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Abstract. A new approach for the automatic estimation of dense 3D
deformation fields is proposed. In the first step, template propagation
(an advanced block matching strategy) produces not only a large set of
point correspondences, but also a quantitative measure of the “registra-
tion quality” for each point pair. Subsequently, the deformation field is
obtained by a method based on Wendland radial base functions. This
method has been adapted to incorporate “registration quality” into reg-
ularization, where Morozov’s discrepancy principle has been applied to
give intuitive meaning to the regularization parameter. The main ad-
vantage of the presented algorithm is the ability to perform an elastic
registration in the presence of large deformations with minimum user
interaction. Applying the method, complicated respiratory motion pat-
terns in 3D MR images of the thorax have been successfully determined.
The complete procedure takes less than one hour on a standard PC for
MR image pairs (256×256×75 voxels) showing a 40 mm displacement of
the diaphragm.

1 Introduction

Respiratory motion often complicates the comparison of images of the thorax,
e.g. for the combination of PET and CT images [1] or for cardiac applications [2].
The interpretation of these data sets can be supported by image registration.
Registration algorithms aim at finding the transformation that relates the posi-
tion and orientation of anatomical structures in one image to the pose of the same
structures in other images. In order to register images affected by respiratory
motion, global rigid or affine transformations are not sufficient as rigid struc-
tures, e.g. ribs, move relative to each other and soft tissue is deformed so that
non-rigid registration is required. One class of non-rigid registration algorithms
incorporate physical tissue properties [3] and often require a model generation
step which includes image segmentation and knowledge about tissue elasticity
and viscosity. Another class of methods is based on image intensities alone.
The majority of current gray value based non-rigid registration algorithms use
interpolating base functions to parameterize the non-rigid transformation. An
iterative procedure is applied to determine the control point configuration corre-
sponding to optimum similarity between the reference image and the elastically
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transformed target image [1,4,5]. This requires a large number of parameters
to be varied for each optimization step. In contrast to these methods, the algo-
rithm described here follows a two-step strategy. First, a local rigid optimization
scheme called template propagation [6] that has already been applied in the con-
text of 3D respiratory motion [2] is used. Starting from a single correspondence
indicated by the user, this method automatically establishes a large number
of correspondences and a quantitative measure of the “registration quality” for
each correspondence [8]. In the second step, this information serves as input for
an interpolation scheme using radial base functions with compact support pre-
sented in [9]. This scheme has been adapted so that the “registration quality”
can be incorporated efficiently by regularization. In order to keep the number of
parameters small, and to give intuitive meaning to the remaining parameters,
automated procedures to adapt the parameters to the properties of the image
data have been introduced.

The algorithm is described in the next section. Section 3 is concerned with the
application of the algorithm to 3D images of the thorax, and with the discussion
of the results. Finally, conclusions are drawn in section 4.

2 Algorithm for 3D Deformation Field Estimation

2.1 Establishing Correspondences by 3D Template Propagation

Template propagation can be classified as an advanced block matching strategy.
In contrast to other block matching methods [10], individual blocks (templates)
are “aware” of each other. In particular, local rigid transformation parameters
obtained for one template serve as starting estimates for the registration of its
neighbors. Furthermore, the order in which the individual templates are treated
is determined dynamically during registration such that the most “promising”
candidate is registered next while outliers are rejected immediately. Template
propagation requires a similarity measure like local correlation (LC) [11] that is
applicable to small volumes and a method to quantify the “success” of each local
registration result. It has been shown that a “quality measure” can be deduced
from the properties of the LC optimum and that this measure is closely related
to the local registration accuracy [8].

The procedure typically produces several thousand pairs of corresponding
points together with the quality measure q for each pair. In order to select
a homogeneously distributed subset of correspondences originating from the
most successful template registration steps, all templates are discarded for which
q < t · qmax holds where qmax is the largest q value found for all template pairs
and 0 < t < 1 is a relative threshold specified by the user. To the remaining
templates, a “thinning” procedure is applied such that a set of high quality cor-
respondences with minimum distance dc between control points in the reference
image is obtained where dc is chosen by the user. The resulting set serves as
input to the procedure described in the following section.
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2.2 Turning Correspondences into a Dense Deformation Field

The elastic registration scheme used here has been proposed by Fornefett et
al. [9]. It is based on the Ψ -functions of Wendland [12]. In contrast to thin
plate splines [13], the Wendland functions have compact support which makes
sure that changes to the position of a landmark influences the deformation field
only in the vicinity of this landmark. For the application presented here, the C4

continuous Ψ3,2 Wendland function has been chosen:

Ψ(r) = Ψ3,2(r) =
{

(1 − r)6
(
35r2 + 18r + 3

)
if 0 ≤ r < 1

0 if r ≥ 1 (1)

Given a position x in the reference image and a parameter matrix α the trans-
formed position in the target image, y(x), is

y(x) =
n∑

i=1

α(p, u, a, λ)i Ψ(|x − pi|/a) (2)

where pi and ui are the positions of n corresponding landmarks in the refer-
ence and target image, respectively. The support length a could be set by an
expert user who can estimate the degree of deformation in the images under
consideration and thus select a value for a that is large enough to avoid fold-
ing, but small enough to describe local deformations. Fortunately, the minimum
value for a that guarantees preservation of topology for isolated landmarks can
be determined analytically [9] as a = 4.33∆ in 3D where ∆ is the landmark
displacement. This allows for an automatic calculation of a by determining the
maximum of ∆ for all control point pairs.

The parameter matrix α in (2) is obtained by solving(
K + λW −1)α = u, Ki,j = Ψ (|pi − uj |/a) , W = diag {w1 . . . wn} (3)

For Wendland functions and non-coplanar sets of 3D landmarks, it has been
proven that (3) has a unique solution [12]. Setting the regularization parameter
λ to zero corresponds to interpolation, i.e. y(pi) = ui, whereas α parameterizes
a global affine transformation for λ → ∞. If the correspondences have been
obtained by template propagation, the weights of the individual landmarks can
be set to wi = qi so that correspondences originating from accurate template
matching steps contribute most to the deformation field.

It is well known from the theory of ill-posed problems that λ often lacks
intuitive meaning. An approach to relate λ to the localization errors σi of land-
marks is Morozov’s discrepancy principle [14]. This principle can be applied
here by determining the value of λ that results in a certain average deviation
σ of landmark positions ui in the target image from the positions obtained by
transforming the corresponding source landmarks, y(pi), where σ should be of
the same order as the landmark localization error. As σ increases monotonically
with λ, the resulting equation (4) can be efficiently solved for λ with the Newton
method.(

n∑
i=1

qi

)−1 n∑
i=1

qi

(
ui −

n∑
k=1

α(p,u, a, λ)k Ψ(|pi − pk|/a)

)2

= σ2 (4)
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Fig. 1. Axial (top), coronal (bottom) slices of 3D MR images of the human thorax.
Images have been taken in three respiratory states: “exhale” (left), “intermediate”
(center) and “inhale” (right). The image sizes are 256×256×75 voxels with a voxel size
of 1.76×1.76×4 mm3.

3 Experiments and Results

3.1 Images Used for the Experiments

Three 3D MR images of a volunteer showing the thorax and parts of the abdomen
at different diaphragm positions have been acquired using a multi slice FFE
sequence. The sequence allowed 75 axial slices to be acquired during a single
breathhold. Orthogonal slices of the images are shown in fig. 1. A diaphragm
shift of about 40 mm between the images corresponding to “inhale” and “exhale”
has been observed. As the focus of this investigation was the motion of the chest
and the pulmonary vessels, image acquisition has not been ECG-triggered so
that motion blurring occurred in the vicinity of the heart.

3.2 Experimental Setup and Parameters

The algorithm requires approximate local registration parameters at one or more
image locations for the initialization of template propagation. This information
has been obtained by interactively indicating the location of one anatomical
structure in all images to be registered. In this case, the position where the pars
scapularis joins the m. lattisimus dorsi is clearly visible in all images (see fig. 2).
An estimate of the local translation parameter at this position is given directly
by the coordinate differences. Since the orientation of the chosen structure is
almost the same in all three images, and the algorithm only requires approximate
starting estimates, rotation angles of zero could be used as initial estimates.
As the slice thickness in the present case is relatively large, and in order to
make sure that templates contain sufficient structure in image regions with little
contrast, the template size has been set to 20 mm which is in the upper range of
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Fig. 2. Single correspondence used for the initialization of template propagation. As
it was visible in all data sets, the position where the pars scapularis joins m. latissimus
dorsi indicated by the white cross hair has been chosen manually.

values used previously [6,8]. An overlap between neighboring templates has been
allowed, since this results in a higher robustness compared to non-overlapping
templates in the presence of large deformations [6]. In order to include templates
in image areas with poor signal to noise ration (e.g. the lung) the relative “quality
threshold” (see section 2.1) has been set to t = 0.2. The minimum distance
between control points in the reference image has been set to dc = 20 mm.
Two values for σ (see section 2.2), σ = 0 and σ = 1 mm have been used. The
first setting results in an interpolating deformation field and the second value
corresponds to the typical localization error for successfully registered templates
found experimentally [8].

3.3 Discussion of Experimental Results

Using the parameter settings given above, the first experiment was concerned
with estimating the deformation field between the “inhale” and “intermediate”
image. The even more challenging task of elastically matching the “inhale” to
the “exhale” image using interpolating and approximating deformation fields has
been addressed in the second and third experiment.

In order to characterize the results, the deformation fields have been used
to reformat one of the images. Afterwards, gray value differences between the
reference and reformatted target images are assessed visually. As all images
have been acquired within a couple of minutes using the same protocol, contrast
variations between images are small and the gray values of the difference image
are closely related to the local registration accuracy. The plausibility of the
results has been illustrated by applying the deformation field to a regular grid
which is then overlaid on the target image. Results are shown in figures 3 and 4.

In all experiments, about 15000 templates have been selected and registered
from which about 1100 correspondences have been used for the estimation of
the deformation field. Support lengths of a = 79 mm and a = 192 mm have
been determined automatically for the first and second/third experiment, re-
spectively. The smaller value for the first experiment reflects the smaller degree
of deformation between the “intermediate” and “inhale” image.

For all experiments, the differences of the unregistered images show a signifi-
cant amount of residual structures resulting from chest expansion. Furthermore,
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Fig. 3. Difference images between “inhale” and ”intermediate” state before (left) and
after (right) elastic registration with σ = 0.

motion of pulmonary vessels and the diaphragm affect the difference images.
After registration using interpolating deformation fields in the first and second
experiment, the presence of residual structures is reduced considerably, particu-
larly in the chest area including the pulmonary vessels (see right column of fig. 3
and center column of fig. 4) indicating successful registration. However, inaccu-
racies show up close to the diaphragm and in the second experiment, close to
the ribs.

The main reason for the inaccuracies close to the ribs in the second experi-
ment is that the deformation field is based on about 1000 correspondences in all
cases although larger deformations need to be treated compared to the first ex-
periment. Using a smaller value of dc and thus a larger number of corresponding
points would lead to a more accurate deformation field at the cost of higher com-
putation time. A second complication in the presence of larger deformations is
that the contents of the individual templates are more strongly deformed which
results in larger local registration inaccuracies. In particular, if an interpolating
deformation field is estimated all correspondences are weighted equally and the
incorporation of “low quality” templates degrades the result.

This problem can at least partially be solved by weighting the contribution
of the individual template pairs by their “registration quality” in the context of
regularization (see section 2.2) as could be demonstrated in the third experiment.
The right column of fig. 4 indicates that residual structures close to the ribs could
be reduced by using approximation rather than interpolation. The deformation
grid given at the bottom of fig. 4 reflects the expansion of the chest and shows
that the mediastinum, and the heart, to some extent follow the motion of the
diaphragm.

In all experiments, the most striking structures in the difference images are
located in the abdomen close to the diaphragm where internal structures e.g. of
the liver are hardly visible in the images used here so that few reliable corre-
spondences could be established in this area.



3D Respiratory Motion Compensation by Template Propagation 645

Fig. 4. Axial and coronal slices of 3D difference images “exhale”-“inhale” before (left)
and after elastic registration using σ = 0 (center) and σ = 1 mm (right). At the bottom,
the deformation grid obtained for σ = 1 mm is visualized.

Calculation times for the complete procedure including template propaga-
tion, deformation field estimation and the application of the deformation field
were 32, 38 and 51 minutes on a 1.7 GHz P4 PC with 1 GB of memory for the
first, second and third experiment, respectively. Compared to the first experi-
ment, the larger support length led to a larger number of non-zero contributions
in (2) and thus to an increase of calculation time in the second case. In the third
experiment, a Newton optimization to find λ = 0.005 according to (4) had to be
performed additionally, further increasing the computational cost.

4 Conclusions

An elastic transformation based on Wendland functions [9] has been combined
with the template propagation algorithm originally described in [6]. The partic-
ular advantage of this combination is that in addition to a set of corresponding
points, a quantitative measure of confidence for each point pair is taken into
account for the estimation of a dense deformation field. This measure which is
closely related to the local registration accuracy [8] is incorporated by regular-
ization which is controlled by a parameter with intuitive meaning. Furthermore,
the only user interaction required is the identification of a single point cor-
respondence. The algorithm is capable of estimating accurate 3D deformation
fields in the presence of large deformations without prior segmentation of the
images, which has been demonstrated by successfully registering 3D MR images
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of the chest taken at different instants of the respiratory cycle with diaphragm
displacements up to 40 mm. Particularly for large deformations, the optional
regularization step further improved the accuracy of the deformation field. Cal-
culation times for the whole procedure were below one hour on a standard PC.
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