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Abstract. The contribution of this paper is the adaptation of data
driven methods for non-Euclidean metric decomposition of tangent space
shape coordinates. This basic idea is to take extend principal components
analysis to take into account the noise variance at different landmarks
and at different shapes. We show examples where these non-Euclidean
metric methods allow for easier interpretation by decomposition into bi-
ologically meaningful modes of variation. The extensions to PCA are
based on adaptation of maximum autocorrelation factors and the mini-
mum noise fraction transform to shape decomposition. A common basis
of the methods applied is the assessment of the annotation noise variance
at individual landmarks. These assessments are based on local models or
repeated annotations by independent operators.

1 Introduction

For the analysis and interpretation of multivariate observations a standard meth-
ods has been the application of principal component analysis (PCA) to extract
latent variables. Cootes et al. applied PCA to the analysis of tangent space
shape coordinates [1]. For various purposes different procedures for PCA us-
ing non-Euclidean metrics have been proposed. The maximum autocorrelation
factor (MAF) transform proposed by Switzer [2] defines maximum spatial au-
tocorrelation as the optimality criterion for extracting linear combinations of
multispectral images. Contrary to this PCA seeks linear combinations that ex-
hibit maximum variance. Because imaged phenomena often exhibit some sort
of spatial coherence spatial autocorrelation is often a better optimality crite-
rion than variance. We have previously adapted the MAF transform for analysis
of tangent space shape coordinates [3]. In [4] the noise adjusted PCA or the
minimum noise fraction (MNF) transformations were used for decomposition of
multispectral satellite images. The MNF transform is a PCA in a metric space
defined by a noise covariance matrix estimated from the data. For image data the
noise process covariance is conveniently estimated using spatial filtering. In [5]
the MNF transform is applied to texture modelling in active appearance mod-
els [6]. Bookstein proposed using bending energy and inverse bending energy as
metrics in the tangent space [7]. Using the bending energy puts emphasis on the
large scale variation, using inverse bending energy puts emphasis of small scale
variation.
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2 Methods

2.1 Minimum Autocorrelation Factors

Let the spatial covariance function of a multivariate stochastic variable, Zk,
where k denotes spatial position and ∆ a spatial shift, be Π(∆) = Cov{Zk,
Zk+∆}. Then by letting the covariance matrix of Zk be Σ and defining the
covariance matrix Σ∆ = D{Zk − Zk+∆}, we find

Σ∆ = 2Σ − Π(∆) − Π(−∆) (1)

Then the autocorrelation in shift ∆ of a linear combination of Zk is

Corr{wT
i Zk,wT

i Zk+∆} = 1 − 1
2

wT
i Σ∆wi

wT
i Σwi

. (2)

The MAF transform is given by the set of conjugate eigenvectors of Σ∆ wrt. Σ,
W = [w1, . . . ,wm], corresponding to the eigenvalues κ1 ≤ · · · ≤ κm [2]. The re-
sulting new variables are ordered so that the first MAF is the linear combination
that exhibits maximum autocorrelation. The ith MAF is the linear combination
that exhibits the highest autocorrelation subject to it being uncorrelated to the
previous MAFs. The autocorrelation of the ith component is 1 − 1

2κi.

2.2 Minimum Noise Fractions

As before we consider a multivariate stochastic variable, Zk. We assume an
additive noise structure Zk = Sk + Nk, where Sk and Nk are uncorrelated
signal and noise components, with covariance matrices ΣS and ΣN , respectively.
Thus Cov{Zk} = Σ = ΣS + ΣN . By defining the signal-to-noise ratio (SNR)
as the ratio of the signal variance and the noise variance we find for a linear
combination of Zk

SNRi =
V {wT

i Sk}
V {wT

i Nk} =
wT

i ΣSwi

wT
i ΣNwi

=
wT

i Σwi

wT
i ΣNwi

− 1 (3)

So the minimum noise fractions are given by the set of conjugate eigenvectors
of Σ wrt. ΣN , W = [w1, . . . ,wm], corresponding to the eigenvalues κ1 ≥ · · · ≥
κm [4]. The resulting new variables are ordered so that the first MNF is the
linear combination that exhibits maximum SNR. The ith MNF is the linear
combination that exhibits the highest SNR subject to it being uncorrelated to
the previous MNFs. The SNR of the ith component is κi − 1.

The central problem in the calculation of the MNF transformation is the
estimation of the noise with the purpose of generating a covariance matrix that
approximates ΣN . Usually the spatial nature of the data is utilized and the
noise is approximated by the difference between the original measurement and
a spatially filtered version or a local parametric function (e.g. plane, quadratic
function).
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2.3 MNF and MAF for Shape Decomposition

We have previously [3] shown how to adapt MAF to shape decomposition by
utilizing the ordering of landmarks (variables) instead of ordering of pixels (ob-
servations) by transposing the data matrix. Furthermore, it was shown that
Molgedey-Schuster’s [8] independent components (ICA) is equivalent to MAF.
If the matrices in Equations (2) and (3) are singular the solution must be found
in the affine support of the matrix in the denominator, e.g. by means of a gen-
eralized singular value decomposition.

3 Materials

We demonstrate the properties of the techniques that we propose on two data-
sets. The first dataset consists of 2D annotations of the outline of the right
and left lung from 115 standard PA chest radiographs. The chest radiographs
were randomly selected from a tuberculosis screening program and contained
normal as well as abnormal cases. The annotation process was conducted by
identification of three anatomical landmarks on each lung outline followed by
equidistant distribution of pseudo landmarks along the 3 resulting segments of
the outline. In Fig. 1(b) the landmarks used for annotation are shown. Each lung
field is annotated independently by two observers - Dr. Bram van Ginneken and
Dr. Bart M. ter Haar Romeny. The dataset was supplied to us by Dr. Bram van
Ginneken. For further information the reader is refered to the Ph.D. thesis of
van Ginneken [9].

The second dataset consist of 4D landmarks of a set of surfaces of human
mandibles (the lower jaw) registered over time. The surfaces were extracted in
a previous study by Dr. Per R. Andresen from CT scans of 7 Apert patients
imaged from 3-5 times from age 3 months to 12 years. The mandibles are as-
sumed to exhibit normal growth. The scans were performed for diagnostic and
treament planning purposes and supplied by Dr. Sven Kreiborg (School of Den-
tistry, University of Copenhagen, Denmark) and Dr. Jeffrey L. Marsh (Plastic
and Reconstructive Department for Pediatric Plastic Surgery, Washington Uni-
versity School of Medicine at St. Louis Children’s Hospital, St. Louis, Missouri,
USA). The surface extraction and registration was carried out using matching of
the extremal mesh followed by a geometry-constrained diffusion procedure de-
scribed in [10,11]. The surfaces contain approximately 14.000 homologous points.

4 Results

4.1 Lung Dataset

We intend to use the annotation by two independent observers to estimate the
annotation uncertainty. Initially the lung annotations are aligned to a common
reference frame by concatenating the annotations of the two observers and per-
forming a generalized Procrustes analysis (GPA) [12,13]. Now we can compute
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Fig. 1. Landmarks of the left and right lung. Landmark numbers are shown in the
middle. The right lung is annotated by 40 landmarks, and the left lung by 36. The
anatomical landmarks on the right field are points 1, 17, and 26, on the left field
the anatomical landmarks are points 1, 17, and 22. (a),(c) Inter-observer difference
canonical correlations between landmarks for the right and left lungs. (d),(e) Inter-
neighbour landmark difference canonical correlations between landmark for the right
and left lung.

the differences between the two sets of annotations and estimate an inter-observer
covariance matrix of the landmark coordinates. Obviously we would like to view
the intercorrelation per landmark and not per coordinate. Rotation of the frame
of reference will shift the correlation between x and y coordinates which may
cause some confusion. In order to overcome this problem for each pair of land-
marks we estimate the maximum correlation between linear combinations of
their coordinates. These are the canonical correlations [14].

In Fig. 1 we see these correlations for the right and left lung. The inter
lung correlations are neglible. For both set of lungs we see a high degree of
correlation along the curved top outline of the lungs. For both lungs landmark
1 is the top point. Again for both lungs there is no or little correlation across
the two anatomical landmarks that delimit the bottom segment of the outlines.

The inter-observer covariance matrix defines one sensible metric to use when
decomposing the shape variability. This would put less emphasis of landmarks
with high annotation variance and more emphasis on landmarks with low anno-
tation variance, and result in a minimum noise fraction transform. As an alter-
native to assessing the interobserver differences we may consider the covariance
of the difference of neighbouring landmarks. The correlation structure of these
are also shown in Fig. 1. Here the partitioning of landmarks in three segments
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Fig. 2. The 6 most important principal components (PC), principal components on a
standardized dataset (PCC), annotation noise adjusted principal components (EPC),
maximum autocorrelation factors (MAF), and relative warps (REL). The blue curve
is the mean shape, and the green and red curves represent ±5 standard deviations as
observed in the training set.

for each lung is more pronounced. Using this covariance as metric corresponds
to the MAF transform.

In Fig. 2 the 6 most important principal components (PC), principal com-
ponents on a standardized dataset (PCC), annotation noise adjusted princi-
pal components (EPC), maximum autocorrelation factors (MAF), and relative
warps (REL) are shown. The relative warps use the bending matrix of the es-
timated mean shape as metric. The PCs and PCCs are fairly similar, but the
EPCs, MAFs, and RELs are different. The latter three all represent uses of met-
rics that are significantly different from the Euclidean one. The first EPC is a an
aspect ratio variation, and the following 5 EPC’s seeems to be a mix of the first
PCs. The first MAF is also an aspect ratio variation, and the following MAF’s
also have evident large scale interpretataions. In particular, MAF4 is the relative
size of the lungs. The relative warps also give various large scale variations but
they are not as easily interpretable as the MAFs.
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Fig. 3. Scatter plots of the 3 first PCs and age, log age, and centroid size. A strong
correlation between the shape variation in PC1 and MNF1 to size is demonstrated.
Because size has been filtered out of the shape decomposition in the Procrustes analysis
these components can be interpreted as shape change due to growth. The lower order
components exhibit variation between individuals.

4.2 Mandible Dataset

A major objective for the analysis/decomposition of the mandible dataset is
the construction of a growth model that allows prediction of mandible size and
shape from early scans (1-3 months). When performing pediatric cranio-facial
surgery prediction of growth patterns is extremely important. Growth modelling
will also add to basic understanding as well as have teaching implications. Here
we will demonstrate the use of the MNF transformation for decomposition of a
3D dataset as an alternative to PCA.

The mandibles are aligned using a generalized 3D Procrustes analysis [15] and
projected into tangent space. Each mandible is represented by a triangulated sur-
face based on the 14000 landmarks. This triangulation allows us to determine the
neighboring landmarks easily. We estimate the noise covariance matrix in Equa-
tion (3) as the covariance matrix of the deviations from the mean displacements
between landmark coordinates and planes fitted locally to all landmarks in a
neighbourhood. In the example shown we have used a 4th order neighbourhood.
In Fig. 3 pairwise scatter plots of the first three components and age, log age,
and centroid size are shown for PCs as well as MNFs. For the PCs we see that
there is strong relationship between PC1, age and size. This means that PC1
relates to mandible growth, as was also concluded and utilized in [10]. PC2 and
PC3 does not correlate to age or size but contain variation between individuals.
For the MNFs we see that we have captured two uncorrelated modes of variation
namely MNF1 and MNF2 that relate to size and age. MNF3 is a contrast be-
tween the three younger mandible scans of subject number 5 and the rest of the
mandibles. In Figs. 4 and 5 the first two PCs and MNFs are shown. In each plot a
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greenish meanshape and a goldish positive or negative deviation are shown. For
PC1 we see a contrast between young, broad, flat mandibles with small condyles
and elder, slimmer, higher mandibles with large condyles and erupted teeth. For
MNF1 and MNF2 we see different patterns of growth.

(a) PC1 ’-’ (b) PC1 ’+’ (c) PC2 ’-’ (d) PC2 ’+’

Fig. 4. Principal components 1 and 2 shown as ±2 standard deviations across the
training set.

(a) MNF1 ’-’ (b) MNF1 ’+’ (c) MNF2 ’-’ (d) MNF2 ’+’

Fig. 5. Minimum noise fractions 1 and 2 shown as ±2 standard deviations across the
training set.

5 Conclusion

We have demonstrated a series of data driven methods for constructing non-
Euclidean metric linear decompositions of the tangent space shape variability in
2D and 3D. We have demonstrated ways of constructing such a metric based on
repeated measurements as well as by use of the spatial nature of the outline and
surface models considered. It turns out that the MAF and MNF transforms are
superior in terms of interpretability for decompoing large scale variation. These
methods are tools for determining un-correlated biological modes of variation.
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