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Abstract. For applications of volume visualization in medicine, it is
important to assure that the 3D images show the true anatomical situ-
ation, or at least to know about their limitations. In this paper, various
methods for evaluation of image quality are reviewed. They are classi-
fied based on the fundamental terms of intelligibility and fidelity, and
discussed with respect to the question what clues they provide on how
to choose parameters, or improve imaging and visualization procedures.

1 Introduction

Volume visualization (VV) of tomographic volume data, as obtained in computer
tomography (CT) or magnetic resonance imaging (MRI), is an important aid
for diagnosis, treatment planning, surgery rehearsal, education, and research
(fig. 1). For clinical applications, it is of course important to assure that the
3D images really show the true anatomical situation, or at least to know about
their limitations. Unfortunately, the resulting images are depending on a large
number of parameters, including pixel size, filter kernel of the scanner, slice
distance and thickness, interpolation method, threshold (or other segmentation
parameters), and gradient operators. Variation of these parameters may result
in very different images.

Fig. 1. Examples of volume visualization in craniofacial surgery (left, from CT), virtual
colonoscopy (middle, from MRI) and psychiatry research (right, from MRI/PET). But
how good are these images?
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In medical image computing, validation of image quality is a major concern,
as was pointed out in recent papers [13], panels [16], and dedicated meetings
[7]. However, compared to the large number of papers dealing with methods
and applications of VV, only few papers are focusing on the resulting image
quality. Nevertheless, this field is characterized by a multitude of definitions
and measures of image quality, goals, investigation methods, and considered
processing steps, such that the different approaches are often difficult to compare.

In this paper, the state of the art for the evaluation of image quality in
medical VV is reviewed. A classification of methods is developed, and methods
are discussed with respect to the question what clues they provide on how to
choose parameters, or improve imaging and visualization procedures.

1.1 Aspects of Image Quality

When is an image good or bad? A straightforward definition of image quality
is based on the question: How well does an image communicate an information
required by an observer? This is called the intelligibility of the image [34]. For
example, an image used in diagnostic imaging is good if it enables an observer to
make the right diagnosis (diagnostic image quality). A more technical definition
of image quality relates to the question: How much does an image deviate from an
ideal image of the scene? This is called the fidelity of the image (technical image
quality) [34]. Intelligibility and fidelity are determined by comparing diagnosis
or 3D image to an otherwise determined ground truth (figure 2). Both aspects
of image quality are discussed in the following.
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Fig. 2. Evaluation of intelligibility (diagnostic image quality) and fidelity (technical
image quality) by comparison to a reference (dashed lines).

2 Intelligibility

In medical imaging, the intelligibility of an image relates mostly to a diagnostic
task (fig. 2). Subjective studies include the comparison of different imaging and
visualization techniques, such as CT and volume rendering, for applications e.g.
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in craniofacial or ENT surgery [1,35]. These papers emphasize the better un-
derstanding of spatial relations provided by VV, but give little further insights,
since the true anatomical situation is generally not known. The same limitation
applies to various papers comparing different processing parameters [26].

Objective investigations of intelligibility for diagnostic tasks are based on
blind studies. Image quality can thus be measured in terms of diagnostic ac-
curacy, sensitivity, specifity, or ROC-index. With respect to VV, studies were
pioneered by Vannier et al. [38], who compared various imaging modalities and
visualization techniques (e.g. x-ray, CT, 3D depth shaded, 3D gradient shaded,
3D volume shaded) for various tasks, including diagnosis of craniosynostosis
and fractures [14,39]. In most cases, VV compared favourably. Furthermore, it
could be shown that VV accelerated the speed of establishing a diagnosis, and
improved localization accuracy of the findings.

For screening applications, a high sensitivity is most critical. The sensitivity
of virtual colonoscopy, based on CT data, is investigated e.g. by [15,25]. Both
studies show a sensitivity similar to that of a real colonoscopy.

In the clinical literature, definition of image quality in terms of intelligibility
is generally accepted [6]. However, from a more technical point of view, this def-
inition has some problems. First, results strongly depend on factors outside the
image, such as the observer’s experience and the task. Second, no measures are
at hand for application areas other than diagnostics, such as therapy planning or
surgical planning, for which VV methods are most used. Third, observer studies
are extremely costly. For certain tasks such as the detection of small signals in
nuclear medicine, mathematical model observers were developed [2]. However,
the much more complex visual and cognitive tasks involved in understanding
perspective 3D images are only little understood so far. Fourth, results of such
studies give little or no clues on how to choose parameters, or improve imaging
and visualization procedures. An exhaustive testing of all possible settings is
hardly feasible, due to the high costs.

3 Image Fidelity

In order to avoid these problems, the more technical definition of image fidelity is
used (fig. 2). In a simple case, VV images created using different parameters are
compared, without precise knowledge of the anatomical situation. This approach
is found in many papers, e.g. [27].

To get at least comparable results, standardized datasets are used, which my
be distributed over the Internet [31]. For more thorough investigations, exper-
imental studies may be based on cadavers, phantoms, or simulated data, with
known properties. Furthermore, algorithmic or mathematical studies may be
carried out.

3.1 Experimental Studies

Anatomical Specimen. In a classic paper [19], 3D images of bone from CT
are compared to photographs of the specimen. The investigation also covers
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variation of slice orientation, distance, thickness, and scanner type. This way,
a first description of artifacts such as pseudoforamina and stairsteps could be
obtained. More detailed studies, also including measurements of distances, are
presented in [10,20,32]. All these papers also describe effects of variation of a
(usually small) subset of the parameter space.

Phantoms. Instead of specimen, artificial phantoms may be used, which can be
designed for special purposes. In [40], a cone-shaped phantom is used to investi-
gate step artifacts in spiral CT. In [9], a special phantom is used to investigate
the visualization of a stenosis of variable size.

Simulated Data. Simulated data can even easier be adjusted to certain needs,
at the cost of loosing some realism. Furthermore, if they are created from a
symbolic description, a perfect reference is at hand, which can be used to create
error images, showing local deviations [36].

A first question arises how the simulated data are to be created. In some
papers, the data are designed to be demanding for visualization algorithms, e.g.
by containing high spatial frequencies [22,24,29]. However, more realistic data are
obtained by modeling the point spread function of a real tomographic scanner
[36], or even the whole physics of image acquisition, as in the MNI Brainweb
project [12].

Another question is what should be measured. In 2D medical imaging, as-
pects such as image resolution or signal-to-noise ratio are often used. In volume
visualization, other measures such as the accuracy of surface position or sur-
face normal vectors [24,28,36,37] seem to be more appropriate. This way, typical
ranges of error, depending on the choice of parameters, could be estimated.

3.2 Algorithmic and Mathematical Studies

Image Space. In some papers, visualization algorithms are studied in detail
“on paper”, using simple example input. This way, it could be shown that the
order of processing steps in volume rendering (classification or interpolation first)
has a major influence of the obtained accuracy [43].

A step beyond such qualitative approaches are simple (usually 1D) quan-
titative models which cover major processing steps such as image acquisition,
interpolation, and thresholding [5,33]. This way, it could be shown that the error
of surface localization is well below voxel size, provided that a suitable threshold
value is used. Furthermore, it could be shown that a poor threshold will likely
cause visible artifacts, which can be used for further adjustment [33].

Other approaches include the investigation of the asymptotic error of inter-
polation functions, based on a Taylor series expansion [3,28].

Frequency Space. In signal and image processing, it is often useful to in-
vestigate the response of a system in frequency space [8]. In [3], the quality of
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different interpolation filters is studied by comparing their amplitude spectra to
an ideal low-pass. This concept is extended in [24], where metrics for smooth-
ing and aliasing are introduced, yielding quantitative (but not very intuitive)
descriptions. This approach can also be used for gradient filters [4].

As a major drawback, there is no representation in frequency space for non-
linear operations such as thresholding, such that this kind of analysis does not
cover all parts of the VV pipeline.

3.3 Predefined Error Bounds

An attractive solution with respect to image fidelity are rendering methods which
guarantee the visualization results to be within certain predefined error bounds.
One such approach is the controlled precision volume rendering [30,42]. However,
the controlled precision relates only to a mathematical approximation of the
volume rendering integral common to these algorithms, and says little more
about the quality of visualization.

With respect to the interpolation of volume data, a new class of interpolation
filters is developed in [23]. Under certain assumptions about the data (which
may not be met in any case), it is shown that the intensity difference between
original and reconstructed function does not exceed a predefined error. While
this filter has some practical problems, including high computational costs, it is
a promising first step in this direction.

4 Related Fields

There are some other fields closely related to VV which might be of interest
here. For segmentation of clinical data, a method for validation without ground
truth was developed which is based on a statistical analysis of the results of
segmentation by several experts. Roughly, if a segmentation algorithm is within
this variation, results are accepted [11]. A tool for validation is presented in [17].
MRI brain images segmented by experts are available from Harvard University
[21]. Within the Insight project, there are also proposals to use the Visible Human
data for this purpose [44].

A special situation occurs for the validation of methods for image registration.
Using prepared test datasets, the true transformation can be determined using
external markers, which are later removed from the test data, as was done in
a well-known study [41]. A comparable situation occurs for the validation of
scaling methods [18].

5 Conclusions

In this paper, we presented a brief overview of the methods published so far for
an evaluation of image quality in medical volume visualization. This field turned
out to be very multifaceted and complex. Nevertheless, some conclusions seem
obvious:
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– Methods for (objective) evaluation of image intelligibility are the method
of choice from a clinical point of view, but provide little help in optimizing
visualization procedures, partly due to high costs of such studies. Artificial
model observers will very likely not be available in this field for some time.

– For experimental studies of image fidelity, simulated data appear promising,
since they may easily be adjusted to certain needs, and provide a means
to create error images, precisely showing local deviations, at a rather low
cost. Essential is of course a realistic simulation of the tomographic image
acquisition.

– Mathematical studies, as well as processing algorithms with predefined error
bounds, are currently available for certain steps of the volume visualization
pipeline only, especially for interpolation.

So far, no investigations are available which determine how to choose pa-
rameters for all steps of the volume visualization pipeline in order to achieve
certain visualization results, e.g. with respect to size or contrast of the depicted
structures. Development of such a “best practice guide” will certainly be a major
task in the future.
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32. Pommert, A., Höltje, W.-J., Holzknecht, N., Tiede, U., Höhne, K. H.: Accuracy
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