmenting capability of the
model proposed. In the first one, we have employed a series of 2D echographies
of an adult healthy kidney. The template is adjusted to slice number 101 (out
of 126). We have used J = 70 rays, number of points per ray K = 15, and
the deformation zone consisting of an interval given by drmax = 20 pixels. The
vector of posterior parameters of the energy function is ϑp =(25, 25, 5, 10). The
SA algorithm has been run with 250 iterations. Fig. 3(a) shows slice number
89 and Fig. 3(d) shows the resulting segmented contour. Fig. 3(b) shows slice
number 122 and Fig. 3(e) the corresponding segmented contour.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)-(f) Experimental results.

In the second experiment we have used the data belonging to another adult
healthy patient. The template has been adjusted to slice number 30. The condi-
tion of the experiments are as before but for the number of iterations of the SA
algorithm, which is 200, and for the vector of posterior parameters of the energy
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function, which are now ϑp =(20, 20, 7, 12). Fig. 3(c) shows slice number 20, in
which a severe occlusion makes the kidney contour unclear for visual inspection.
Fig. 3(f) shows the segmented contour.

6 Conclusions and Further Works

The method here proposed is a step towards an eventual objective procedure
that would make diagnosis less dependent of the ecographist skills. Prior knowl-
edge about the average kidney together with empirical knowledge about the
echographies have been put together in a probabilistic framework. Segmentation
has been therefore posed as an estimation problem for which the existence of an
optimal solution is guaranteed.

Several issues are until unaddressed, though. Internal structures of the kidney
are still unsegmented. However, once the external contour is found, internal
structures are confined in space, which makes a posterior search more tractable.
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