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Abstract. Non-rigid registration requires a smoothness or regulariza-
tion term for making the warp field regular. Standard models in use
here include b-splines and thin plate splines. In this paper, we suggest a
regularizer which is based on first principles, is symmetric with respect
to source and destination, and fulfills a natural semi-group property for
warps. We construct the regularizer from a distribution on warps. This
distribution arises as the limiting distribution for concatenations of warps
just as the Gaussian distribution arises as the limiting distribution for
the addition of numbers. Through an Euler-Lagrange formulation, algo-
rithms for obtaining maximum likelihood registrations are constructed.
The technique is demonstrated using 2D examples.

1 Introduction

In any non-rigid registration algorithm, one must weigh the data confidence
against the complexity of the warp field mapping the source image geometrically
into the destination image. This is typically done through spring terms in elastic
registration [3,8,7], through the viscosity term in fluid registration [5] or by
controlling the number of spline parameters in spline-based non-rigid registration
[1,20].

If non-rigid registration algorithms, symmetric in source and destination, can
be constructed, many problems in shape averaging and shape distribution esti-
mation can be avoided. The regularizer is not symmetric with respect to source
and destination in the methods mentioned above. While symmetric regularizers
can be constructed in most cases simply by adding a term for the inverse regis-
tration [6], this solution is not theoretically satisfactory. The aim of the present
paper is to construct a regularizer that exhibits this symmetry inherently and
that is also least committed in the same way as the Gaussian distribution is for
the addition of numbers. This will be made precise later.

Section 2 gives more concise definitions, motivation, and states the principles
of the problem. Section 3 contains the solution to the problem formulated in Sec-
tion 2 and some of its properties. Section 4 describes a gradient descent method
for finding the optimal warp given a set of landmark matches. In this way, this
paper offers both theoretical considerations and their application. Subsequent
development will demonstrate this on real medical data.
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2 Definitions and Motivation

A non-rigid registration may be modeled by a warp field W : IRD �→ IRD map-
ping points in one D-dimensional image into another D-dimensional image. We
give the definition:

Definition 1 (Warp Field). A warp field W (x) : IRD �→ IRD maps all points
in the source image IS(x) : IRD �→ IR into points of the destination image ID(x) :
IRD �→ IR such that IS(W (X)) is the registered source image. W is invertible and
differentiable (i.e., a diffeomorphism) and has everywhere a positive Jacobian
det(∂xiW

j)

Here, we have made the assumption that non-rigid registrations are invertible
and differentiable. This seems valid in cases where images are created from simi-
lar structures. In some cases, such as separated bone fractures, this conjecture is
not appropriate. However, in nearly all medical cases, a non-rigid registration is
made on the basis of anatomical structures of identical topology, and the above
definition will apply. A diffeomorphism will always have the same sign of the Ja-
cobian everywhere. Our choice of positive Jacobian applies to those cases where
the object is not geometrically mirrored.

The identification of a warp field on the basis of images is a matter of in-
ference. Below we will apply the Bayes inference machine [13], but a similar
formulation should appear when using information theoretic approaches such as
the minimum description length principle [17].

We wish to determine the warp field W that maximizes the posterior

p(W |IS , ID) =
1
Z

p(IS , ID|W )p(W )

where Z is a normalizing constant (sometimes denoted the partition function),
p(IS , ID|W ) is the likelihood term, and p(W ) is the prior. The likelihood term
is based on the similarity of the warped source and destination image and may,
in this formulation, be based on landmark matches [4], feature matches [15,18],
object matches [2], image correlation [15], or mutual information [21]. The sub-
ject of this paper is to address the prior p(W ) that expresses our belief in the
regularity of the warp field prior to identifying the images. In specific medical
applications, this may be based on active shape models [9,16]. However, to con-
struct such models, homology must be created as an in principle dense field, and
the present work may also be used in this context.

We wish the prior p(W ) to exhibit the specific properties that it is:
• Derived from first principles,
• Least committed,
• Symmetric with respect to source and destination,
• Invariant with respect to warps.

In the following section we will formalize these properties and derive a prior on
warps that we will denote Brownian Warps in analogy to Brownian motion.
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3 Brownian Warps

We seek that distribution of warps which is the analogue of Brownian motion.
We wish this distribution to be independent of warps performed earlier (i.e.,
invariant with respect to warps). This property is of fundamental importance
particularly when determining the statistics of empirical warps, creating mean
warps etc. In such cases it is required by consistency in order to avoid the use
of a fiducial pre-defined standard warp. We may formulate this as:

p(W = W2 ◦ W1) =
∫

δ(W2 − W ◦ W−1
1 )p(W2)dW1.

This corresponds to the semi-group property of Brownian motion: The distri-
bution of positions after two moves corresponds to two independent moves and,
through the central limit theorem, leads to a Gaussian distribution of positions.
Since this also holds for a concatenation of many warps, we can construct a warp
as

WB = lim
N→∞

N∏
i=0

◦Wi ,

where the Wi are independent warps. This corresponds exactly to the definition
of Brownian motion if the concatenation product is replaced by an ordinary sum.

In order to find this limiting distribution when all Wi are independent, we
investigate motion in the neighborhood of a single point following along all the
warps and make the following lemma:

Lemma 1 (Local structure). Let JW = ∂xiW
j be the local Jacobian of W .

Then, the Jacobian of a Brownian warp

JWB
= lim

N→∞

N∏
i=0

JWi

Proof This is obviously true due to the chain rule of differentiation. �

Assume that an infinitesimal warp acts as the infinitesimal independent mo-
tion of points. In this case, all entries in the local Jacobian are independent and
identically distributed. Hence, we may now model

JWB
= lim

N→∞

N∏
i=0

I + σ
1√
N

Hi , (1)

where Hi is a D×D matrix of independent identically distributed entries of unit
spread. The denominator

√
N is introduced to make the concatenation product

finite, and σ is the spread or the “size” of the infinitesimal warps.
To summarize, the limiting distribution of Eq. 1 is the distribution of the

Jacobian of a Brownian Warp. In turn this defines the Brownian distribution on
warps, as we have no reason to assume other structure in the distribution.
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Unfortunately, the solution to Eq. 1 is not given in the literature on random
matrices. Gill and Johansen [10] solve the problem for matrices with positive
entries and Högnäs and Mukherjea [12] solve, among other cases, the situation
when the matrices are symmetric. Recently, we have solved the case for two
dimensions [14] and are presently considering the solution for three. Here, we
present only the result:

Theorem 1 (2D Brownian Jacobian). The limiting distribution of Eq.1
where Hi have independent entries of unit spread and W : IR2 �→ IR2, is given
as

p(JWB
) = G(S/σ)

∞∑
n=0

gn(F/σ) cos(nθ) , (2)

where G is the unit spread Gaussian, gn are related to the Jacobi functions, and
the parameters are given as follows:

Scaling S = log(det(JWB
))

Skewness F = 1
2det(JWB

)
‖JWB

‖2
2

Rotation θ = arctan( j12−j21
j11+j22

)

It is shown in [14] that the limiting distribution does not depend on features of
the infinitesimal distribution other than its spread, σ. This limiting distribution
is thus least committed in the sense that it arises from the sole assumption of
invariance under warps. The parameter σ may be viewed as a measure of rigidity
or viscocity. The effects of the parameters are shown in Fig. 1.

Scaling Skew Rotation
S ≈ 0.8, F = 1, θ = 0 S = 0, F ≈ 2, θ = 0 S = 0, F = 1, θ ≈ 0.5

Fig. 1. The independent action of the parameters on a unit square.

Now, we prove that the above Brownian warp distribution is invertible and
symmetric with respect to source and destination. Evidently, this is true by
construction; one can simply invert the infinite multiplication sequence since the
final distribution depends only on the spread of the independent infinitesimal
warps. However,
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Theorem 2 (Invertability). The distribution of warps given as spatially in-
dependent Jacobians each distributed according to Eq. 2 has with probability 1
no folds.
Proof A fold implies that the local Jacobian of the warp is zero or less. The
above distribution has a positive Jacobian with probability 1. �

Theorem 3 (Symmetry). The distribution of warps given as spatially inde-
pendent Jacobians each distributed according to Eq. 2 is invariant under inver-
sion of the warp.
Proof The inversion of a warp W �→ W−1 makes the local Jacobians undergo
an inversion, too: J �→ J−1. Under this, the distribution parameters map as
S �→ −S, F �→ F , and θ �→ −θ. Since the distribution is even in S and θ, it is
unaltered under inversion of J . �

Theorem 4 (Euclidean invariance). The distribution of warps given as spa-
tially independent Jacobians each distributed according to Eq. 2 is invariant un-
der Euclidean coordinate transformations of source and destination.
Proof The individual Jacobians will transform as J �→ RJR−1, where R is a
rotation matrix under simultaneous and identical rotation and scaling of source
and destination. This transformation leaves all three parameters S, F, θ invari-
ant. �

One should notice that this invariance holds under simultaneous and identical
scaling and rotation of source and destination. If one wants to incorporate inde-
pendent similarity invariance, it is necessary to introduce uniformly distributed
global bias parameters in S and θ as done by Glasbey and Mardia [11].

For computational purposes it may be convenient to approximate the above
distribution by a distribution which is also independent in F and θ. This can
be done in many ways without loosing the symmetry and Euclidean invariance.
However, warp invariance will no longer hold exactly. We suggest the following
approximation.

p(J) ≈ Gσ(S)Gσ/
√

2(θ)e
−(F/σ)0.67

(3)

where Gσ is a Gaussian of spread σ. This approximation has a relative error at
less than 3% for all reasonable values of S, θ, F when σ > 0.4.

In Figure 2 the joint distribution of F and θ is illustrated using this approxi-
mation and is compared to the analytical expression approximated up to n = 14
for σ = 0.3, 0.6, 1.0. The primary oscillating error seen for small σ is due to the
cut off at n = 14 in the analytical expression.

4 Implementation

In this section we show how the above distribution can be used for maximum a
posteriori (MAP) estimation of the most probable warp given a set of landmark
matches.
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Fig. 2. The joint distribution of F and θ for the approximation (top) and pointwise
relative difference to the analytical expression approximated up to n = 14 (below) for
σ = 0.3, 0.6, 1.0.

We reformulate the MAP problem as an energy minimization approach by:

E(W ) = − log p(W ) + c =
∫

Ω

S2 + 2θ2 + 2σ1.33F 0.67dx̃ ,

where c is an arbitrary irrelevant constant and x̃ = x
√

det(J) are integration
variables invariant under the warp chosen to ensure global as well as local warp
invariance. Unfortunately, the related Euler-Lagrange equation is neither linear
nor separable, and simple tricks such as eigenfunction expansions and derived
linear splines are not possible. Therefore, we treat the energy minimization prob-
lem using a gradient back-projection scheme [19].

for x ∈ Ω′ : ∂tW = − δE

δW
,

where Ω′ is the image domain excluding the matched landmark points. This
may easily be relaxed to matched curves without identified landmarks as in
geometry-constrained diffusion [2].

We see from the energy formulation that the rigidity parameter determines
the relative weight of the skewness term to the scaling and rotation terms. For
illustration of the independent terms, see Fig. 3. For large deformations, the
difference to spline-based methods, becomes obvious as for example thin plate
splines can introduce folds in the warping (see Fig. 4).

5 Conclusion

We have introduced a prior for warps based on a simple invariance principle
under warping. This distribution is the warp analogue of Brownian motion for
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Fig. 3. Illustration of deformation of a regular grid. Two points in the center have
been moved up and down respectively, while the corners are keeped fixed. We see
that the scaling term (top left) aims at keeping the area constant. The skewness term
(bottom left) aims at keeping the stretch equally large in all directions. Top right is a
combination of scaling and skewness (σ = 1). Bottom right is a thin plate spline for
comparison.
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Fig. 4. Leftmost are two images of large deformations: Left is the maximum likelihood
Brownian warp, right is a thin plate spline. Rightmost two images are two consequtive
warps where landmark motions are inverse: Left is Brownian warps, right is thin plate
spline. Brownian warps do not give the exact inverse due to numerical impressision,
but closer than the thin plate spline.

additive actions. An estimation based on this prior guarantees an invertible,
source–destination symmetric, and Euclidean-invariant warp. When computa-
tional time is of concern, approximations can be made which violate the basic
warp invariance while maintaining invertability, source–destination symmetry,
and Euclidean invariance. We suggested one such approximation being very close
to the true distribution. For extremely fast implementations, we recommend an
approximation including only the skewness term, as this has nice regularizing
properties. We have shown computational examples on synthetic data.

Future works includes applications to medical data, the development of al-
gorithms using a mutual information data term, use as void hypothesis in shape
deformations, comparisons to flows in chaotic fluid dynamics, extensions to three
dimensions, extensions to spatially higher-order correlated priors, and extensions
to fraction Brownian warps.
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